Series: Monographs in Computer Science

and Computer Applications

NO 4/71

A COMPARATIVE STUDY OF SYMBOL TABLES

by

Marcelo Pardo Brown

Computer Science Department - Rio Datacenter

"Ponhhcna rsida e-.-_Cotohco do RIO »de: Janelro
Ruo Morques de Soo Vlcente, 209 — ZC 20

RIO de Janearo EREE Brasn!

| e ~UC | DOAGAO
BC : '

Jc) 553951434-5%

A COMPARATIVE STUDY‘OF SYMBOL TABLES

Marcelo Pardo Brown

Computer Science Department
PUC/RJ

Series'Ediﬁor: A. L, Furtado July/1971.

ABSTRACT

Since symbol table look=up . appears so frequently in everyday pro-
grammlng, an approprlate choice of the technlques to be employed strongly

reflects on the eff1c1ency of such programs.

- The purpose of the present work is to compare the best known sym-
bol table construction and search techniques, with regard to processing '

time and core storage requirements.

An attempt is then made to establich some criteria that would in-

dicate which technique should be used for a particular application.

Experiments were run on an IBM—7044; using from one to six charac
ters (one machine word) for symbol names. Modified algorithms-to work with
variable length symbols are presented but no measurements are given for '

these.

1. SEARCH TECHNIQUES,

If a name is to be associated with a given value, one can con-

sider this value as the result of a function applied to this name.
f(name) = value

To find this function, when there is no name-value relation -
ship can become quite a cumbersome task since the search tecniques simu
late this function with greater speed and efficiency.

»

As an alternative to the application of this function one can
create two associeted vectors in which name, - valuei are stored. These

associated vectors are known as symbol tables.

The table contains only those namei—valuei's for which the

function is defined.
f(name,) = value,
i i
there is no relationship such as

f(name,) = ¢(empty)

The search is done by looking-up the name . If there is no '
such name ‘an exception condition exists. If there is such a name the

answer will be its associated valuem.

SYM - is defined as the name vector; an overall naming for symbols.

ATR -is defined as the value vector attributed to the symbols. This
vector might contain alphabetic éymbols (as in a dictionary), alphanuméric
symbols, values (characteristics of the associated symbols) or pointers to
to structures with informatidn about this symbol, The nature of the associa
ted value is different for every tablé_use.

We define field as a unit of informatioh. The field length depends'
on the stored information. Obviously the.length.fqr every field -in a vector
1s constant and equal to its largest element. Due to this fact a word can
be a fraction of the fieid,_equal to the field or it might contain a number

of fields of information.

When dealing with algorithms it is supposed that a missing symbol
in the table implies that it is included in the table.

On the other hand if the symbol is in the table it will produce the

associated value as output.

As a basis for‘compar{son let us consider the most intuitive tech -
nique: linear search. It is used for i symbol fields (1§i5N,N is the pre
sent number of symbols in the table); the search'terminates if the symbol is
found or if there is no such symbol. In this case it is fnserted N = N+1
Positions alread, if and only if N<NMAX:NMAX {s the upper limit of vector
S, : ‘ ’

Algorithm

SYM symbol vector
ATR attribute vector -

~ SYMSCH searched symbol
ATRINC included attribute
N present table size'
NMAX upper limit table.

LSl. - I < 0;

LS2, - I « I+l;

LS3. - If (1>N) = so to LS4,
If (SYM(I) = SYMSCH) = ‘'amswer' < ATR(I), END.
go to LS2; ' |

LS4, - N + N+1; !

If(N>NMAx) => !-overflow ',END.
SYM(N) <+ SYMSCH;
ATR(N) <« ATRINC, END;

The best known construction and search techniques for symbol table are

‘'described below,

1.1 - BINARY SEARCH

Area is defined as one or more consecutive fields of vector

Let us supp08e that the elements in vector SYM are ordered.
The search for a symbol in . th;gkyector is done in the ex1st1ng ‘symbol
area. An‘attempt is made to match the searched symbol with the symbol

located in one-half the area used;

L4,

if the searched symbol is greater than this one-half area, the searng
ing area is reduced to its upper half, while if it were less than the

former area it would be reduced to its lower half, if it is equal,

the desired output is given. '

This process is repeated in the manner described above until

the rigth answer is output,

If the'seérched symbol is not found it is included in vector
SYM by moving up the other symbols, so as to maintain the same order.
.‘ -
BS. Algorithm
SIM symbol vector
ATR attribute vector
SYMSCH searched symbol
ATRINC " included attribute
"N present table size
NMAX upper limit table

BS 1. - LUPP + N+l ; LLOW + 1;
~ If (N<1) = I <« 1 and go to BSS.
BS 2. - |Computation of the overage symbol of the area!
I <<} (LUPP + LLOW)/2|;
BS 3. - IE(SYM(I) > SYMSCH) = go to BSh..

