Series: Monographs in Computer Science
and Computer Applications

Ne 3/69

FORMULA MANIPULATION IN THE FLETCHER AND POWELL OPTIMIZATION METHOD

by
ANTONIO IUZ FURTADO - FIRMO FREIRE

Computer Science Department. — Rio Datacenter

FORMULA MANIPULATION IN THE FLETCHER AND POWELL OPTIMIZATION METHOD

ANTONIO LUZ FURTADO - FIRMO FREIRE
COMPUTER SCIENCE DEPARTMENT
PUC - RIO DE JANEIRO

FORMULA MANTPULATTON IN THE FLETCHER AND POWELL OPTIMIZATION METHOD.

1. Introduction

The method developed by Fletcher and Powell [1] finds the optimum of
a function £(x).

A particular problem involving function minimization is curve-fitting
one of the most widely known is least-squares, consisting of the minimi
zation of the function zfy - £ (x)]°.

The present work is concerned with general least - squares curve -fi-
tting using the Fletcher and Powell method.

The method requires an evaluation of partial derivatives at each
step.Two possibilities are usually considered:

a. to find the expression of the derivatives by hand and use then in
function subprograms;
“b. to employ finite differences to evaluate the derivatives nmner:.cally.

The first solution imposes upon the user the necessity of doing work
that is both time - consuming and subject to manipulative errors.

The second solution involves approximating a function by a
polynomial thus introducing truncation errors.

A third solution is proposed in this paper. Methods of formula
manipulation on a camputer including formal differentiation have been
used to autcmate the first method.

The resulting derivatives have been either evaluated interpretively
or campiled into machine language and then executed under control of the
optimization program.

Since formal differentiation and compilation are performed only once
there is very little increase in the lenght of time required to execution.

An implementation of these techniques was written in FORTRAN IV,MAP,
and the list - processing system SLIP=~[2}

An IBM 7044 (32 k) of the " Pontificia Universidade Catdlica " (Rio
de Janeiro - Brasil) was used to run a number of examples.

2. The Formula Manipulation Techniques
2.1 The Differentiation and Simplification Algorithms

Consider any arithmetic expression such as a + b + ¢ . d. Our first
step would be to rewrite it in prefixed Polish notation (3] as
(+a (+b (*cd))).

Notice that each sub - expression contains only one operator (we
shall call it p) and two operands (g and r; in case of just one
operand, the second will be ¢). Rules [4] for differentiating a
sub - expression, giving the results in the same notation, and
representing as g' and r' the derivative with respect to a general
variable x, are:

P derivative
+,-
*

(+q'r')
(+(*qx') (*xrqg'))
(- (/g'x) (/ (*qx') (**r2)))
(+(x(*r (** g (~-xrl)))a)
(* (* (logg ¢)(** gqr)) r',

* %

sin (* (cosqgé) ,q")

o8 (* (-0 (sing¢)) ,q")
atan (/q (+1 (**qg2)))
log (/q' a

&P (* (expg ¢) Q')

sqrt (/q" (%2 (* q0.5)))

Unary minus may be either assimilated to 0 - g or separately
specified. The meaning of q' (and r'), is

- if g is an element then if g = x then 1, else 0;

- if q is a sub-expression the rules above must be applied

a3.

recursively.
Indeed the reasons to use this notation are: to organize the whole
expression and its successive sub-expressions in the same three-
fold way thus allwing recursion, and to organize the results alike
thus allowing n* order differentiation.
The simplification process may tale place as each resulting sub-
expression is built. Some of the possibilities are:
sub-expression simplification rule
(+qrx) q=0o-r
r=0-=q
r=1-2
=r#l-(*2q
= 0 »q
=x 20
=1l-qg-1
= 0.»0
=0 =0
1l-r
1sg
I .;.-(*-k q 2)
0+0
= 1 -q
=1 -1
=0 -+l
=1 =g

(-qx

(*qr)

on

(/an

(g

K R .Q HQ Q. H.Q K3 Hi@Q KB Qa
i

2.2 List Structures

An expression like (+x (* y 5)) would be represented as:

4.

' main list
' 4
+ |
v _ i
« F———— | sub-list
‘ A
*
\V4
| y |
)
5

To provide more information about the expression we associate to it a

property (or attribute - value)list . This device is available in

most list-processing languages, and we use it

a. to prepare for directed evaluation, supposing the expression has
been compiled; ' '

b. to prepare for simple interpretative evaluation;

c. vhen the expression is an o' derivative, to provide access to the

12F o n - 1R derivative (this is intended for other app]ications
for which a Taylor series is to be evaluated).

We give the property lists for the expression‘vabove and its sub-

expression: C

. Property List

A

Atribute 'INS'

Main IList

Value Address of la. Instruction

\VJ

Atribute °‘P*

A

value the Integer 1

3

Atribute ‘'Qf

&

Value Address of x

v

Property List '

| Sub-list

ﬂ

Y4

Atribute 'P°

A

Value the Integer 3

\L ,

Atribute ‘O°

Y

!

