Series: Monographs in Computer Science

and Computer Applications

No 2/71

PUCMAT - A PROGRAMMING MODULE FOR ARITHMETIC

PATTERN-MATCHING

by

Antonio Luz Furtado

Computer Science Department - Rio Datacenter

CENTRO TECNICO CIENTIFICO
Pontificia Universidade Catolica do Rio de Janeiro
Rua Marqués de Sao Vicente, 209 — ZC-20

Rio de Janeiro — Brasil

oo 3rHve - Y

PUCMAT - A PROGRAMMING MODULE FOR ARITHMETIC

PATTERN-MATCHING

Antonio Luz Furtado
Associate Professor
Computer Science Department

PUC / RJ

This paper was submitted for publication elsewhere.

Series Editor: Prof, A, L. Furtado

ABSTRACT

An effort towards a cppvenient notation for patEern-mat¢hing
as applied to formula manipulation of arithmetic expressions _1edl to

the definition of a compact set of statements..

These are being experimentéd‘with, at present, under the
form of an independent programmiﬁé lénguégea(PUCMAT) which is ”dompiled
into an extended FORTRAN IV language via the COMCOM [1] software-writ -
ing system. ' o

However PUCMAT will be‘better utilized as a module of some

high level language at a later étage.

, PUCMAT isvvery much indebted to FORMULA ALGOL (2], coMIT [3j,
SNOBOL [4], CONVERT [5], AXLE [6] and SCHATCHEN [7] .

- ii -

1. BASIC CONCEPTS:

Suppose one wishes to indicate a transformation from
the expression x" into ‘ax™ + b. A natural notation would be

n n
X == ax + b

Now, if instead of restricting ourselves to the elements
x and n we want to e;press: take a generic expression composed of any
element raised to any other element and transform it into a times
the expression plus b , we could write

It is clearly convenient to represent generic elements
such as e and e, using a different set of symbols, to avoid any

confusion with elements such as a2 and b that stand for themselves.
This introduces what is known as prototype notation, which applled to
our example together thh usual programming language representation
would yield

$L¥*$2 +» Ak $1 ** $2 + B

Prototypes can be devised to indicate classes of elements.
Here we shall consider:

$V - variable

$C - constant

$A -~ atomic épgrand,(variable or constant),

$0 - - operator . ‘

$F - function

$E ~ expression

$ - universal prototype, matching any "fragment" [:511
(exemplified at the end of this section).

Take:

(1) §v ** $c

We say that the expression

(2) X ** 5

"matches" (1) in the sense that (2) is an instance .

of the generic expression or "pattern" (1).
While the match is attempted,an "assoclatmve set" can be

constructed in order to exhibit the correspondence between the proto -
types in (1) and specific elements in (2); in our example i

@) (C$v X)) (8C 5))
A "transformation rule" is specified by taking, say

(4) A% $V %% §C + B

which is called a "skeleton", and forming the sequence pattern+skeleton;

in our example
(5) $V ** $C -+ A % $V %% §C + B

We say that a transformation rule (5) is "applied" to

an expression (2), meaning that:

a. a match between (1) and (2) is tried ((1) and (2)
being scanned from left to right);

b. as the match proceeds (3) is constructed;

c. if the match fails no further action is taken;

d. if the match succeeds a new expression is created as
a copy of (4) except for the prototypes, which are
replaced by their corresponding elements in 3).

Thus (5) applied to (2) gives

AXX %% 5 + 3

A few remarks should be added about the prototypes.

Possibly different occurrences are distinguished by numbering; $V1 - $v2,

for instance, would match A - B,

When the non-occurrence of an element does not invalidate
the match, the number part of the. prototype should begin with zero;

-3 -

$V01"~ $V2 would match A - B but it would also match = B,

The "universal" prototype $ is matched as exemplified

below:
expression: A+ B - C
pattern: $1 ~,$2
associative set: (($1 (A + B)) ($2 C))
that is, the pattern element " . délimits the range of $1, as the

end of the expression delimits $2; in general, non-universal proto-
types or end of expression delimit the recognitionm of a universal

prototype.

2 INFORMAL DESCRIPTION OF THE PROGRAMMING MODULE:

The programming module is composed of three statements:

2.1 - The DEFINE Statement:
Its purpose is to allow the user to create mew pfototypes.
Since prototypes are symbols that stand for classes, the

creation is done by specifying the symbol and then attaching to
it the criterium for class membership.