TE(SYM(1) < SYMSCH) = go to BSS5.
'answer’ <« ATR(I), END;

BS 4. - If {fUpP'= I) => go to BS7.
|Modification of upper limit]
LUPP'«'T’ and go to BS2;

1.2 -

BS 5, - If (LLOW = I) ® I « I+l and go to BS6.
|modification of lower limit]
LLOW <« I and go to BS2;
IF(N = LLOW) = go to BSS.
|SYMSCH is not in the'tablel
If(N+1 > NMAX)léb"ovefflow', END,
VK((K = N,N-1,N-2,...,I) =
SYM(K+1) <« SYM(K);
ATR(R+1) < ATR(K););
N <« N+1; SYM(I) <+ SYMSCH;
ATR(I) < ATRINC}

BS 6.
BS7.

BS8,

This algorithm can be modified in such ways as to use a displaceable
pointer vector (see 1.5,1) for a fixed table optimizing construction °
time. On the other hand this algorithm optimizes search time which

(3

is its best feature.

EXTENSION TO TERNARY SEARCH

It was thought that if the same principles used in the binary search

technique were used in a n-nary search technique one could divide
the search area in n sub areas, trying n-1 matches in the sub area
in which the;procéss would be repeated. If on one hand the subfields
are reduced to 1/n por every iteration, on the other hand the search
]

is increased by n-1 *Lmatching attempts. For n = 3 ternary

search a number of experiments were made.

TS Algorithm

SYM . vector

ATR attribute vector
SYMSCH searched symbol
ATRINC included attribute
N ' present size

NMAX upper. limit table
Il upper average limit
I2 lower 3verage limit

TS1 LUPP < N+1; LLOW + 1;
If(N<1) =I«l and go to TS7.
TS2.-I1 «|(LLOW + LUPP + LUPP)/3|;
12 «|(LLOW + LLOW + LUPP)/3|;
TS3.~If (SYM(I1)<SYMSCH) = go to TSh.
If(SYM(IL) = SYMSCH) = 'answer'< ATR(I1), END.
|New upper limitl‘
LUPP « Il and go to TS5;
TS4,~If (LLOW # I1) =>LLOW+I1 and go to TS2.
I« I+l and go to TS6;

TS5.-If(SYM(I2)< SYMSCH) = LLOW < I2 and go to TS2.
I£(STM(I2)= SYMSCH) = 'answer' ATR(I2), END.
LUPP «.I2 and go to TS2;

TS6.~|Morning up]|
If(N = LLOW) = go to TS7.

Lf (N+1>NMAX) = 'overflow', END,
YRUR = N,N«1,N<2,.,,,I)
SYM(K+1) + STM(K);
ATR(R+1) + ATR(K););
TS7.<N + N+1;
SYM(I) + SYMSCH;
ATR(I) + ATRINC, END;

'|7.

1.3 - TABLE IN A BINARY TREE STRUCTURE

As its name indicates the structure of this table is that of

a bipary tree. Every node in the tree has a four field set.

SYMBOL | ATTRIBUTE | LEFT
T NODE

RIGHT
NODE

In the following example only the name of the symbol as a node is in

dicated.

HEAD NODE

TABLE IN BINARY TREE

FIGURE 1

STRUCTURE

’ | The construction of that tree is done in the following way:
The first node to be inserted is the root of the tree. The second -
one might be placed either at the right or the left of the root
depending on whether it is greater or less than the root. The follow
ing symbols will be inserted in the same way for every node in the
1

subtree. The searching is done analogously, but with a dlfferent

action with respect to the associeted attribute.

It is a d1fferent approach to the binary search since the
search areas are divided after the matching is attempted with the
root of the selected subtree, (When dealing with a symmetric tree
the search area is reduced to one half the preceding one).

This method has the advantages of avaiding displacement in
the table in its construction phase; the searching time is less sin-
ce there is no need to compute the search limits. The difference can

be considered small,

Its other advantages are:
a) Depending on the order in which the symbols are input, a non !
symmetric tree can be generated. This results in an increase in
matching attempts, with a heavier populated sub tree. This problem
could be overcome if a symmetric tree could be created, in creas-

ing, nevertheless, processing time and . memory space.