Value Address of y

Atribute ‘R’

E Value address of 5 §

.50

2.3 Rararks on Programuing Aspects

The expressions are not given as function sub-programs but rather
as data, though the standard FORTRAN notation was en;_»luyecﬁ!m

any fucntion, besides the'six indicated above, could be added to
differentiation and -simplification algorithms: Our solution

the

was to call a routine (that is otherwise a dqumy) containing the
appmpriate rules whenever none of those six functions is
recognized: Another solution was to give the model of the derivati
ve as data. : |

Interpretive evaluation uses the machine address of defined
-constants and variables to fetch their current mmerical values.
The integers,: -corresponding to operators, given-in the property
1ists, make it easy to branch to the operation to be perfomled
Interpretive evaluation is recursive.

campilation is done by OR ing the instruction codes w:.th machine
addresses and - storing in-an array, entry points to SIN, cos,
etc. are known through non-erecutable calls to these routines.
pirect evaluations is accamplished through a transfer and store
jocation (TSL) instruction, thus providing the return address.
An interesting problem is to make any variable v in a program

rrespond to a variable with the same name appearing in an
expression (that is given as data), at execution time.
A roﬁtine to put resulting expressions in the infixed form is
necessary for readable output. | _
aAs to the Fletcher: and Powell application, we have chosen o

differentiate only £(x, 1,ooo,cn) with respect to ¢;,...,C; the
derivatives fk {x, cl,m‘e,cn) were evaluated, and then, for each

“
- 2 %(Y‘i —f (xiicllc‘OO&Cn)] ° fk(Xi; clfooeycn)

.70

(that is-the full expression for the derivative of the function
z [y - £6x,0y,...,0)] ? to be minimized) is computed by standard
FORTRAN statenents. '

FLETCHER .AND. POWELL. OPTIMIZATION METHOD

The optimization method described by Fletcher and Powell in 1963 finds the
local minimum of a-function F(x), on an unrestricted space. R®. The process
as it was originaly. described, requires that the gradi ent of the function

being min:im:i.zed, _.
Fx, =3 F (x) /aXi ’
canbeobtainedforeveryst .

This algorithm has quadratic convergence taking advantage of the fact that
near the optimum the second order ‘terms of the Taylor Series expansion of
F (x) pu:edoninate. For this reason, in this region, F (x) has quadratic
behavior.

4.1 Description of the Method

Taking a quadratic form
' F(§)=F(:_g_o)‘+_g_:t§jv~ 1/2§tF>c§_g (1)

where

’ gi= BF(?E) (i=1, 2, coap n) (3)
o 3%y

F}{ xjanj xi=32F . (i‘:l, 2,wwm'n; ﬁ= 1,2,090,1’1)0 (4)

Diferentiating (1)

. 080

=aﬁmz (5)

Suposing that Fxx is known and Fx has been calculated, the solution
to {5) is
x=FX T -g) (6)
In the minirmum, x*, we have that Fx = 0
o _ : |
z;-ﬂdiz (7)
"I.‘ak:mg (7) fram (6)

‘ x*-x*Ax‘--F:mlFx), .
from which the displacement, 4x, leading to the minimm of F(x) can
be obtained. o , '
In this method Fsor * is not calculated directily. On the begining it
is chosen to be any simetric, positive definite matrix, H. During the
process, this initial matrix is modified in such way that it conver
ges to Fxx L. |
The search for the minimum is then made in the d::.rectlon

g=-wx (9
Initially, if a good aproximation for Fxx © is not known, H is taken
to be the identity matrix I. The first direction of search is then
the gradient directlon.
Supos:mg that x is the starta.ng point with gradient Fx and matrix
Hl an :Lteraflon cons:l.sts on: .
I) taking o Hl e 10)
IT) obtaim.ng oF that mm.mises Fix + 2\0 ‘? (11)

III) Taking 6 ot ot Q2
l

IV) Taking X T = x4+ 6 (13)
V) Obtaining F(xI+l) and F1+l x (14)
VI) obtaining y* = Fx'Tt - Bt (15)

VII) obtaining B'L = it + al + 8 (16)

.9.

where At =gt ST 17y -
STj_ yi
Bl = - gt yTiw (18)
yTi o yi
VII) taking i = i + 1 and reapeating the cycle until the minimum achieved.
During stép (V) it is important to check if the sign of F§?+l is negative
If it is positive, indicating a maximum in this direction, the method
should be reestarted by taking H- I. :
The process of fiding the minimum along a line is not important, and any
method (quadratic or cubic interpolation, Fibanacci) can be used.
Fo a camplete discussion of the method the reader is referred to [}] and

(¢]-

4. Some examples
4.1 A third - dregree polynamial
3 2) '
X +02x +c3x+c4

f{x) = ¢

and 50 poiﬁts are given, being taken from a sine in theinterval
[0.1256, 6.28); error is simply indicated by :fy - f(x))z.

iteration error gradient
0 0.71057871E06 -0.13793703E13
1 0.93553701E03 -0.20710005E07
2 0.26828310E01 -0.18342468E02
3 0.28229170E01 ~0.11064342E02
4 0.22096718E00 ~0.86280064E~12

execution (IEM - 7044) - 11 seconds.

