1y
0

pisgiin

22y

2]

g

i}

Series: Monographs. in Camputer Science
and Computer Applications

Ne 1/69

by

Computer. Science Department. - Rio Datacenter

CONVERSION FROM BIWF TOQ SYNTAX-GRAPH, AND SYNTAX-GRAPH REDUCTIONS

RAPHAFL CHRYSOSTCOMO BARBOSA DA SILVA
COMPUTER SCIENCE DEPARIMENT
PUC - RIO DE JANEIRO

|
|
|
|
|
|
‘

INDEX

The Syntax-Graph Structure..
The Syntax-Graph Reductions.

The Prwrmo\ltlixﬁooaoooocoo
The Main Procedure-Syntax2.
The RoOutineScccecccssccso

Graphcocsscocscos
Putdefleceossss
The common areas...

The Graph Routine~...
The Methodesccssoos

®

o

[

°

°

°

[}

]

(-3

Graph Building Restrictions.
Flw"d‘lartmmoooonooeemeaooac

The Put-Definition Procedure..

Recursive Reduction.ccccecocoo

]

°

o

@

°

°

The Final Syntax Graph in Graphic Fomm.

o

°

e
W WK =

o‘
e e
(o= 2R B T B < B =) B <) Y o) §

=40
-40
=11
212

. o
The Program Listing.ccecccsccscossscocsccossccosscaccsssescaccse

|
|
|
\
i
|
\
) ‘
Bibliography.csccccccossosccoscscccosssocsooscosscccsasscossess D)
|
i
|

@)

(B)

.10
THE PROBLEM

In Syntax Directed Compiling, the syntax of the source language is
described in the form of same data structure upon which the Parser
or Analyzer will work.

This paper will present a program that will convert BNF expressions
into a data structure called the SYNTAX GRAPH.

After the conversion to this list-form structure, same reductions
are made, which will contribute towards the reduction of parsing ti
me and storage space. ‘

This Syntax-Graph structure and Parsing mechanism is described in
Prof. D.J. Cohen & C.C. Gotlieb, papw 1.

THE SYNTAX-GRAPH STRUCTURE

This graph is built with nodes that contain, each, the following fi
elds:
1. S (or value of the node) - That will contain the ENF sym
~ bol wether it is texminal or not.
2. DEF- A pointer to the node corresponding to the definition
of the type contained in S¥M. If it is a terminal type, the
DEF field will contain zero.
3. ALT - A pointer to the alternative definition or construc
tion. ‘
This field may also assume the value:
OK (zero) (or SIGMA) - when there will be no failing consequen
ces if the type is not encountered,and there are no alternati-
ves, beyond this one. _
FAIL - {~1 or FI) If, when the type is not encuuntered and
there is no other alternative and this type could not be
missing in order to exist the instance ot the subject it

defines.

.2,
4., SUC - a pointer to the next component in the alternative.
when the node is an end of alternative node, this field

will also assume the-value OK (or SIGRA).

(C) THE NODE & EXAMPLE OF A GRAPH

S¥M

CDEF | ALT. |suc

A graph for the B\F expression:
. Program » ::= «Assign, | Assign ; <Programs
would be: (without any reduction)

" Progran
Fail ok
3 \; B

/0' I [8) OLL

~

Assign Program

v LolFail o-—} _ , o |FaijE o ‘%.Eaﬁi_ok

Pointers to the definition of Assign that would be given in other
(subsequent) BNF statements. :

(D) THE BNF INPUT

In order to write a program that will read the ENF specification of
the syntax of a language, it is necessary to define precisely what
the program will expect to read.

For this ‘description, I will use the BNF notation (and some
camments) , where the terminal symbols (or terminal types) will be
enclosed i: " . '

< Syntax Specification > 33 = < Syntax Caxd> < BN Cards > <End Card>

< Syntax Card > :: = < any comwent > ".Syntax.” < any comment >
< END Card > ::=<anyc@rmient>"’@fhd8yntaxo“<anycdm|ent>
§Bl\1FCards>::=’"f<BNFCard>I<B1\E‘Card><BNFCards>

< BNF Card > :: = <Defined Type > ":: =" <Definition >

< Definition > :: = < Alternative > | < Alternative > "|" <Definition >

< Alternative > :: = <Component > | < Component > < Alternative >

< Component > :: = < Defined Type > | < Terminal Type>

< Defined Type > :: = "<" < Tetters > ">"

< Texrminal Type > :: = <Any Char >

< letters » 1t =L

< Any Char » :: = A

< Any Comment > :: = C

'L - a string of up to 6 letters

A - a string of up to 6 characters that may be (each) any letter,
any digit or one of the following:
== * /()

C - Any string of symbols, including a null string (Note: the
keywords are located by means of the "INDEX" built in function
in PL1).

040

(E) THE SYNTAX GRAPH REDUCTIONS

According to Pr. Cohen's paper@y there are four types of syntax
graph reductions, which are:

1. Factoring Reduction

20

3ﬁ

Alternatives with same first components will have only one of
them used. _
Alternatives with same- last components will use also the same

‘node; -provided that this node has no alternative link.

(other than Fail).
This reduction is of basic importance for a correct parsing.. .
besides the space-saving importance. o

In the program, it is done at the same time the Graph is

being built.

Texrminal Reduction

Defined Types which are defined only by terminal types (all
alternatives contain only terminal types), can be eliminated
and replaced by their definition. :

This reduction will speed the parsing but will not always
reduce the amount of space used. '

In the programit was skipped, that is, it was not made,
because of the time factor, (that is I had to leave soon, and
this was avoided only to save time for the other more
important reductions).

Recursive Reduction

Recursive Alternatives, and mainly the left-recursive v
Alternatives (the ones where the defined type appears as the
leftrost camponent), will cause an infinite loop of the
Parser if they are not eliminated.

So, this reduction will eliminate all camponents which are
equal to the defined type, if they are left or rlght
justifled in the alternatives. '

4,

NN

(middle-recursive alternatives will not be reduced).
Different treatment will be given to left and right recursive
camponents.