. 9.

b) When dealing with the four field node, used memory space is also
incresed, since the node is two fields longer than the binary

search node.
This sort of method is used in fixed tables (see 3.3)

Due to the problems described above it was not included in the

compared tables.

BTS - Algorithm

SYM symbol field
ATR attribute field
LEFT attribute field
RIGHT right pointer

. HEAD ‘ head node pointer

BTS1.~ IP + LEFT(HEAD); ,
BST2.~ If(SYM(IP) = (SYMSCH) = 'answer' <« ATR(IP),END.
If(SYM(IP) < SYMSCH) => go to BST4.
BST3.- |Search in the right subtree of the node pointed
by IP| V
\ IPP <« RIGHT(IP);
If(IPP > 1) = IP « IPP and go to BST2.
|There is no right sub tree|.
IX 4 FREE; |
SYM(IX) <« SYMSCH;
ATR(IX) + ATRINC;
RIGHT (IP) + IX,END;

o 10 .

BST4, - lSearcﬁ in the left sub tree of the node
node pointed by IP| |
IPP « LEFT(IP); |
I£(IPP > 1) => IP « IPP and go to BST2.
|There is no left sutree|
IX ¥ FREE; ‘
SYM(IX) < SYMSCH;
ATR(IX) < ATRINC;
LEFT(IP) + IX,END;

Note: Housekeeping subroufiﬁé§ for FREE space indicate the’

~occurrence of overflows,

1,4 - HASH CODE_TABLES

Hash code (H.C,) methods of search can be visualized in the following

way:

SYMBOLS ATTRIBUTE

euMBoL - | HASH CODE /1 e 2
(a) _GENERATOR BRC —1]

(b)

—

GENERAL SCHEME OF H,C. TABLES ,
FIGURE 2

Beginning with the problem symbol (seacherd symbol) (a) a
code is‘génerated (¢) through the code generator (b). This code
would indicate in the symbol vector the location of the problem
symbol (d). The corresponding attribute (e) is the system's output.
(Problems with code generation are studied in chapter 2). '

In the previous paragraph the statement "would indicate...

the symbol vector" was resed. Let us see why this tense was used.

The H.C. generator produces values from 0 to N-1 (N 1is
the table size), creating in this way the same code for different

symbols; when this happens a collision occurs.

We now deal with ways to solve the collision problem.

s

1.4.1 - LINEAR SEARCH

SYMBOLS ATTRIBUTE

syMBoL -+ | HASH CODE
GENERATOR
- A
SCHEME OF LINEAR H.C.SEARCH
FIGURE 3

.12 .

Figure 3 shows the problem of finding whether location ‘Ki given
the formula

Ki = mod(K0 +1i,a, N)
contains the symbol or it is empty.

KO = "ecode" (SYMSCH)

a= displacemﬁnt‘constant
a and N must have a
m.c.d (a,N) =1

i = number of collisions
0<igN-1

Since
0<Kyp<N-1 and
0<K,<N=-1
!

location Ki+1 is searched.

The search is terminated if the symbol or an empty location is found,
Note that actually this technique is a modified linear search, (ap-
plicable to all.H.C. techniques), since it makes a linear search among
1

symbols which generate the same code or else symbol which generate

displaced codes in 'i.a' location from the original code.

This technique allows for the danger of érouping, that 'is, a number of

symbols generate either equal codes or codes displaced in a locations.

LHC Algorithm,

SYM symbol vector
ATR attribute vectdr

~ SYMSCH searched symbol
ATRINC included attribute

N length of the table °
A "displacemeﬁt
LHCL. - K « 'code' (SYMSCH); I + 0;
LHC2, - If(SYM(K+l) = SYMSCH) = go to LHC5.
~ If(SYM(K+l) = @) => go to LHC4.
LHC3. - |Collision|
I+ I4ly If (ISN) = 'overflow', END.
|Compute new location|
K « "mod' (K + A,N) go to LHC2;
 LHC4. - -|Insertion|

SYM(K+1) <« SYMSCH;
ATR(K+1) « ATRINC, END;
LHC5. - '"answer' <« ATR(K+l), END;

1.4.2 - QUADRATIC SEARCH

Refering to figure 3 this search has a displacement rule given

by the equation
Ki = mod (Ko + ixa + iZxb, N)
Ko = "code' (SYMSCH)

a and ' b are displacement constants both, a and
b, must.be prime numbers. It has been determined'
that the generation of values is cyclic,,' having

a simmetry pbint determined by a. In order for
this time lapse to be maximum it has been deter -
mined that a=0 (see 1.4.2.1)

i = number of collisions

N = table size which must bea prime number.