-4—

The criterium is either:

- enumeration of members;

- a logical predicate that is true for any member;

- a combination of the preceding criteria in a logical
expression, using the operators AND, OR, NOT .

There are two built-in logical predicates: HAS, FREEOF.

User coded predicates are allowed.

Besides the criterium for class membership two other

specifications may be attached:

- the COMMUT“éttribute, provided that the new prototype

corresponds to a class of operators;

- the COLLECT mechanism, through which during the applica-
tion process new members are added to the initial enumer-

ation (which could be empty).
Example of the DEFINE statement:
DEFINE $P (+ , *) COMMUT,
$Q (4, B, C, D),
$R () COLLECT ($Cl),

$S FREEOF (X) AND (HAS(Y) OR HAS(Z));

(NOTE: successful matches to patterns containing $Cl will

cause the associated elements to be added to $R).

=5 -

2,2 = The set-of-rules Statement:

In most cases transforma:ion rules should be grouped
together to provide for different cases in a same transformation
process. If one is differentiating with respect £6 x, for

_ instance, the cases of: x, a variable independent of x, sums,

products, etc. have to be considered.

The set-of-rules statement is a labeled set of transfor~-

mation rules, which are numbered.

The first rule is always tried first, but what happens

next, for the first and the other rules, depends on:

- the success of the match with the rule;
- whether the new expression is different from the original

one (whether a transformation effectively occurred).

Attached to each rule there are the success and the
failure exits. The former is taken if both conditions above are
fulfilled. Each exit may indicate a transfer to another rule in _
the set (by the number of the rule) or termination (by an asterisk).
0f course in case of success the application’will proceed (by the
rule indicated in the sﬁccess exit) with the transformed expression.

rather than the original ome.

The success of the match may cause another action before
_any exit is taken. The skeleton part of the rule may refer to the
whole set-of-rules (recursion) or to other sets-of-rules. In both
cases the label of the set-of-rules to be invoked is indicated
between dots. |
..6..

Thus the statement gives the user a very tight control _
over the sequence of the process, extending the original Markovian
algorithm [2].The need for this has been recognized elsewhere [jé]

Invoked sets-of-rules that are not present in the job
. stream are assumed to be available from library. This feature

has a few implications:

- the user is relieved from rewriting commonly used sets-

of-rules, unless he wants atypical rules;

- a library set-of-rules can be coded using any technique
(not necessarily a pattern-matching technique) and even
any language (not necessarily PUCMAT, provided that
compatibility and communication is ensured in the

implementation);

- non-transformational "functions" can be invoked in place
of sets-of-rules as for example COMB [3] that would be

required for a binomial expansion.

Classes attached to user-defined protot&pes can be aitered
by several ways, including the COLLECT machinery which gives rise
to the concept of variable rules. Different transformations are
specified by such rules, according to the current members of

attached classes.

Example of the set-of-rules statement:

DIFF: 1. X =+ 1 /I * 2,
2. $A = 0 // * 3,
3. §1 4 $2 » .DIFF.($1) + .DIFF.($2) // * %

2.3 - The Applicatioﬁ Statement:A

This statement causes a set~of-rules to be applied to an

arithmetic expression.
Three kinds of arithmetic entities are considered:

- formal constants - these are symbols. that stand for

themselves, such as A, +, (,), etc.;

~ formal variables - these are the 'names" (pointers) of
arithmetic expressions; when appearing to the rigth of

the " « " sign they are delimited by dots;

- formal classes - these are the classes corresponding

to and indicated by prototypes.

An arithmetic expression can be composed of any combination
of these entities in the same expression as for instance in A *
(.X. + B) - $2(2). '

However a decision must be taken on whether to '"unravel"
[P:]or not non-constant symbols before the application statement
delivers the expression to the set-of-rules. (For a very elegant -
treatment of unraveling see [10]).

-8 -

Our decision was:

- automatic unraveling for all formal variables, which
means that they will all be replaced by the expressions

they are naming;

- automatic unraveling of prototypes only if followed by
an index, as in $X(3), the index being used to indicate
which member of the corresponding class will be taken;
as opposed to the immediate unraveling of formal variables,
the unraveling of prototypes takes place at each moment
a match is tried, thus considering the currént members of

the class.