As one can see, this is a very basic redu~tion also.

It not oﬁly saves space, but iz also fundamental for the
performance of the Parser.

‘Redundancy Reduction

After all this work on the Graph, some nodes will be exactly
the same, that is, they will have the same symbol and the
same DEF, ALT and SUC links.

The redundancy Reduction will, then, eliminate all the copies
and keep only one, making the appfopriate change in the
pointers. ' o | '

This change of pointers means’ searching for all nodes that
samehow point to the eliminated "copy" and make it point to
the "orig v,

060

(F) THE PROGRAM OUTLINE

The Program

The program was structured according to the following scheme:
1. A main procedure (Syntax2), that contains, besides the
common area description and entry point references,the main
line of the building of the graph and reductions in the
form of calls to the appropriate routines.
2. The main routines
a) Graph
That makes the conversion from BNF to syntax-Graph with
factoring Reduction at the same time.
Graph uses in different lewvels the following subroutines
and functions:

READ ~ a function that retwns a jump value to graph.

GLOT ~ the routine in charge of advancing the input
string pointer to skip blanks, read new cards and
detect the .Syntax. Endsyntax. cards and the end-of-
file condition.

CNS - the function that will construct a new node.

DELETE - that will return the rode pointed at by the para
meter, to the AVAIL list. '

COPY - the fumction that will return a pointer to the
copy of the node pointed at by the PARAMETER.

370

RECRSIV - a logical function that will return the value true if

the corponent given as argument is equal to the defined
pe.

LETTER,SPECIAL - a logical function that will return the value true if

the camponent or rather, the character, given as an
argument is a letter or a special character (when spe
cial means letter or special) depending on the word
used at invokation,

b) Putdefn

c)

After the whole syntax Graph is built and factored , this
recursive procedure, by iterative calls from the main proce
dure (Syntax2) will traverse each of the binary trees whose
roots are in the symbol-table, and add the DEF link.

To find where the definition of the camponent is, it uses the
function SEARCH that will return the symbol table pointer.
Recred

This is thersibroutine that will do or control the recursive
reduction process. :

It scans the symbol=-table and for each line uses the TRAVRSE
subroutine that will use the REPLACE routine.

TRAVRSE -~ traverses the "binary trees" whose roots are argu
ment, and, for each node, calls the REPLACE routine.

REPLACE - checks if the node is a recursive component (equal
to the symbol in the symbol tsble in the same line as the
root ‘given as argument) . '

If it is not it returns.

If it is, it will take the appropriate action for elimina
tion of the node, if it is a left or rignt component, or just

R

ignoring it if is a middle-camponent,
Two important precautions must be pointed.
1. The TRAVERSE routine traverse the trees in the inverse

‘postfix form, in order to avoid a loop when it would get

to the already reduced nodes if the traversal was done in
any other form.

2. The REPLACE routine leaves the nodes free or 1oose,and
does not return then to the AVAIL list.

This is done because, if the node is a last node, for ins
tance, which was used as a coamon end for more than one
alternative in the case of an end-to-end factoring reduc-
tion, it will be again returned to the avail list, what

" will be disastrous.

a)

However, it will be left loose, and to provide for d+=
later retrieval, there is the routine COLLECT that is
called by the routine CNS whenever the AVAIL list is emp-
ty

COLLECT -~ Searches all nodes, looking for any other nodes
that may be pointing at them. If it is not pointed at by
any other node, it will be added to the AVAIL list.
Redred

This is the Redundancy Reduction Routine

By the use of three nested do-loops and feature of "clea-
ning" the node name (or symbol) when it is deleted, it
will return to the AVAIL list all nodes that are "copies"
of another, and will change the pointers accordingly.

-8.

3. Common Areas

By this title I mean the areas which are defined (or declared) in
tne main procedure. '
They are:
a) The NODE (100)
Containing - SYM - the symbol
DEF - the definition link
ALT - the alternative link
SUC - the successor link
Initially, all nodes are linked by the DEF link, in the
g;va_;i;]; list.
b) The SIRING (82 characters)
The input area. |
Notice that this "card" has 82 characters. The 81Z¥ is used
to put an aditional "or" symbol (|), sc that the scanning
may be more standard.
The 829-d is a blanck character also for standardization
(mainly for the Glm routine) .
c) The SYMIAB (100) (symbol table)
Containing - SM = the symbol field
PT = the pointer to the first component of the
first alternative of the defined type
- whose symbol appears in the SM field.
Only defined types are put in this symbol-table.
It can also be looked as an array of roots.
d) SYMBOL
An intermediate buffer where the symbol from the input string
is put , before the ncde is built.

of

L]

e)

£)

090

FIRST (100)

Containing FP ~ the "first-pointer".

These pointers point to the first camponent of the current alter
native (the one that is being handled), and, if factoring is
being done, successive "first pointers"will point to successive
factored components.

They are reset at each new alternative that begins different
form the previous one.

LAST (100)

Containing LP - a "last po:.nter"

USEDALT - a logical variable that will indicate wether or
not the node pointed at by LP has an alternative
1link or not.

USEDSUC - a logical variable that will be set on or true
when the node pointed at LP has been used alre
ady for a last—to-last factoring reduction.

This vector contains all the last components of all definitions.

(G) GRAPH ROUTINE

1. The Method

 /* Conversion fraom BNF. to Syntax Graph with factoring */ Graph
relies upon the information contained in the value returned bby
the READ routine. This value is used to. jump to the appropriate
section. '

These sections are:

1.

2.

4,

Defined type

Action: the symbol is put in the symbol-table.

Action: the camponent is linked .to the symbol table, and put
in the FIRST list.