4.2 A Fourier Series

cl
c2
c3
cd
c5
cb
c?

£(x) =c; + ¢, cos (x) + ¢y sin (x) + ¢, cos (2x%)

+ cg sin (2x) + Cg COS (3x) + Ce sin (3x)
and 13 points-are arbitrarily given:
(0.,0.), (0.5236,1.) , (1.0472,4.) , (1.5708,5.),
(2.0044,4.), (2.618,3.),(3.1416,3.5),
(3.6652,3.5), (4.1888,3.), (4.7124,1%,
(5.236,0.5) , (5.7596,0.2) , (6.2832,0.)

iterat: on
0

1
2
'3

initial guess
0.10000000
0.10000000
-0,10000000
0.10000000
0.10000000
0.10000000
0.10000000

0.12259356E03
0.22949982E0L
0.55373018E00
0.34009569E00

parameters

execution —- 17 seconds

gradient
~0.38771982E04
~0.56263757E02
~0.76470583E01
-0.44165643E-11

£inal values
0.23950854E01
~0.15498134E01
0.13411897E0L
~0.72648882E00
0.54848364E00
~0.15982872E00
~0.61666735E00

4.3 A logistic Curve (Verhulst's curve)

fX)=¢c, / (1 + ¢, ech) and 16 points are given, being taken
1 2

Qll.

from a logistic curve; this was an attempt to an"exact"fitting well
confirmed by the final error. ' '

iteration error gradient
0 0.21018392E07 -0.66830117E14
1 0.23161255E06 ~0.96784435E12
2 0.13359862E06 -0.16247006E07
3 0.88821628E05 -0.30176431E05
4 0.22509569E05 -0.13335278E05
5 0.29605248E04 ~0.57720680E04
6 10.35425489E02 ~0.44027244E02
7 0.53447918E00 ~0.78347632E00
8 0.16417862E-02 ~0.31300855E~02
9 0.16298145E-07 -0.11570152E-07
parameters
initial guess final results
cl 0.30000000E04 0.28976811E04
¢2 0.10000000E0L 0.16533642E01
c3 0.50000000E00 0.3729:729E00

execution - 14 seconds

4.4 A curve with increasing amplitude and period

c2x

and 26 points are given:

£(x) = sin (c]. % %) . O3

(0 ,0),(0.1,0.2),(0.2,0.),(0.3,~0.4), (0.4,-1.),
(0.5,~-0.6), (0.6,0.),(0.7,0.8), (0.8,1.8),
(0.9,3.), (1,2.2), (1.1,1.2),(1.2,0.),

(1.3,-1.4), (1.4,-3.), (1.5,~4.8) , (1.6,~6.8) ,
(1.7,-5.4), (1.8,-3.8), (1.9,~2.), (2.,0.),
(2.1,2.2),(2.2,4.6),(2.3,7.2), (2.4,10.),

(2.5,13.)

iteration
0

W 0O N U™ W N

BB

exror

0.76787446E03
0.36010441E03
0.35875788£03

0.19162920E03

0.71163198E02
0.46289303E02
0.22226243E02
0.17774374E02
0.17417844E02
0.16913818E02
0.16872360E02
0.16872282E02

parameters

gradient

-0.43668890E07
~0.85459424E04
-0.73709711E02
-0.64111556E02
-0.59923968E02
~-0.30989299E02
~0.20746101E01
-0.93962388E00
-0.53808595E00

-0.70761245E~01
-0.15951866E-03
—e,73429112E—o7

initial guess
cl 0.20000000E02
c2 ~0.10000000E0L
c3 0.50000000E00

execution - 39 secords

final results
0.28529033E02
~0,14383141E01
0,10474954E01

.12,

REFERENCES

20

4.

5.

Fletcher,R. and Powell ,M.J.D.
"A Rapifly Convergent Descent Method for Minimization" -
The Computer Journal, vol. 6 - p. 163-168 ‘

Weizerbamn,J .
"symmetric List Processor"
Comm. ACM, p. 534 - September, 1963

Graham, R.M.

"Bounded Context Translation"
Programming Systems and Languages

edited by Rosen,S. - Mc Graw Hill - 1967

Barron,D.W. and Strachey,C. -

"Programming”

Advances in Programming & Nor. Numerical Computation, edited by Fox,L.
Pergamon ~ 1966 |

Wilde,D.J. and Be:.ghtler,c S.

"roundations of Optimization" - Prentice Hall 1967.

o ‘.'Exéfnple' 2

+ 13

- 6,9-

L

Example ;‘ 4

Y