An expression containing unraveled prototypes is regarded
as a "family" of expressions. Note that patterns and skeletons are
also such families, and thus an application could be used to gene-

rate new patterns and skeletons from previous ones.

Coming back to the more restricted concept of variable rule,
consider the rule $X + $Y. Since the prototype in the skeleton is
not included in the pattern it will remain ﬁnraveled\after a suc-
cessful match. The user is allowed to introduce a function for a

controlled unraveling, e. g.: $X = .LAST.($Y).

After the application is performed the application state-
ment assigns to a formal variable or to a prototype the resulting
new expression (if no transformation occurred, this will be the

original expression unchanged).

-9 -

‘ Also the transformation path, i. e. the concatenation
of all successfully applied rule: (if any) is assigned to a special

kind of name.

What is concatenated, for each rule, is the label of
the set-of-rules to which it belongs followed by the rule number. '
Brackets are used to indicate a "deeper" level along the path,

wherever a recursive call or a call to other sets—of-rules occur.

It is convenient to remark here that a set”of—ruleé could
be looked at as a graph (whose ﬁodes are graphs in the case of
invocation of the same or other set-of-rules). By the same reasoning,
an application causes the expression to describe a path (whose nodes

can in turn be paths) along the set-of-rules graph.
The transformation path serves to:

- indicate whether any or none of the rules succeeded,

being empty in the latter case;
- display the "history" of the application;

- define a very interesting "equivalence" between arith-
metic expressions: two or more arithmetic expressions
are said to be equivalent under a chosen set-of-rules
if and only if their transformation paths along it are

equal.

..10-.

Of course transformation paths could also be investigated

for isomorphism or any kind of similarity, inclusion, etc.
Ekample of an application statement, noting that the -
first identifier will name the new expression and the second one

the transformation path:

Y, M« SIMPL(A + 0 % ,B. * 1);

3. BNF DESCRIPTION OF THE PROGRAMMING MODULE:

<define statement>:: = define <sequence of definitions>;

<sequence of definitions>:: = <definition> | <sequence of definitions>,

<definition>
<definition> :: = <prototype> <logical expression>

<prototype> :: = $| $ || <unsigned integer> | $ || <letter> | § || <letter>
|| <unsigned integer>

<logical expression> :: = <logical operand> | <logical expression>
<binary logical operator> <logical operand>

<binary logical operator> :: = and | or

<logical operand> :: = not <logical expression> | (<logical expression>) |
<logical primary> |

<logical primary> :: = <set> collect <set> | <predicate> <set> | <set>

commut | <set>

W

<set> :: = () | (<sequence of members>)

- 11 -

<sequence of members> :: = <member> | <sequence of members>, <member>
<member> :: = <arithmetic expressior - 1>

<arithmetic expression -~ 1> :: = <element - 1>| <arithmetic expression ~1>

<element ~ 1>

<element - 1> :: = <operator> | <identifier> | <unsigned number> |

~<prototype> | (<arithmetic expression - 1>) | ()
<operator> :: = + |~|k|/|*%| =
<predicate> :: = has |freeof| <user defined predicate>

<user defined predicate> :: = <identifier>

<get —of-rules statement> :: = <label> : <sequence of rules>;
<label> :: = <identifier>
<sequence of rules> :: = <rule> | <gequence of rules>, <rule>

<rule> :: = <rule number> ., <pattern> - <skeleton> // <exit -~ 1>
<exit - 2> |

<rule number> :: = <unsigned integer>

<pattern> :: =‘<arithmetic gipression -1>

<skeleton> :: = <arithmetic expression -2>

<arithmetic expression - 2 >:: = <element - 2>| <arithmetic expression -2>

<element - 2>

<element - 2> i: = <arithmetic expression - 1> | <invocation> |(< arith-

metic expression -2>)

<invocation> :: = ,<identifier> . (<arithmetic expression - 2»)

-12 -

<exit - 1> :: = <unsigned integer>

<exit - 2> :: = <unsigned integer>

<application statement> :: = <name> , <path> « (<argument>);
<name> :: = <identifier> | éprototype>

<path> :: = <identifier>

<argument> :: = <arithmetic expression - 3>

<arithmetic expression - 3> :: = <element - 3> | < arithmetic expression
= 3><element - 3> '

<element - 3> :: = <arithmetic expression - 1> | <formal variable> |
<subscripted prototype> | (<arithmetic expression - 3>)

<formal variable> :: = . <identifier>.