Action: Disables the recursive chek;.Adds the .component to the
FIRST list. '

Links to previous first's ALT field, or if eugal, deletes the

— v w— ——— — o —) ——. St WD O N —

Action: Since .the FACT flag is also .in the "camon area" (in
the main procedure).,. the read routine will check it and set .
the return value 4. | |
The new.component. is added to the SUC link of the last (or
current) FIRST, or if the SUC link is already. occupied it

will be added to the last ALT of the last first's successor.
If however,the new node is equal to this last ALT, it will

be deleted and thef FACT. flag will be on again.

If the. bexistent successor is a last cawponent, it is checked
for the USEDSUC and USEDALT flags and appropriate action taken.

2.

11,
5. Last Component

The last to last fad:oring is attempted.

If there is an ecual component in the LAST vector, it is tagged
with the USEDSUC flag and the current node will point to the
one encountered in the LAST 1lisi, while the new node will point
to the new (suc link) and the new node will be added to the IAST
vector.

D) il - -) o)

The current node will point to the new node by its successor
link, SUC.
Graph Building Restrictions

Since this method reads and builds the graph using the alternatives
in the order in which they are written, this order becames very im-
portant. :

1. The alternatives with the same starting component must be together
(without any other intervening alternative) and

2. The recursive alternatives must be the last ones.

If a recursive alternative is written as the first one, the program
will point out the fact and end execution.

With regard to the first restriction, no detection is made.

I must point out, however, that I have already designed a way of a-
voiding these restrictions.(although they are not programmed due to
lack of time):

There would be .another. step .in. the read=in process (the first one)

that, for each B statement card, would .create.an array of alterna-

tives (or pointers to the alternatives). The non-recursive alternati

ves would be sorted (and the sort key. %nrould be the whole alternative)
to ensure the most effective factoring, and the same would be done wi
th the recursive ones,

on the other hand, for the same purpose.

The read procedure would then follow the new sequence of
~alternatives that would be given to it by the "PREPARATTION
. ROUTINE". '

The only check (recursive) needed would be the verification if
the alterative has only recursive camponents, in which case it
would be el;iminated@

This would eliminate the two restrictions listed above.

FLOW-CHART (cont'd)
Section (2)

/g t;ZLS12}%.4:1*:[1,';Jonent of
1 al@en\ative*/

Put new in th
Table of first
=1

FP (F)=NEW

o

[S2

/*First camponent
of oth$ alternatives*/

'Disable

ALT(FP (1))
> =NEW.
FP (1)=NEW

9140

(“Section(4))

/*I\Io'l:\{‘i.,St caﬁponent
~and faf.ctoring */

SuC (FP (F))
ALT (NEW)=OK
FACT=OFF

{ SECTION (5)

- /* last|Component*/

FLOW-CHART (cont'd)

L=ls1
LP (L) =NEW
FLAGS=OFF

turn USED-as—
SUCCESSOR ON;
DELETE (NEW)
SUC (CURRENT) =
LP (X
CURRENT =
SUC (CURRENT

SECTION(7) ¢

DELETE (NEW)

Jda.

.15,

() THE"PUT DEFINITION"PROCEDURE

i. The Method

After the Graph phase, we have a Symbol table filled with the
defined types and with the pointers to the binary trees (if the
DEF link is considered ag another data field) corresponding to
the definition of each of these defined types. '

The main routine (Syntax2) will then iteratively call PUTDEFN,
giving each time a pointer to one of the binary trees as a
parameter.

PUTDEFN, a recursive procedure, will traverse these binary trees
in postfix order, and, for each node "visited", will call the
function SEARCH and will £ill the DFF link with the value
returned by SEARCH.

SFARCH - will return the pointer to the tree that corresponds to
the definition of the definesd type. If the type was not found in
the symbol table, SEARCH will return the value zero. Thus,
terminal types will have zero in their DEF links.

(I) RECRED -~ THE RECURSIVE REDUCTICN

1. The Method

When RECRED is called (or invoked) , three levels of subroutines

will be working: | | |

a) RECRED - the outmost procedure, will also use the forest of
binary trees in the sense that it will call iteratively
‘another routine to visit the nodes of each of these trees, by
means of a do-locp.

.16

For each line in the symbol-table (that is filled with useful
information), RECRED will invoke TRAVRSE.

b) TRAVRSE - is the second level recursive procedure that will
be in charge of visiting the nodes; however when the time
comes to do something usefull with the node, TRAVRSE calls
the REPLACE routine to do it.

It is very important to note that TRAVRSE has to traverse
these trees '-in'the"-inverse'mstfix order (right link, left
1link;, root) because, during the traversal, the tree will (or
may) became a graph of a list-type structure.

Any other type of traversal would allow an infinite loop to
happen if a left recursive alternative were present in one of
the alternatives.

¢) REPLACE ~ this (non-recursive) routine contains the mechanism
for replacing or, rather, eliminating a recursive camponent
and changing the pointers accordingly. It identifies if the
component is recursive or not, and, if recursive, wether it
is-a left, right, or middie recursive camponent. '

(J) REDRED — THE REDUNDANCY REDUCTION

1. The Method

Using the fact that the nodes of the now built, factored and

recursively reduced graph are in order in storage (in the
initially AVAIL vector), this routine consists of three nested
100pSs. '

The outermst loop will contxol the processing of each and every
node, and will skip blank-synbol nodes .
The second level loop will pick up the nodes to be campared with

.17,
the node pointed at by the outemmost loop’s variable. If there is a
match, the innermost loop will rum over all nodes * looking for those
who somehow point at the match node, and make them point at the "original"
(pointed at by the outermost loop's variable).
* Except the match node. The "copy" node is deleted, at the end of the
whole search. This is accamplished by the use of the JFLAG which will in-
dicate wether there was any node pointing at the current node or not.

.17a.