The such is done in the location Ki+ 1 due to the fact that'
0<K,K < N-1, | '
ts

If the searched symbpl or an empty place are found or if N/2+1
elements in the table have been searched, . the searching is ter

minated.

. Considering this technique as a special case of
modified linear search, it will be noted that it presents a
better solution than the linear H.C. technique fdr the grouping
problém since the displacements in the search are not constants,

preventing it from going into other code areas.

Figure 4 below shows a better way to visualize this problem,

either in linear H.C. or in quadratic form.

LINEAR QUADRATIC

K; = 'mod' (Ro+i-a,N) K= 'mod' (Ro+i.a+iZ, b,N)
a=2 ' a= 1 ;b=1
%0j e Foj ?

K13 () Kok Yy VAN Fox
K2 Em 1 S
K

3j W K >
/// 2k . sz 7 ,
/—\ '
FIGURE 4

Let us see the following generation before we present the
algorithm.

.16 .

- K

J+A K < Ko
| J « J+B K + K+J -
1 A+B Ko+A+B . v
2 A+2B - Ko+2A+3B
3 A+3B “Ko+3A+6B
4 A+4B Ko+4A+10B
i A+iB k5+iA+(l§5 i)B

the value K in the i ‘iterat‘i‘oﬁ “ean be modified to

K = Ko+ i(‘A + B/g) + iz(B/Z)’b

tor ‘ a =A+B/2

b“B/z

.17 .

initial values

generation rules

QSPS Algorithm

For
SYM . symbol vector
ATR attribute vector
SYMSCH - searched symbol
ATRINC included attrihbute

N . length of the table
NMAX =N/2+1

A = a-b

B = 2b

QSPS1.- K <«'code'(SYMSCH); T +0;J « A;
QSPS2.~ |Comparison| o
 If(SYM(K+1) = SYMSCH) = go to QSPS5.
I£(SYM(K+1) = §) .=> go to QSPS4,
QSPS3.- |Collision]| _
I« I+1; I£(I > NMAX) = 'overflow', END.
J « J+B;
QSPS.4.~ |Inseftion[
SYM(R+1) « SYMSCH:
ATR(K+1) < ATRINC, END;
QSPS5 - 'answer' + ATR(K+1), END;

1.4.2.1 - QUADRATIC SEARCH WITH TOTAL COMMING.

It has been proved that the coefficients of the sear-
ching equation must be a=0 and b-1 to insure total scanning on

the table, changing that equation into

K, = mod (Ko + i% ,N)
1

due to the fact that OgKo,Ki < N-1 must search in location '
K, + 1.
i .

The size of table a, must be a prime numbe of the

form 4k + 3, for k an integer.

QSTS Algorithm
For
SYM vector symbol
ATR attribute symbol
SYMSCH shearched symbol
.ATRINC included attribute
N lenght of the table

QSTSl.- K « 'code' (SYMSCH); I « -N;
QSTS2.- |Comparision|
I£(SYM(R+1) = SYMSCH) => go to QSTS5.
IF(SYM(K+1) = §) = go to QSTS&.
QSTS3.- |Collision|
, I <« I+2; If(I>N) = ‘overflow', END.
|Computation of new K| o
K « 'mod' (K + |I|,N) and go to QSTS2;

.19 .

QSTS4.~ | Insertion: r
| SYM(K+1) < SYMSCH;
ATR(K+1) < ATRINC,END;
QSTS5.- 'answer' < ATR(K+l), END;

1.4.3 - OVERFLOWS TABLE SEARCH

Suppose for d"fioment, that we have a computer with
unlimited memory so that we could have a matrix on which we could

store, in every row, symbols whose codes are the row orders.
(figure 5)

Symbolsv

1 | x| ar - /
2 | sm|B13 ez y

code 3 .
L T

symbol with code = 2

BASIC SCHEME FOR OVERFLOW TABLES
FIGURE 5

If this is so, all that is needed is to generate a

code from a symbol and consult in a linear search every row whose
order is its code.

Actually thls matrix would not work 31nce the storlng struc

turc is modified nevertheless in accordance to tﬁe approacﬁ of chal

nlng symbols of same code.

