Series: Monographs in Computer Science

and Computer Applications

NQ 8/70
THE COMCOM-SOFTWARE WRITING SYSTEM

by

Arndt von Staa

Computer Science Department - Rio Datacenter

TECNICO CIENTIFICO
+'Iwia Universidade Catélica do Rio de Janeiro
"o Marqués de So Vicente, 209 — ZC-20

Rio de Janeiro — Brasil

'ABSTRACT:

- The COMpller COMpiler system was prxmarlly designed. as a. tool
for compiler writing. By compiling we mean any kind of automatic -
artificial language translation. In general the_system,as”seen by the -
user;is‘composediof two've:y'flexible langusges;»avsyntactic‘metelanguage’
and a Semaneic metalangdage. We: required the object comoilef produced. byi_
this system to be efficient and not- Just another academlc research tool
Powerful capabilities for compxler wrzters were . supplxed that enable the
design of efflclent object compilers which produce good targec codes. ‘,‘
Moreover the system also provides for experzmental work on comp;}lng
techniques,.leading to. comparative study of different1eompi1ing.Stracegies.

A feature a system of this kind ought'to have is:asemuch¥mechioejﬁ;
independence as possible. For that the COMCOM system complles obJect
compilers into a pseudo code specially designed for wrxtxng compllers.

The translation of the intermediate code to exlstlng machlne languages can ;
be done by assembler programs specially written for each of.the. actual,
object machznes. The machine 1ndependence for the target language isf¥
obtained by leaving to the user the chéice of which is g01ng to be*the :

output code..

Since a compller should also serve various users w1th only rudx-
mentary knowledge of the languages it must be able to give a- large amount
' of precise error messages. For that the system provides in 1ts syntactzc

metalanguage not only features for recogn1t1on«buc also for errorxdetect;on

;l::

. The COMCOM‘system was also'designed‘as an aid to research in
.both formal and natural languages. Because of this many d1fferent
forms exist for descr;b;ng the sentences of the syntactlc metalanguage

wzth correspond;ng;s;;a;ghcforwa:d semantic high level facilities.

A certain‘conﬁeitusensitiveness is allowedvby the possibility of
_runtzme modlfxcatzon of the sentences of the syntactic metalanguage of
COWCOM. These modxfzcatxons refer to. cond1t10na1 recognztxon, d1ffetent-
types of backtrack1ng, 1nsert10ns: and deletxons, use of parameters

thh;n the pattern descrxptzon, embeddxng of executable statements.

1 - STRUCTURE OF THE SYSTEM:

‘The System Components are the Following:

A-

Source lenguage of the obJect compiler or of: any set. of transformation .

rules. This source language may ‘be any of a wide class of 1anguages.mﬁj

.such ass genetal putpoae programming languages, problem orlented

1enguages,.preprocessors etc,

Target language (language that w111 be produced by the obJect

compller) The language B, may also be any of a 1erge class"

1anguages. In general hxgh level language. an assembly lvnguige, or;

machlne code..In thls text it is supposed that B 1s accepted by som:g

proces 80!’.

. COMCOM language in which the object compilet’KA/B)fisfdegiﬁedf

'(syotactic and semantic metalanguages).
‘Mschiz'zaflanguage in which the COMCOM compiler (1/L) is written.

‘Intermedxete code generated from L.~ The execut1on of thxs code is’

done elther 1nterpretxve1y or the code is. assembled 1nto an

ex;stlng machxne languege (not necessatxly of the same computer)

fA set of sentences written in A.

‘- Data for qs

A very conveuxcnt notation to represent the 1nteract1on among

these components can be dzaplayed using the notat1on nge 1n[;4J.;

If thevtransformation’<; 1 A Siato be done direcﬁly rather than
| N B |

intetpretively. the previous scheme becomes

q
A

1 A
C B

K'r-' r*lr-
: 2:|r"u$[>»
le—‘ KI»—-

Where A, B, L, M, N, q and S have the same meanxng as before, and C 1s the-
machine language of the machine where the obJect compxler (A/B) will run.

2 = AN ABRIGED DESCRIPTION OF THE COMCOM LANGUAGE:

2.1 - Block:tdes

The coMcoM language (L) has a blocked structure. The followxng
block types exlst.

External blnck - comprises'gll statements 6f the program.

FUNCTION blocks = functions or subroutines which will be executed
elther by the appearence of the funct1on s name -
or by a CALL statement. All functions or subroutines
in the COMCOM language are recurs1ve. The functxons

or subroutines may have O or more arguments.'