THE SYNTAX GRAPH IN GRAPHIC FORM

Note: This graphic has been drawn fram the program output which comes next.
The table used was the last one, the GRAPH 3 table.:

1 EXPR
oﬂcbio
2 AEX
°i1 91l
3 BOOLEX
3 | ¢] o
% ¥
4 SAEX
12 uola
\
5 IFCLOS 6 SAEX 7 ELSE
5 | ¢ | o 12] ¢ Jo—d——=1{o |4 [o=
9 IF 10 BOOLEX 11 THEN
ol ¢ | 3] 4 | od—1{o Jo lo
O 7T
13 AOP 14m4 16 20P
321 ¢ 171 ¢ | o—
KN 1| TEPEN

0189

.190 '

30 *
olqg |°
31 /
ol ¢ |o

N i
17 FACTOR 19 Mop
211 ¢] o 30] ¢ Jo
23
o] o | o
25 NUM
2] q |
{
26 VAR
°0 9 |
27 28 AEX 29)
ol ¢ | e 4] ¢ Jo ol/;tlc
-1

35 IFCLOS 36 SBOCL 37 ELSE
91 ¢] 3] 4 Jo o |4
]
39 IMPLIC 41 == !
375 |5 o [o | o=
45 = =
o[1
47 BULFAC 49 OR

°l @1

51| ¢ | o

021:

[55029

i
51 BULSEC 53 AND 58 LOGVAL
55| 4 | 0 lg | © 91l @ | o
59 VAR
90]0 |a
-
60 REL.
58] 9 | @ ‘
63!%'0
56 NOT 57 HULPRM :
o | ¢ | o e | o 6L ¢
' o| ¢ | o)
62 BOOLEX
o[22 0
63 SAEX 64 RELOP 65 SAEX
121¢ |o 661 ¢ | o 2Ty T o .

0227

72 UNSNOM
G 75ﬁ 0"5
67 LE 7% ROP 74 UNSNUM
O[T 2] ¢ | o 751 ¢ [o
¥
68 EQ ~ —
o] Comm)
L ,
69 GE 75 DECNOM
79] ¢ | ©
ol | ¢
w %
76 EXPO
70 GT -
T 5T = 83] o | @ |
77 DECNUM 78 EXPO
71 NE T l I
79| ¢ 83] ¢ g
ST T 9l . ¢ | o ¢

80 DECFRC }
85| %l

81 UNSINT 82 DECFRC }
WT 5 T B[¢ o

<23,

83 E 84 INIGER
o] ¢ [ot={B861¢ o

NV

o] ¢]o

91 TRUE
o| olAc
86 UNSINT i
89] 0!0‘ 92 FALSE
ol | o
87 A0P
34 91 o

BIBLIOGRAPHY

1. The Syntax Graph: A List Structure for Representing Grammars.
D.J. Cohen and C.C. Gotlieb
Univ. of Waterloo and Univ.of Toronto

2. Syntax - Directed Compiling
T.E. Cheatham, Jr. and Kirk Sattley
Proceedings of the Eastern Joint Computer Conferences
AFIPS, vol. 25 pp. 31 - 57, 1964

3. The Syntax of Programming Languages - A Survey
R.W. Floyd '
IEEE Transactionson Eletronic Camputers
vol. EC~13, pp. 346 - 353, Aug. 1964

4. Programming Systems and Languages
Part 3 - Compiling and Translating
Edited by Saul Rosen
Mc Graw Hill Computer Science Series, 1967

5. The Art of Camputer ngrmmﬁng vol. 1
Donald E. Knuth ~ California Inst. of Technology
Addison - Wesley Publishing Company, 1968

6. PL1 Reference Manual
TEM Manual n9® C28-8201-1.

gTMT LEVEL NEST

1

wnN

~Nowmp

25

26
27
28
29
30
34
35
36
37
38

39

e

P e b et Pt

- [okl ol el

et b b pd Pt e pet ek b e

-

/% CONVERSION FR(OM BNF TO SYNTAX GRARH %/

e

/% CONVERSIUN FROM BNF TO SYNTAX GRAAH */

(CHECK(REDRED)) 3
SYNTAX2:3

PROCEDURE OPTIONS{MAIND;
DECLARE I BIN FIXED;

DECLARE 1 NODE{1Q0)s . .
\ 2 SYM OHAR(é) INITCCL00M (60" "),

2 (DEF4ALT,SUC) BIN FIXED
: INITIAL((100)04(10010, (1001013
CECLARE (AVAIL,P,Q,RCOT) BIN FIXEDS
CECLAKE STRING CHAR{82) INET((82)°* *1;
DECLARE CHAR BIN FIXED3 '

DECLARQ 1 SYMTABL10OQ),

2 SM CAAR(ﬁ).INI TIAL((200)06)" *),y
2 PT BIN FIXED I“ITIAL((IOO)O), o
ST BIN FEIXED;

DECLARE SYMBOL CHAR{6),

. {OR,ON,ORF,EQF) Bln(l).
DECLARE 1 FIRST(1001),
2 FP BIN FIXED ﬂNITIAL((lQO)O)v)
: . F BIN FIXED; '
DECLARE 1 LAST(100), o
2 LP BIN FIXED HNITIAL((I%O)O),
> USEGALT BIT(1) INITIAL((100)°0'8) 4
2 USECSUC BIT(1) INITIAL({100)°0°8) 4
L BIN FIXED; '
CECLARE (SUBJECT,FACTY BIT(1) 3
DECLARE OK ~ BIN FIXED INIF(O)3
DECLARE FAIL BIN FIXED INIT{-=1)3
DECLARE GRAPH ENTRY; =
DECLARg READ RETURNS{BIN FAXCD).