The new storing structure would be: (figure 6)

" POINTER

" VECTOR . SYMBOL ATTRIBUTE CHAIN
1 s 1| s 0
| 2| 6 2 AR 0
SYMBOL, 3. 0 3| B13 1 :j.
' ' 4| ez 3
~— I NRZ 4
‘ i - — "4‘/‘
o e |l _—
N .

SCHEME FOR - OVERFLOW TABLE TECHNIQUE
FIGURE 6.

As it can be seen, the chaining of symbols with equal code
is done through a CHAIN field, generating a list. The first node of
the list is pointed to by the element of a pointer vector, its order
being that of the symbol code of the list.We shall note that this '
technique uses a linear search within evéry list. It offers therefo
re substantial advantages over 1inear and quadratic H.C. techﬁiques,

since there is no interference of symbol with different codes.

LIM is a pointer of the first available space in the list

forming nodes.

OVFT Algorithm

For
s symbol vector
ATR attribute vector
CHAIN chain vector
PNTR ‘pointer vector
SYMSCH searched symbol
ATRINC included attribute
LIM pointer to the first
. empty place in the table
NMAX length of the table

N length of the PNTR vector -

OVFT1l.- KOD +« 'code'(SYMSCH); K « PNTR'(KOD + 1);
OVFT2.- I£(K =) = go to OVFTS.
I£(SYM(K) = SYMSCH) = go to OVFT4.
OVFT3 .- |a new element of the list is searched |
K « CHAIN(K) and go to OVFT2; -

OVFT4, ~ ISYM(K) is the searched symbol[

'answer' < ATR(K), END;
OVFT5,- |There is no list or the searched symbol is not -

included| |Insertion|
If (LIM>NMAX) = 'overflow', END.
SYM(LIM) < SYMSCH;
ATR(LIM) <« ATRINC;
CHAIN(LIM) <« PNTR(KOD + 1);

PNTR

(KOD+1) <« LIM;

LIM « LIM+1, END;

* It must be noted that the length of the pointer vector is

not necessarily equal to' the maximun length of the table.

1.5 - APPLICATIONS TO VARIABLE LENGTH SYMBOLS.

For all techniques described in this section we will have a

set of fields called block. Each block contains.

NO. of fields Name _Storing
a) 1 - Length of SYM(I)
the symbol (LGTH)
NO.of fields
b) LGTH © Symbol SYM(I+1),...,SYM(I+LGTH)
) 1 Associeted attri | SYM(I+LGTH+1)

bute

023 .

FIGURE 7

BASIC BLOK SCHEME FOR STORING
VARIABLE LENGTH SYMBOLS.

1.5.1 - BINARY SEARCH -

It is. 1nc1uded in thls technlque a p01nter vector to the'
beginning of each block, 1nd1cat1ng the displacement in this vector.

Figure 8 shows the state of the table with six symbols.

F————-ORDER FOR INPUT DATA———————————'

‘:,r,z[z;1|31|A@12|A|AM 3|A|AIA@J| 9
ar\' + A A}‘

Z o D> W N e

BINARY SEARCH
VARIABLE LENGTH SYMBOL
' FIGURE 8

L] 24 L]

., BSV Algorithm

For
SYM storage vector
PNTR pointer vector
SYMSCH 'sgérched s&mbol
LGTH = symbol length
ATRINC ineludéd attribute
N ‘actual symbol in the table
NMAX ﬁggimum symbol in the table
J o 396intet\to the first empty

ﬁlace in the SYM vector.
JMAX SYM length

BSVI.~ LUPP < N+1; LLOW « 1;
If(N<1) = I« 1 and go to BSVY.

BSV2,~ |Compute the place of the search]|

; I <« (LUPP+LLOW)/2 ;

BSV3.- II <« PNTR(I);:
|Length:comparison)|
I£(SYM(II) > LGTH) = go to BSV4,
Lf(SYM(II) </LGTH) = go to BSVS5.
IEquai'iéhgth]' |
VK((k=1,...,LGTH)
I£(SYM(II+K) > SYMSCH(K)) => go to BSV4.
If (SYM(II+K) < SYMSCH(K)) = go to BSV5.);
'answer' + SYM(II+LGTH+1), END;

. 25,

UNIVERSIDADE CATOLIGN

05153 I

1

- |Compute a new upper limit|
If (LUPP = I) => go to BSV6.
LUPP « I go to BSV2;
BSVS, - lCompute a hew lower limitl
If£(LLOW = I) = I « I+l and go to BSV6.
LLOW « I ‘and go to BSV2; '