ﬁACROfbibcké' = a MACRO is a com?ound structure containing a
syntactic part ("name") and a ‘semantic part. The
Yname" of a MACRO block is a pattern descrmptlon.:
The semantic part is a set of sentences to be
activated in case an input string'matches ;he.;
name. There may be several MACRO blocks of the -~
came level within the same block and this may be
carried to any depth;'The input phase is initialized
by a COMPILE statement. The action of a COMPILE :
‘statement is to pass control to the pattern des—""
cription list (sentence) of the first MACRO of a
given level. If no match succeeds, ‘then the next
MACRO sentence ‘of the same level is tried. Thls
process continues until either a match succeeds,.)

or thevlist of MACRO‘sentences is exhausted. In the

BEGIN blocks -

latter case, the fzrst unrt of the 1nput is dropped
and the matching phase is restarted wrth the flrst
MACRO sentence of this level. If the dropped unit
was the end of file mark of the input strlng, then
control is passed to the fxrst rnstructlon sfter
the COMPILE statement. '

I .
When a match succeeds, then the semantrc part of
the MACRO block 1s entered When returning from the

:MACRO block after executron, all 1nput units belongxng

to the xnput strrng are dropped from the. 1nput and "

control is passed to the 1nstruct10n follow1ng the

‘.COMPILE statement.

blocks which will be executed when the seqnentialg;

flow of executron passes control to the flrst

instruction of the BEGIN block. BEGIN blocks may be
used only within pattern. descriptions. The BEGIN
block 1s terminated by an END statement. The BEGIN

and END statements may be regarded as a specxal

'type of parenthesrs encloslng one or more statements.‘

A1l units read until the 1n1t1allzatlon of a BEGIN

block are aileble for the user wzthrn the block.
After the END statement of a BEGIN block the pattern

' descrzptlon regains control.

Within blocks any statements may be wrrtten, inclu- .

ding such statements as COMPILE, MACRO, 'FUNCTION, etc."'
‘:All blocks are ended by an END statement.

: 'For mmcnon. MACRO and the external block, ‘the. 'END

'statement also corresponds to a RETURN statement.

2.2 - Data Types.

2,3 -

The following data

FIXED =

CHARACTER or CHAR-

BIT =

: o 300 characters long

;blt strxng data.‘The etrxngs may be O up to 300

fzxed po1nt (bxnary) arzthmetic data.

fcharacteﬁ:strxng dat' The. strzngs may b

bits 1ong.
‘label or program reference data. Label constantsg

. arrays and expressions are allowed.

UNIVAR -

syntactxc unxc data. Thxs data type may’ be used

" for matchzng anut strings or it may - appear 1n

’arlthmetle expressions or in asslgnment

statements. L

3 pattern descrlptlon data. This data type 18 used

to galn access to. input unlts or to descrzbe
pattern prototypes. The use of the KEY statement
and KEY data type wzll be seen later.

The converezon from one ‘data type to another 13 done automatxeally

by the system.

Pattern units in pattern descriptions:

Input units are matched one by one with the unlts to be recognxzed

'in the pattern descr:ption ind1cated by a MACRO name, If the unit

avaxlable at the 1nput satlsfxes what has :o ‘be recoganed, chethhe

executxon proceeds.

If they are not equal, then an alternative pattern description is

tried.

The input w111 be moved back (backtracked) a suffzclent number of units .
to ensure that a11 1nput unxts analyzed in the current ‘failed pattern
are crxed agaxn. ‘If no more alternatxve patterns exlst. then the next
»MACRO is t:xed, '

The ‘existing pattern units are:

Unit constants = = 'élements'Whicﬂ have to yield an equal match to the
‘input.
Ex: " + ", "DECLARE" , "LITERAL".

Unit variables =~ variables of the type UNIVAR. The input has to Yiéld

, v o anequal match to the current value of the varxable.

P:edefined"nnitsvéj,are categorles of pattern elements. The unlts of the

system are:

$1 - any identifier. Ex: 4, ABC, X1234¥Z, il.

6c - any constants . Ex: 1, 1234567890.

L - any literal. - Ex: 'ABCD','+', '1234'

$IC - any identifier or comstant. Ex: A, 123, ABC, 456.
 $AOP - any arithmetic operator. + = % / k%, T i
 $COP ~ any comparzson operator. LT GT LE GE NL NG EQ NE..
$U - any syntactic unit. Ex: ABC,'ABC', 123, LT, -, NOT

2,4 -

2;5:*-

General Statements:

The COMCOM. language contains general statements like:

DECLARE or DCL

a831gnment statement

IF bxt-expr THEN stat ELSE stat

DO 1ndex - expr T0 expr BY expr WHILE b1t~expr
GO TO label constant or label ‘expression.