O P=1 70 30;

CECLARE CNS ENTRY{CHAR{6)BIN. FIXED, BIN. FIXED'BIN FIXED)
RETURNS{BIN FIXEDEFS ; _ 1
DECLARE DELETE ENTRY(BIN FIXED)3 : _ ,
DECLARE COPY ENTRY(BIN FIXED) RETURNS(BIN FIXED):
DECLARE RECRSIV ENTRY (CHAﬁtb)’ RETURNS(BIT(L))X:
DEGCLARE GLOT ENTRY:
DECLARE PUTDEFN ENTRY(BIN‘FIXFD).
DECLARE LETTER ENTRY (CHAR(1Y) RETURNQ(BIT(I)):
' DECLARE SPECTAL ENTRY{CHAR(1)) RETURNS(BIT(1))3
DELLARE SEARCH FNTRY(CHAR(&)) RETURN (BIN leed):
IN!TIAL_SETT[NG.v
OR,OFF¢EOF FACT="078B3
- ON,SUBJECT=91°8; '
AVAIL=2:
CHAR=823
STeFsLyPe Qe ROQT =05 .
DO P=1 TO 993 DEF{P)=P+1l; END; DEF(100)=0;
CALL GRAPH; : ‘ N .
DO I=1 70 ST WHILE{SM{I)~=" ')
CALL PUTDEFN{PT{II)3 Co
END3 : ,
PUT EDIT('N SYMBOL DEFNITION ALTERNATE SUCCESSOR *)
{PAGE,A); B RS ERE

gTMT LEVEL NEST

40
41
42
46
47

48
49

50
51
52

53
54

55

STMT LEVEL NEST

56

57
58
59
60
61

63

64
65
66
67
68
69

70
71
73
74
76
17

1

[= Y N

— -

1

N NNNNN

NNNNNN

NNONNNDN

/* CONVERSION FROM BNE 'TO SYNTAX GRAPH */

1

1

pUT EDIT(P,SYM(PI;DEF(P):ALT(P),SUC(#)D
{SKIP(laeF(ZD9X(119A(6)vX(4k,(3)(F(5)qX(5)))3

END3

/% THE ROOT IS THE FIRST DEFINED TYPS %/
ROOT=13 SYM(1)=SN{ll}s: ALT({1)=FAIL: SUC(1)=0K3
CALL RECRED; ' SR
pUT EDITLON SYMHOL DEFNITION ALTHRNATE SUCGESSOR *)
(PAGE. A
DO P=1 YO 303
PUT EDIT(P»SYM(P}VDEF(P)unT(P).SUC()
(SKIP{LYoF(2)9X{1)sA(6) X4 L3V EF(5) 4X(5)))3
END3
CALL REDRED;
PUT EDET(*N SYMBOL DEFNITION ALTERNATE SUCCESSOR)
{(PAGEsA) '
Do P=1 TO 303
PUT EDIT(PpSYM(PboDEF(P),ALT(P).SUC(P))
4SKIP(IBoFiZle(1),A(b),X(4l.(3)(F(5)JX(5))I:

END3

/% CONVERSION FROM BNF TO §YNTAX GRAPH %/

GRAPHZ
PROCEDURE
DECLARE {(PART{2}¢SECTION(T)) LABELS
DECLARE {X1lyX2 ¢4 NEWsCURRENT) BIN FIXED 3
DECLARE SKIP{7}) BIN FIXED INIT(2919242919142)3
DECLARE I BIN FIXED3
X1, NEWJCURRENT =13 X2=23

NEXT_COMPONENT 2
X1 = READ3
X2=SKIP{X1}s
NEW=CNS{SYMBOLyO«FALIL 0K} 3
GO TGO PART(XZ1}3
PART(1): /% WHEN AND WHILE 1sT ALTERN?TIVE */
1F RECHSIVISYMBOLY THEN GO TO ERROR1
PART(2) 7%
GO TO SECTIONEXLHS

SECTION(1): /% SUBJECT (DEFINEO TYPE) *#/
DO I=245963 SKIP{1}=13 END3
SY=5T+13
IF ST>100 THEN DOJ
PUT LIZT(PSYMBOL TABLE OVFLOe")3
STCP3

g8l 2 X2=13

82 2 GO 7O SET;

83 2 SECTION(2): /% 1ST COMPONENT OF 1ST ALTERNATIVE #/
7% puT IN TABLE OF FIRSTS #/
F=13

84 2 FP(F)=NEW;

/% LINK SYMBOL TABLE */

85 2 SYMTAB4PT{ST)=NEW]

86 2 60 TO SET;

87 2 SECTION(3): /% FIRST COMPONENT AFTER
88 2 1 DO 1=2+5:63 SKIP(I)=2; END;

90 2 F=13

91 2 1F SYM{NEW)= SYM{FP(1)) THEN DO;

93 2 CALL DELETE(NEWI;

94 2 FACT=0ON;

95 2 GO TO NEXT_COMPONENT;

96 2 END;

97 2 ELSE DO

98 2 ALT(FP (1) }=NEW;

99 2 FP{1)=NEW3
100 2 GC TO SET;:
101 2 END;
102 2 SECTION(4): /% NOT FIRST COMAONENT AND
103 2 IF SUC(FP(F))=0K YHEN DO; '

/% CONVERSION FROM BNF TO SYNTAX GRAPH x/

STMT LEVEL NEST

ORx/

FACTORING

104 2 SUC(FP(F)) =NEWS
105 2 ALTENEW)Y=0K3
106 2 FACT=0fF;
107 2 GO TO SET;
108 2 ENDs ! :
109 2 P=SUC{RP{F}):
110 2 DO WHILE(ALT(PID>O)3 P=ALT{P); END;
113 2 IF.- SYM{PI=SYM(NEW) THEN DO3 o
115 2 FACT=0N3
116 2 F=F+1l3 |
117 2 FP{F)=P3
118 2 CALL DELETE{NEW);
119 2 GO TO NEXT_COMPONENT:
120 2 END;
121 2 DO I=1 TO L;
122 2 1 IF SYM{P}= SYMI{LP{I)) THEN DO;
/% FACTORING ON A LAST COMPONFNT */
124 2 1 IF USEDSUC(I) THEN DO :
126 2 1 CURRENT LP (1) s SUCLFP(F)) COPY(LP(I)I;
127 2 1 ALT(SUCIFP{FI})I=NEW;
128 2 1 GO TO SETs
129 2 1 END
130 2 1 ELSE DO