<subscripted prototype> :: = <prototype> (<unsigned integer>)

Definitions of identifier, letter, unsigned number, and
unsigned integer are the usual ones[14] . The symbol || means concatena-

tion.

It‘might be noted that the definitions of the three kinds
of arithmetic expressions allow any sequence of arithmetic elements,
checking only for unbalanced brackets; this permits special forms of

expressions, such as Polish forms.

.-.13_

4. SOME EXAMPLES:

In the five following examples, two features of the

present implementation are included:
a. The *BEGMAT and *ENDMAT control cards;
b. Commients, delimited as in PL/I by /* and */.

We also note that the application statement causes the

print-out of the transformed expression and transformation path.

Example 1

*BEGMAT

/* DIFFERENTIATION WITH IMMEDIATE SIMPLIFICATION OF RESULTING
SUB~EXPRESSIONS */

/* DEFINES COMMUTATIVE + AND *
AND THE SET OF VARIABLES DEPENDING ON X */

DEFINE $P (+) COMMUT,
$T (*) .CcoOMMUT,
$X (Y, Z, W);

/% COMBINED DIFFERENTIATION AND SIMPLIFICATION RULES */

- 14 -

X " + 1 | . //‘* 2‘, |

DER: 1.

2. $X + D($X) o * 3,
3. $A >0 - x4,
4o $1 + $2 -+ .DER. ($1)+.DER. ($2) /l 8 5,
5. $01 - $2 -+ .DER. ($01)-,DER. ($2) /l 10 6,
6. §1 % §2 > $1%.DER. ($2)+$2%.DER. ($1) // 13 7,
7. D($) > D)) /] % %,
8. $1 P 0 > 81 I x s,
9. §1 + $1 > 2%§1 /1% %,
10, = 0 + 0 /] * 11,
1. § -0 > § /1 % 12,
12, $1 - $1 >0 /] % *,.
13. $1 $T 0-$P $2 - $2 /114 16,
14. $ $T O >0 /] * 15,
15. § $T 1 . > $ - 1% %,
16. $1 $T 1 $P $2 + $1 + §$2 /1 16 9

1% AfPLiCAIION */

Y, M« DER (-A* X + 2);

/* RE-APPLICATION TO OBTAIN SECOND DERIVATIVE ‘*/
z, K +‘DER (:Y.);

*ENDMAT

Result of first application: =A + D(Z) :
Path: (DER4 (DER6 (DER1XDER5 () (DER3)DER10) DER13 DERL5) (DER2))

...15 -

Result of second application: D(D(Z))
Path: (DER4 (DER5 () (DER3) DER10) (DER7) DERS)

*BEGMAT

Example 2 2]

/* CLEARING OF FRACTIONS %/

/* DEFINES COMMUTATIVE + AND * */

DEFINE

$P‘ (+) COMMUT,

$T (%) COMMUT;

/* THE RULES REDUCE FRACTIONS TO A SIMPLER FORM */

CLEAR:

/*
Y, M

*ENDMAT

. $1 k% (-$2)
. $1 $P $2/43
$1 $T ($2/$3)

1 1/$1 %% 2
2

3.

4o $1 - $2/43

5

6

($1 * $3 + $2)/$3

($1 * $2)/9$3

($1.% $3 - $2)/$3

($2 - $1 * $3)/$3

($1 * $3)/%2

§2/($3 * $1) |

$2 %% $3/$1 ** $3

.CLEAR. ($1) $p .CLEAR.($2)

$2/$3 - $1
o $1/($2/$3)
7. ($2/$3)/$1
8. ($2/$1) **$3
9. $1 $p $2

T R T N S S

APPLICATION */

+ CLEAR ((X + 3/Y)v** 2/‘(z -1/W)

- 16 -

/!