Sznce most of the statements above follow the rules of PL/l,

1 will not go into detail describing them in. this text:i [6]

The output of messages and code is- provmded by the statements :
OUTPUT and OUTCOD respectlvely. “The output 13 format free s
the xtems to be output are concatenated leavzng no 1nterven ng :
blanks..The output statement outputs messages Whlch are 1nter~wf
mzngled with the card 1mages of . the lnput. The OUTCOD statement

outputs on an 1ntermedxate flle. thereby allowxng the use of the

produced code for_later applxcatioua.,

.InternaltFunctions:‘

Several internal functions are included. These functions aid ini

character strlng manipulatton.‘
" speczal actzons durlng the match;ng phase,

o |

symbol table handling,-

speczal access to “input unxts.

output ed;t;ng.

‘Some other features will be illustrated in the examples of the

‘following section.

3 - EXAMPLES OF PATTERN DESCRIPTION:

Well formed: forms are described . through MACRO statements. User -
deflned ptototypes, KEYs, may also be- used of descrlblng patterns.
Access to. 1nput unlts is galned 1n arzthmetlc expre551ons by us1ng

KEY names 1n the expre581ons.ﬁ_

‘Notlce that predefxned unlts, e.g. $I $U etc., are conSLdered ash
being ‘system deflned KEYs. If the scope of a glven KEY admxts more
than one 1nput unxt,’then only the flrst of these units w111 be

accesslble.

Example 1. - Let G be. a grammar whlch produces the following sentences:
A, AA AAA, ooy AA ...'A ST {A »
The productlons of thls grammar could be recognlzed by the
following KEY: :
KEY G - llAll 0"'("A">.,
‘Where:
vG'Q—é-neme'of the KEY
"A" — unit constant o

0~ () - declares that the pattern descrlptlon inside the j

parenthesxs is to be repeated 0 or more txmes.

‘When using this KEY for recognltlon, one w111 never be able
to know how many times an 4 was ‘found at the znput sxnce

’ only the . f;tst Ainput un1t of the key is access;ble. }'

The scope of the KEY would be LA A ... A,
G

_Another recognizer would be:

KEY GB = "aA",,
KEY GA-= 1~ (GB).,

This acheme allows us to know how many &'s occurred,
.nimply by couting the occurrences of KEY GB. -‘ ,
The scope of tha KEYs would ba A A Ceee A
| cn an -~ GB_
N | ‘

GA
A third sdluuion could bai |

KEY GA - (W' GA OR v“A“')

"the acope of the kays would be ‘A A ‘fi.'..“ ' \é_,

D : V)

| l'h:ls KEY also all_owa a8 to know how many A's hava been.
read, the number of .occurrences of KEY GA being equal to
‘how many A's have been read.

" The definitian fabové is recursive. When an A is found at’
- the input, the KEY ‘GA will 'be retried until no more A's

. ‘ex:.st at the dnput. In this case the last call to GA faxls.;
| and, consequently, the first alternative pattern "A" GA
- faila. Therefo:e the last occurrence of A is looked up -

twice at the input. To avoid this'matching‘duplication,‘the

pattern could be defined in the following way:
KEY GA = "A" (GA OR).,

In this case the second alternative is null, so if GA fails
the secbndselternative cannot ‘fail and consequently the
recognition will succeed.

'Examéle 2:-eLet G be a<grammar which produces sentences of the form
A" 8" c®;n > 0. Sentences of th:.s _grammar- could be:

irecogn1zed by._
KEY D= 1_ (llAis SET INDEX TO 9] an (an) "C" (“C")

The statement SET INDEX TO asslgns ‘the current value of ‘the
repetmtxon counter to the fzxed varlable I. ance the repetitxon
;counter is only 1ncremented when the 113t to be repeated Ls'ﬁﬂ

“exhausted, when the repetxtxon ends the value of I w111 be ‘one
unit less than the final value of the repetition counter

The net effect of thls KEY 1s. the input 1s compared Wlth A
untxl no- more A's exxst at the 1nput. After that the input is
compared . exactly I+l times with B "B" T("B")

If thxs is true ‘then the 1nput is compared exactly I+1 txmes
thh C. Of course, if more than I+l C's exist at the 1nput,
the remalnxng ones are left for later recognxtlon. Sentences

should be defined havxng a’ fznal delzmmter. e.g. Wi

Examgle 3. Let us conszder the DIMENSION ‘statement,’ supposzng that, .’:

‘18 the f1na1 de11m1ter of the statement. g{

.Ex. DIMENSION A(10), B(2. 3), c(s 6 7).,

:Thzs strtng could be recognzzed by the follow;ng statements.jj

KEY nmmm - $1 "(" $e 0—2 (" " sc> ")"
-:KEY DIMLIST = DIMUNIT 0-("," nmvm'r)., .