*/

1 END3

5 2

{36 2 1 END3

137 2 SECTION(5): /% LAST COMPUNENT */ _

138 2 1 DO I=1 TO L WHILE(SYM(LP(I))~=SYM(NEA)); END3

139 2 IF SYM(NEW)= SYM(LP(I)) THEN DO;

141 2 IF USEDALT(I) THEN CG3

143 2 SUC (CURRENT) =NEW3

144 2 GO TO ADD_TO_LASTS3

145 2 END3S

146 2 ELSE DO3

147 2 USEDSUG(I}="1B3""

148 2 CALL DELETE(NEW)3

149 2 SUC{CURRENT}=LP(L}; -

150 2 CURRENT=SUC(CURRENT)3

151 2 GO TO NEXT_COMPCONENTS

152 2 END; _

153 2 END;

154 2 ELSE SUC(CURRENT)=NEW;
/% ADD TO THE LIST OF LASTS */

155 2 ADD_YO_LASTS: ' '
L=bL+135

156 2 LP(L)=NEW;

157 2 USEDALT(L),USEDSUC(L)="0"B3

158 2 GO 10 SET;

159 2 SECTION(6): /*INTERMEDIATE COMPONENT */

/% CONVERSION FROM BNF TO SYNTAX GRARH */

STMT LEVEL NEST
SUC{CURRENT } =NEW

160 2 SET:
CURRENT=NEW;
161 2 GO TO NEXT_COMPONENT ;.
162 2 SECTION(7)¢
CALL DELETE(NEW)S
163 2 RETURN
164 2 ERRORL:
PUT EDIT('FIRST ALTERNATIVE IS RECURSIVEe')(SKIP(1)yA)d
165 2 STOP; |

166 2 END GRAPHS

-5-

/% CCONVERSION FROM BNF TO SYNTAX GRAPH */

GTMT LEVEL NEST

PROCEDURE BIN FIXED;

168 2 DECLARE TERMINAL BIT(1) INITIAL('O'B1Y;

169 2 DECLARE LABL(3) LABEL,JUMP BIN FIXED 3

170 2 DECLARE I BIN FIXEDS

171 2 CALL GLOQOT;

172 2 IF SUBSTR(STRINGHCHARp1)='|' THEN DO

174 2 OR=0N3

175 2 CHAR=CHAR+13

176 2 CALL GLOT;

177 2 IF EOF THEN RETURNI(TI}3

179 2 END3

180 2 [F SUBSTR{STRING,CHARs1)}~= *<* THEN 00;

182 2 IF SUBJECT THEN GO TO ERRORL;

184 2 TERMINAL=21"8;

185 2 DO I=0 TO o WHILE(SPECIAL{SUBSTR(STRING,CHAR+I,1}))3 END ¢

187 2 IF 1>6 THEN GG TO ERRORS5;:

189 2 IF I=0 THEN GO TC ERROR6;

151 2 END;

192 2 ELSE DO3

193 2 IF SUBJECT THEN JuMP=13

165 2 CHAR=CHAR+13

196 2 CALL GLOT;

197 2 DO I=0 TO 6 WHILE (LETTER(SUBSTR{STRING,CHAR+I+1)1)}35 END

199 2 IF I1>6 THEN GO TO ERROR23;

201 2 END;

202 2 GET STRING(STRING) EDIT(SYMBOL) (X(CHAR=-1),A(I));

203 2 CHAR=CHAR+I;

204 2 CALL GLOT;

205 2 IF SUBSTR(STRING,CHAR,1) ~= *>* THEN DO;

207 2 IF —-TERMINAL THEN GO TO ERROR3;

209 2 TERMINAL='0"'8B3

210 2 END;

211 2 ELSE DO;s

212 2 CHAR=CHAR+13;

213 2 CALL GLOT;

214 2 END;

215 2 GO TO LABL{JUMP) 3

216 2 LABL(1): /% SUBJECT SYMBOL */
CHAR=INDEX({STRING,*:3=") + 33

217 2 IF CHAR=3 THEN GO TC ERROR4;

219 2 JUMP=23

220 2 SUBJECTyOR=0FF;

221 2 RETURNI(L);

222 2 LABL(2): /7% FIRST AFTER SUBJECT x/
JUMP=33;

223 2 RETURN{(2);

224 2 LABL(3): /% ALL OTHERS */

i i T Gy T ST

7% CONVERSTON FROM BNF 7O SYNTAX GRAPH ¥7

JMT LEVEL NEST

S
2 OR=0FF 3
%;2 2 RETURN(31)3
2 END3
zgg 2 [F FACT THEN RETURN{%);
i 2 [F SUBSTR(STRINGsCHAR,1)="|* THEN DO
233 2 OR=0N;
234 2 CHAR = CHAR + 1 j
235 2 RETURN (543
36 2 END s
537 2 RETURN(6) 3
238 2 _ ERRORL1: PUT EDIT(*BEGIN DELIMITER MISSING®) (SKIP(1),4A);STOP
240 2 ERROR2: PUT EDIT(*COMPONENT > 10 CHARS4 ') (SKIP(11yA);STOP;
242 2 ERROR3: BUT EDIT(*END DELIMITER MISSINGe ") (SKIP(1)yA);STOPS
244 2 ERROR4: PUT EDIT(¢SUBJECT SERARATOR MISSING')(SKIP(I),A),
45 2 . TOP; : ‘ ‘
246 2 ERRORS: PUT EDIT(*TERMINAL > 6 CHARSe*](SKIP(1)4A);STOP;
248 2 ERROR6: ﬁUT EDIT{* INVALID CHAR="*,SUBSTR(STRING,CHAR,1))
249 2 ’ QSKIP(1)9A¢A).STOP,
250 2 END READj

/% CONVERSION FROM BNF TO. §YNTAX GRAPRH %/

STMT LEVEL NEST

251 1 GLOT:
PROCEDURE’