7

1/
//
/1

¥
1

/!
/!

el ol e o =

Result of application: W* (X * Y+ 3) % % 2 / (Y % % 2 %(2 % W-1))

Path: (CLEAR9 (CLEAR9 (CLEAR2 CLEAR9 (CLEAR9(CLEARS ()) O) O) O
CLEAR8 CLEAR9 (CLEAR9(CLEAR9(CLEARY () ()) ¢)) () (CLAER9 () O)))
(CLEAR4 CLEAR9(CLEAR9 (CLEAR9 () ()) ()) ()) CLEAR6 CLEAR9 (CLEAR3
CLEAR9 (CLEAR9 () (CLEAR9 (CLEARY (CLEARS () () ()) ())) (CLEAR9
())) (CLEAR9 (CLEAR9 () ()) ()) CLEAR7 CLEAR9 (CLEARY () (CLEAR9
(CLEARY (CLEARY () () ()) ())) (CLEAR (CLEARS () ()) (CLEAR® =
(CLEARY () () ()))) |

Example 3 [j:_l] '

*BEGMAT
/* SOLUTION OF AN EQUATION FOR A SINGLE OCCURRENCE OF X */
/* DEFINES COMMUTATIVE + AND * x/

DEFINE $P (+) COMMUT,
$T (*) comMUT,

$X HAS(X);

/% THE RULES GIVE INVERSE OPERATIONS AND FUNCTIONS */

17

SOLVX: 1. $X $T $1 = $2 » $X = $2/$1 | /11 2,

2. $X $P $1 = $2 » $X = $2 - $1 /s,
3. $X- $1 =82 $X=§2+ §1 e,
40 $1 - $X = $2 > $X = $1 - $2 s,
5. $X/ $1 =82 $X = $2 * §1 | /11 6,
6. $1/ $X = $2+ $X = $1/$2 /17,
7. $X %R §1 = $2 > $X = §2 *% (1/§1) /l 1 8,
8. $1 %% §X = §2 + $X = ALOG($2)/ALOG($1) 111 9,
9. EXP($X) = $1 - $X = ALOG($1) /1,
10. ALOG($X) = $1 + $X = EXP($1) : /1111,
11. SQRT($X) = $1 » $X = $1 ** 2 /112,
12. ATAN($X) = $1 > $X = SIN($1)/C0S($1) // 113,

13 SIN($X) = $1 » $X = ATAN($1/SQRT(1-$1%%2)) // 1 14,
14, COS($X) = $1 > $X = ATAN(SQRT((1-$1%*2)/$1)) // 1 *;

% - APPLICATION %/

Y, M+ SOLVE(K ** 2 + ALOG(M + SIN((X ** 3 = K)/(H + 4)* M ** 5)
| * N - K) * M = P); \

*ENDMAT

Result of application: X = (ATAN((EXP((P - K ** 2)/M +K - M) ®% (i/N)_
-~ /SQRT(1 ~ EXP((P = K ** 2)/M)+ K - M) %%

(1/N)*% 2)) /M %% 5% (H +4)+ K) #** (1/3)

Path: (SOLVX2 SOLVX1l SOLVX10 SOLVX3 SOLVX2 SOLVX7 SOLVX13 SOLVXL

SOLVX5 SOLVX3 SOLVX7)

- 18 - o

Example 4

*BEGMAT

/%

/%

INTEGRATES A SIMPLE EXPRESS */
DEFINES COMMUTATIVE *
THE SET OF + AND -

AND EXPRESSIONS NOT CONTAINING X */

DEFINE $T (%) COMMUT,

$s (+, 7 ’

$I FREEOF(X)

/* INTEGRATION RULES */

INTG:

/%

DER:

1. X + X *% 2/2 : //
2. Xk k $T o+ X %% ($1+1)/($I+1) | /1
3. $A +$A %X /1
4. $1 $8 $2 +.INTG.($1) $S .INTG.($2) 1
5. SIN(X) + -COS(X) V7
6. COS(X) -+ SIN(X) ‘ //
7. $1 % §2 >.SIMP.($1 *,INTG.($2)-.INIG. (.SIMP.

(. INTG. ($2) *,DER.($1)))) /"

DIFFERENTIATION RULES - */

1. X =» 1 // *'>2 ’
2, $A-+ 0 [l * % 3

- 19 =

¥ ¥ ¥ X ¥ *

»

/* SIMPLIFICATION RULES #*/

SIMP: 1. $1 $T O > 0 /] * 2,
2. $1 $T 1 + $1 /]l * 3,
3. $1 - -#$2 > $1+ $2 /] * %

/% APPLICATION */
Y, M « INTG(X #* (A + B) - X * COS(X))3
© XENDMAT

Result of application: X **(A + B + 1)/(A + B + 1)~(X * SIN(X) + COS(X))

Path: (INTG4 (INTGZ)(INTG?((INTGG)(((INTG6)(DERl)SIMPZ)INTGS)SIMP3)))