MACRO "DIMENSION" DIMLIST ".,".,

The MACRO declaratlon 1nd1cated.15 the namem eclarati
»the functzon Whlch w111 handle DIMENSION state e"
easy to see from the example that the KEY DIMle
Qused in. other declaratzve statements like INTEGER,

The example shown above w111 not recognize statements
.DIMENSION A(IO) B(S) “'because of the absence of the com
,The KEY DIMLIST could be rewrxtten to. alldw thxs kindiof
error to be deteeted.

‘BACK UNIT 1 OR BEGIN:;

m DIMLIST - DIMUNIT o—(("," "on".
ou'rrur 'mssmc A MUY EN

ieffectmﬁevthetnthe unzts backtracked wxll be rea

S s

BEGIN block 1s 1n1txallzed when both o and R fall to bej
ac the 1nput. We' can see thac the BEGIN corresponds to a
remaxn1ng part of the description (DIMUNIT) corresponds to

the termination of the recognxtzon.

Exgghiélaz ‘Consider the grammar whxch produces the followzng set of
strxﬂgs.‘{AB BA} . In thzs grammar the order of occurrence-;
of A and B in str1ng AB is 1mmater1a1.

A recognizer could be: .

_KEY - AB = UNORD("A" "B")
}m SETl - 1 (AB).,

ﬂthe UNORD statement allows pattetns where the order-
7occurrence is, d;sregarded. ‘The UNORD statement cat

"null pac:erns.

KEY AC - UNORD("A" 0-1 ("X") 2 ("Y")).
would recognxze the follow1ng scr;ngs.

:‘AYY YYA, AXYY, AYYX, xmr, xm., YYAX, YYRA

,the descrxptzon 0- ("x") nghc be empty, n 8 possible’

Jnull”aub-pattern 13 descrxbed.

‘The null cond;cion wzll only be recogn;zed’e
ijeach sub—descriptzon of an “UNORD lzsc has be

Several ot:tf;pattetn description statements exist in the gyntactic
metalanguage part of the COMCOM ‘language, a few more of wh;

liaced belaw.

-3

mcludmg thg _ ast oecuxrence of the KEY key—name. The mput.
u not affécted.

- 14 =

o

Fl..

Ml..

M2..

KEY AEXP= TERM O-(AOP TERM).,
KEY TERM= ($I OR $C).,
KEY AOP = (" + " OR

"wo_ n).

FUNCTION OPND(A KEY) CHAR.,
IF A.$I EQ "' THEN RETURN '=' CAT A.,
ELSE RETURN A.,
END Fl.,
MACRO $I ''='" AEXP ''.,''.,
OUTPUT ' CLA ', OPND(TERM).,
DO I=1 BY 1 WHILE AOP(I) NE ''.,
IF '+' EQ AOP(I) THEN OUTPUT ' ADD
ELSE OUTPUT ' SUB
END.,
OUTPUT ' sto ', 9I.,
END Ml.,
MACRO *' '''EOp''' '',,STOP., END M2.,
COMPILE., GO 'TO Pl..

END COMCOM. ,

-15-

', OPND(TERM(I+1)).,
', OPND(TERM(I+1)).,,

The functlon OPND 1s of type CHAR.. The strlng length °f,funCt10ns l.ﬁ

ﬁalways varylng and must not be declared.‘The argument’of the functxon :

fZ— functlons whzch allaw the lznkage to I/O and superviso ,fsubrouCLnesE*

f3"f11e handlzng'and edzt1ng functzons whlch would-allow more~f1ex1b111tvf
: ’of anut ‘and output.

: -‘part1t1bn d, laratzons whlch_would make possible the subdivision of

=ATeT

7&5:#13LIOGRAPH&£ia

1- R. Zarnke 4 "A Comp:.ler and Sofcw ‘:u:mg System) 'ip;efixé'I

repott of Umvers:.ty vaterloo, 1965. o .:-:'

2" “c' J' P' de Lucena "'"A Softwa:e wnt:.ng SYStem". PUC. Ser:.es of
o M°“°81'3Phs :m Computer Sc:.ence N06/69. _-\ f i

3— s. E. R de Carvalho - "Implement' % do Slstema COMASS" - PUC, e
' Master 8 t:hens. Dec._1969 : e

nms

- 18-