252 2 DO WH[LE(SUBSTR(STRING'CHAR,I)-'_'){
253 2 CHAR=CHAR+1; O
254 2 1F CHAR >81 THEN DO3
256 2 END_OF [FILE: :
257 2 ON ENDFILE(SYSIN} BEGIN3
258 3 pPUT EDﬁT(’ABNORMﬁL ECF ENCOUNTEREQ')ﬁSKIP(l)'AH:
259 3 PUT EDIT{*PROGRAN TERMINATHED, *)(SKIP({l),A);
260 3 STOP; :
261 3 END3
262 2 GET_ONE_MORE
GET EDIT{STRING){(A(BO));
263 2 PUT EDITUSTRING) (SKIP(1)yA)S
264 2 IF ZNDﬁX(STRING;J.SYNTAXa')- 0 rHEj
266 2 IF INDCX(STRINGqﬂaENDSYNTAX.') ~= 0 THE
268 2 EOF=0Nj .
269 2 STRINGH® 3
270 2 RETURN;
271 2 END 3 '
272 2 SUBSTR(STRING,BL{1)=*}*;
273 2 CHAR=1{
274 2 SUBJECT=91%;
275 2 END3
276 2 [\Ea K

0 ro Get ONE_MORE::

/% CCNVERSION FROM BNF TO $YNTAX GRAPH %/

STMY LEVEL NEST

‘PRDCED JRE($SYM,s SOEF s $ALT, $5UC) BIN FjXFD.
280 2 DECLARE $SYM CHAR(6),{$DEF,$ALT,$SUC{$P) BIN FUXED;
281 2 IF AVAIL=0 THEN DO; :
283 2 CALL CQLLECT;
284 2 If AVA%L’—O THEN DOj
286 2 PUT EDIT(*AVAIL UNDERFLOWe")(SKIP,A)
287 2 STOP;
288 2 END3
289 2 END;
290 2 $P= AVARL. AVAIL= QEF(AVAIL).
292 2 SYM(SP)=$SYM;DEF($P) =$DEFsALT ($P)=$ALT; SUC($P)3$SUC;]
296 2 RETURNfsp).
297 2 END CNS;

/% CONVERSION FROM BNF TO SYNTAX GRAPH */

STMY LEVEL NEST

268 1 DELETE:
PROCEDURE(P) 3

299 2 DECLARE P BIN FIXED;:

300 2 IF P<1 THEN RETURN;

302 2 ALT(P)=FAIL;S

303 2 SUC(P)=0K3

304 2 Az DEF(P)=AVAIL3 AVAIL=P; SYM(P)=* “
307 2 RETURN;

308 2 END DELETE:

.8.

/%« CONVERSTON FROM BNF TO SYNTAX GRAPH */

STMT LEVEL NEST

309 1 copy:
PROCEDURE(P) BIN FIXED3
310 2 DECLARE P BIN FIXED;
311 2 RETURN{CNS(SYM(P) DEF(P)FAIL,0K))3
312 2 END COPY3

/% CCNVERSION FROM BNF TO SYNTAX GRAPH */

STMT LEVEL NEST

313 1 RECRSIV:
PROCEDURE($S) BIT(1)3;

314 2 DECLARE $S CHAR{6),1 BIN FIXED;

315 2 DO I=1 YO ST; IF $S=SM(ST) THEN RETURN(*1'B); END;
319 2 RETURNL®O'B} 3

320 2 END RECRSIV;

.9.

/% CCNVERSION FRUM BNF TO 4YNTAX GRARH */

STMT LEVEL NEST

321 1 LETTER:
PROCEDYRE ($) BIT IREE ,
322 2 DECLARE $ CHAR(LY}s(FROM,TQ¢ 1) BIN FIXED;
323 2 DECLARE TRMNLS CHAR(45) R ,
INIT(® BCDEFGHXJKLMNOPQRSTUVWXYZO123456789:=+fﬁ/"()!)ﬂ
TRMNL 345) CHAR() DEFINED TRMNLS.‘ B
324 2 S ERCM=1§ TO=263 TC XEQs
327 2 SPechL:»ENTvast BIT(1)3
328 2 FROM=13 TO = 4573 ¢
330 2 XEQ: -
. DO 1=F DM T0 TO
331 2 1 IF $=T MNL(I) TH&N RETURN(l'B).
333 2. 1 ENDS - :
334 2 _ RETURNgio Bl"
335 2 END LETTER:

/% CONVERSION FROM BNF TO SYNTAX GRARH ¥/

STMT LEVEL NEST

336 1 PUTDEFNS
PRUCEDURE(P) RECjRSIVE.
337 2 DECLARE P BIN FIXEDS
338 2 “IF P<1 . THEN RETURNS. - :
340 2 IF- sucqpa<1 & ALT(P)<1 THEN GO TO A3
342 2 CALL PUTDEFN(ALT(P)).
343 2 CALL P TDEFN(SUC(P))'
344 2 At DEF(Pj SEARCH{SYM(P)).
345 2 RETURNS
346 2 END PUTODEFN3

/% CCNVERSION FROM BNF TO JYNTAX GRAPH */

STMT LEVEL NEST

347

348
349
350
352
353

354 -

355

1

NN RNNDN

i

SEARCH:
PROCEDURE ($S) BIN FIXED;
DECLARE $S CHAR(6&), I BIN FIXED3
Do I=1 TO ST;
IF $5=9$M(1) THEN RETURN(PT(I));
END3
RETURNCO) 3
END SEARCH: - .
(CHECK{TRAVRSE I}z
{SUBRG) '

-

/% CONVERSION FROM BNF TO $YNTAX GRAPH */ -

STMT LEVEL NEST

356
357

358

359

360

NNNRON

RECRED:
PROCEDURES
DECLARE I BIN FIXED;
DO I=1 TO ST;

1 CALL TRAVRSE(PT(E))S
1 END;
RETURN:

(CHECK{REPLACE)):

llo.