Example 5

*BEGMAT

/% EXTRACTION OF CONSTANT CQEFFICIENTS AND POWERS OF A POLYNOMIAL IN
X %/ ‘ , e '

/* DEFINES THE‘CLASSES OF COEFFICILENTS AND POWERS
AND THE SET OF + AND - */

DEFINE $K () COLLECT ($S01 $cCl),
$P () COLLECT ($S02 $C2),
$s. (+ , -);

/* RULE FOR DELETING EACH TERM */

- 20 -

POL: 1. $SO01 $CL * X ** $S02 $C2 $0 +» $0 // 1 *;

/* APPLICATION */

Y, M« POL (2 % X %% 3 - 3 & X %%k - 54 7 ¥ X %k 2 4 9 % X ®k - 4 - 1] ¥
X %% 12);

/% PRINTS $K AND §$P =/

$K « $K;
$P « $P;

*ENDMAT

Result of application: ()

Path: (POL1 POLL POLl POL1 POLL)

Members of $K: (2, - 3, + 7, +9, - 11)

Members of $P: (3, - 5, 2 , - 4 , 12)

NOTE: The statements $K« $K and $P« $P are instances of the "extension"
statements (to be described at section 5) thaf do not strictly

belong to PUCMAT; the instances given here serve only as a device
to print the classes associatgd to $K and $P, without altering them.

_21-

5. IMPLEMENTATION CONSIDERATIONS:

PUCMAT is implemented a; an independent language during

the present experimental stage.

Programs in PUCMAT are compiled into an extended $IBFTC
FORTRAN IV compiler (IBM - 7044) via a compiler-compiler [1].

This extended FORTRAN IV allows recursion and LISP-like
list-processing. An important library facility is an assembly-coded

lexical scanner that helps considerably the matching process.

The most interesting point in the compilation strategy
is that sets-of-rules become recursive function sub-programs. So the
calling mechanisms, communication through parameters and COMMON afeas
and insertion in the systems library all use FORTRAN ordinary facilities.
If PL/I or ALGOL had been chosen as host language the sets—of-rules

would be procedures.

All such sub-programs call the recursive sub-program
MATCH (to perform the pattern-matching activities) and are called by it
whenever a successful rule indicates a transfer to the same set-of-rules

or to another one. This constitutes an indirectly recursive scheme.

Another point is the generated call to a sub-program
CANON, in order to convert all expressions, including patterns and

skeletons, to a canonical form.

The user is free to introduce his own CANON, thus'éuper-

seding the built-in one, which might be necessary in certain cases, since

22

canonical forms are frequently only "locally" adequate D@] .

The current built-in CANON performs only complete
parenthetization. It seems desirable to introduce a unique parentheti~
zation scheme and lexicographic ordering, to cope with the problems of

associative operators and equal non-contiguous operands.

One feature that is still unimplemented at the time of
this writing is the combination of predicates and class enumerations into
logical expressions. Consideration is also being given to the following
features, that might give the user an even tighter control over the

matching sequence, thus increasing the speed of the process:

- graph-directed application ~ given a large set-of-rules
the user could take advantage from his knowledge that
his expressions would only need a few of the rules, to
specify a smaller graph over the nodes of the original
one; suppose for instance that he wants to use the set-
of-rules of example 1 of section 4 but his expressions
contain only the variable k, variables independent of X,

constants, and sums;he could write:

G: . 1. /l * 3,
3. /] %,
4' // 8 *!

8 [/ * 9,

9. /[l * %

Y, K« DER/G(A + 5 + X + C);

- 23

= path - directed application - if the user knows that
all his expressions are equivalent under the set- of~
rules he can specify the transformation path and use
it for sequence control; taking example 3, of section
4 suppose all exprgésions are equivalent to A + B *
(N / X + 2) = R; then one could write:

P4t— 2,1, 2, 63
Y, M 4— SOLVX/.P. (A+B % (N/ X+ 2) =R);

A host language allowing on-line modification, expansion
or reduction of procedures in an interactive environment would be
particularly suitable for programs with "learning" and "forgetting"
features. One possibility would be the deletion of rules that do
not belong to the transformation path of any of several submitted

expressions.

As we aim at a future implementation of PUCMAT as an
extension (module) of a high—level language we have studied a
few cases of interaction of PUCMAT and other features even in the

present implementation.

With this purpose we introduced an "extension" statement
into PUCMAT.