STMT LEVEL NEST:

361

362
363
365
367
368
369

370

STMT LEVEL NESY

371

372
373
374

376
378
380

381
382
383
g4

385
386
387
389
390
391
392

393

PEED Do

SED DS SD

PWWWE W N

w

3

SR

>

7% CONVERSION FROM BNF TU SYNTAX GRAMT 7

TRAVRQE" /% IN INVHRSE PUSTFIX ORDER %/
PROCEDURELQ} RECURSIVES
DECLARB Q BIN FIXEDS
IF Q<1 THEN RETURN;
IF ALT Q)<Y & SUC(QP(l THEN GO TQ A;
CALL TRAVRSE (SUC(Q})3;
CALL TRAVRSE{ALT(Q)):
Az
CALL REPLACE(G)S’
RETURNY :
(CHECK{ Ry JsKs LEFTH)2

/% CCNVERSION FROM BNF TO SYNTAX GRAPH. %/

:PLACE:

PROCEDURE (R} 3

DECLARE {PyJyKsR) BIN FIXEDS

P=R3

1F SYM(PD*—SM(I),THEN 7% NON RECURSIWE*/ RETURNS

IF suctpw13~9 YHEN DO;
IF SUGI{PI=0K TF&N /% RIGHT REDURSIVE%/ COj;
SUC(P=1)=DEF(P]}] B
/% NODE P WILL BE LOST */
RETURNS
END;
"ELSE /% MIDDLE RECURSIVE®/ RETURN;
END3 o

J=PVLI§3

DO WHILE{(J<P}3 '

IF ALT(J)=P THEN /% LEFT RECURSIVE, $0: */ GO 10 LEFT{|
ELSE J=ALT(JIS ' ‘
END3

PUT EDITEYRECURSIVE BUT NOT LIRIM=1,3YM(P)I(SKIPyAsA)
STCP3

LEFT&

ALY 2 3y o Af T gD

357
398
399
402
403
405
406
407
408

STMT LEVEL NEST

409

410
411
412
413
415
416
417
418

419
420

NwdHSSESEPPP

1

NNNNNNNN

NN

NN

END3
K=SUC(P)3;
DO WHILE(ALT(K)>O0)3 K=ALT(K); END3;

ALT(K)=0K 3 /% TO BE OK IF NOT FOUND*/
DEF(P)=AVAIL; AVAIL=P; /% DELETE P */

RETURN;
END REPLACES
END TRAVRSES
END RECREDS

/* CONVERSION FROM BNF TO SYNTAX GRAPHM %/

COLLECTS
PROCEDURE S
DECLARE(1,J) BIN FIXED3:
DO I=1 TO 1003
DO J=1 TO I-1,I+1 TO 1003
IF DEF(JJ=IIALT(J)=IISUC(Jt=I THEN
END3#
DEF(I)=AVAIL;
AVAIL=I}
QuT:
END3s
RETURNS
END COLLECTS
{SUBRG) =

GO TO OuT:

13
/% CONVERSION FROM BNF TO SYNTAX GRAPH %*/

STMT LEVEL NEST

421 1 REDRED: /% REDUNDANCY REDUCTION */
PROCEDURE}
422 2 DECLARE (I,JsK) BIN FIXED, JFLAG BIT(1) INIT(Q'B) 3§
423 2 pO 1= 1 TO 100 3
424 2 1 IF SYM(I)="* * THEN GO TO NEXT3
426 2 1 Do J= I+1 TO 1003
427 2 IE SYM(I)=SYM(J) & DEF(I) = DEF(J) &
ALT(I) = ALTWJ) & SUC(I)=SuUC(J) THEN
428 2 2 D0 K= [+1 TO J-1, J+1 TO 100 3
429 2 3 IF SUC(K)=J THEN D03
431 2 3 SUGIK)=I3
432 2 3 JFLAG=0ON3Z
433 2 3 END}
434 2 3 END3
435 2 2 IF JFLAG THEN DO3 CALL DELETE(J)s JFLAG=CFF3; END;
440 2 2 END3
441 2 1 NEXT:
END3
442 2 RETURN
443 2 END REDRED3
4b4 1 END SYNTAX2;

e SYNTAXe

<PRG 13 =<ASG> | <ASG>3;<PRG>
CASGD3:= KVARD> =
KAEX>3:=<TRM>]

<VARD>: v
CINT>s2= 1
<AOPD3:= + | -
<MOP>3s= X% |

« ENDSYNTAXo

Do~N~ounnpun~

SYMBOL
ASG

4

PRG
VAR

AEX
TRM
AEX
ACP
TRM
FCT
TRM
MoP
FCT
VAR
INT
(

AEX

-~ #l K-

<AEX>

CAEXD>CADP> <TRM>
CTRM>$:=<FCT> | <TRM> <MOP> <FCT>
KFCTY>3:= <VAR>|

<INT>

(<AEX>)

DEFNITION ALTERNATE SUCCESSOR

—
OCO=ROQOONCOP,rPWO

N =
l)OOOOOCOOOOOwDOOOU’I#

SYMBOL DEFNITION ALTERNATE SUCCESSOR %5

N
1 PRG 2 - 0
2 ASG 5 -1 3
3 3 0 0 2
4 PRG 2 -1 4]
5 VAR 21 -1 6
6 = 0 -1 7
7 AEX 8 -1 0
8 TRM 12 -1 10
9 AEX 27 -1 10
10 AQP 23 0 8
11 13 -1 0
12 FCT 16 -1 14
13 TRM 9 -1 14
14 MOP 25 0 12
15 11 -1 0
16 VAR 21 17 0
17 INT 22 18 0
18 0 -1 19
19 AEX 8 -1 20
20) 0 -1 0
21 V 0 -1 0
22 1 0 -1 0
23 + 0 24 0
24 - 0 -1 0
25 * 0 26 0
26 / 0 -1 0
27 28 -1 0
28 29 0 0
29 30 0 0
30 31 0 0

HASP JDB 128 STATISTICS -- 457 CARDS READ -- 1,358 LINES PRINTED -