This has either the form

formal variable or prototype <+— formal expression;

- 24 -

UG RUI
ibliote
LRI

P
B

3_0(//?/7’1

or

- formal variable or prototype «—— function (formal arguments);

where "function" may be any FORTRAN coded function sub-program.

Most experiments where done with set-theoretic functions
(intersection, union, difference), using the LISP-like processing
feature, and taking COLLECTed classes of prototypes as arguments,
as in '

$X <+— UNION ($Y, $2);

Here, unraveling of prototypes is automatic; they are
replaced by their associated classes.

Of even greater interest will be the combination of formal

and numerical processing.

An effort in another direction will apply pattern-matching

to the manipulation of algebraic structures (groups, rings, etc.).

6. CONCLUSIONS:

Our experience indicates that PUCMAT notation achieves a

good degree of simplicity and naturalness to express the transformation
of arithmetic expressions.

Both flexibility and efficiencybare increased by giving

the user a considerable degree of control over the sequence, through

the success and failure exits, explicit recursive calls and calls to
other sets-of-rules.

- 25 -

Note also that treating sets—of-rules as functions (or
procedures) allows a flexible and efficient combination with functions
that do not employ pattern-matching techniques whenever this is convenient;
and even with auxiliary non-transformational functions; it also permits

the creation of a library of sets—of-rules.

The concept of transformation path and its use to test for
relationships between expressions under sets~of-rules appear to be a

promising research tool.

This speaks for the dééirability of adding the small set
of PUCMAT statements and underlying processes to a high level language,
on the sole condition that the latter already offers recursion and list-

processing.

AKNOWLEDGEMENTS - the present research was made possible thanks to Prof.
' A. von Staa's COMCOM [}] system and his lexical scanner
and output routines, and also to Prof. S. S. Toscani's
implementation of recursion on the $IBFTC compiler [ii]f

._26_

1., Staa, A. von

2. Earley, F,

3.

5

6.

7.

8,

Yngve, V. H.

‘Desautels, E. J.

and Smith, D. K.

Guzman, A. and

Me¢ Intosh, H, V.

Cohen, K.

Wegstein, J, H

Moses, J.

TObey ’ R »

and

et al

REFERENCES

The COMCOM software-writing system - series:
Monog:gphsiin Computer Science and Computer
Applications - 8/70. ‘
Pontificia Universidade Catolica do Rio de

Janeiro - 1970.

FORMULA ALGOL Manual-Carnegie-Mellon University
1967. ’

COMIT ‘as an'IR Language-in Systems and Programming
Languages-edited by Rosen, S. - Mc Graw-Hill - 1967.

An Introduction to the String Manipulation Language
SNOBOL - ibidem.

CONVERT ~ Comm. of the ACM, vol. 9 n? 8, August

11966 , pp - 604 = 615

AXLE: An Axiomat:ic Language for String Transforma~
tions - Comm. of the ACM, vol. 8 n® 11, pp. 657 -
661. November 1965.

Symbolic.Integration - MIT - 1967

PL/I FORMAC Interpreter — IBM Manual 360 D -

03-3.004 - 1967¢ .

- 27 -

9.

10.

11'

12.

13.

14.

15,

Sammet, J. E. -

Engelman, C, -

Raphael,B. et al-

Caviness, B, F. -

Toscani, S.S8. -

Naur, P. (ed.) -

Galler, B. A. -
and Perlis, A.J.

Formula Manipulation by Computer - in Advances
in Computers- 8 - edited by Alt, F. L. and
Rubinoff, M. - Academic Press — 1967.

MATHLAB 68 - Proc. IFIP Congress 68 - Edinburgh,
August, 1968.

A Brief Surﬁey of Computer Laﬁguages for Symbolic
and Algebfaic Manipulation - in Symbol Manipuiation
Languages and Techniques - edited by Bobrow, J. G.
North-Holland - 1968.

On Canonical Forms ans Simplification - JACM ,
vol. 17 n? 2, April 1970 - pp. 385 - 396.

Recursividade em FORTRAN - M. Sc. Thesis -
Pontiffcia Universidade Catolica do Rio de Janeiro
1969.

Revised Report on the Algorithmic Language ALGOL 60 -
Comm. of the ACM, vol. 6 n? 1, pp. 1 - 17

January - 1963.

A View of Programming Languages - Addison - Wesley
1970. |

- 28 -