- BSV4,

 BSV6.~ |Error conditions]
If(N+1 > NMAX) PR(J + LTH + 1 > JMAX) =
'overflow', END, ’
BSV7.- If(N = LINF) => go to BSV9.
BSV8.~ |Displacement|
VE((K = N,N=1,...,I)
PNTR (K+1) + PNTR(K););
BSV9. - |Insertion| .
N <+ N+1; BNTR(I) < J;
SYM(J) <« LGTH;
VR((& = 1,2,...,LGTH) ‘
SYM(J+K) « SYMSCH(K););
SYM(J+LGTH+1) « ATRINC;
J <« J+TAM+2, END;

1.5.2 - HASH CODE TECHNIQUES

1.5.2.1 - LINEAR SEARCH

There are two alternatives for both this technique and qua

dratic search
a) To consider the maximum length of working symbols as the number
of columns in a storing matrix, adding a size vector we will ha

ve. figure 9,

LGTH 12 3 4

H W N~
N W JOo N

SCHEME FOR MATRIX STORING STRUCTURE
' FIGURE 9

This scheme implies that there is too much use of memory
space (if there is a small number of symbols with maximum ienght
fields) but with less processing time.

For this alternative‘éither algorithm similar to that des

cribed in 1,4.1 or 1.4.2 for quadratic search is applied.

b) The second alternative diminishes the necessary storing space,

increasing processing time,

The structure will have a pointer vector to the storing
block (figure 10), The searching of Ki is now done through

the use of the pointer vector.

. ORDER FOR INPUT DATA ———®
BLOCK
. .
SYM g
PNTR
4 4 N 4 4 4
LIM
—-—-———"
K, »>
1

—
N | =T

H.C, TABLE FOR LINEAR AND QUADRATIC SEARCH
" VARIABLE LENGHT SYMBOL

FIGURE 10

LSV Algorithm

For
SYM storage vector
PNTR pointer vector
SYMSCH searched symbol
LGTH symbol lenght
ATRINC inclﬁded attribute
N PNTR . lenght
LIM pointer to the first

| empty place in SYM

LMAX SYM length
A displécement

1

LSV1.
LSv2.

KI « 'code'(SYMSCH) ; I « 0;
K <« PNTR (KI+1);
If(K = §) = go to LSV5.
I£(SYM(K) = LGTH) = go to LSV4.
|Collision] '
I <« I+l; If(I>N) = 'overflow', END.
KI « "mod' (KI+A,N) and go to LSV2.
|Equal lenght]|-
VL((L =1,2,...,LGTH)
If (SYM(K+L) # SYMSCH(L) =>go to LSV3.);
'Answer’ « SYM(K+LGTH+1) ,END;
]Insertionl‘If(LIM+LGTH+1>LMAX) = 'overflow' ,END.
PNTR(KI+1) < LIM;SYM(LIM) + TAM;
VL((L = 1,2,...,LGTH)
SYM(LIM+L) « SYMSCH(L)3)
SYM(LIM+LGTH+1) < ATRINC;
LIM < LIM+LGTH+2, END;

LSV3,

1

LSV4.

LSV5,

. 28 ,

The algorithm for alternative b as described in 1.5.1

is now presented.

Using the same introduction for the algorithm QSPS
(1.4.2) we have. '

QSPV Algorithm

For

S _ stdrage vector

PNTR pointer vector

SYMSCH searched symbol

LGTH syﬁbol lenght

ATRINC included attribute

N : PNTR lenght

NMAX N/2 + 1

LIM pointer to the first empty
place in SYM

LMAX SYM lenght

A a-b

B 2b

QSPVL, - KI « 'code'(SYMSCH); I + 0; J « A;
QSPV2.~ K < PNTR(KI+1); |
If(K = §) = go to QSPVS5.
If (SYM(K) = LGTH) => go to QSPV4,

o29.

QSPY3.~ |Collision|
If <« I+l
If (I>NMAX) = 'overflow', END.
J « J+B)
KI <« mod'(KI+J N) and go to QSPVZ;

’QSPVA.— |Equa1 lengthl
- ViL(@ = 1,2,..:,LGTH)
»If(SYM(K+L) # SYMSCH(L)) = go to QSPV3.,);
'answer' <« SYM(K+LGTH+1), END;

QSPVS.— |Insertion| _

If (LIM+LGTHE+L > IMAX) = 'overflow', END.

PNTR(KI+1) + LIM;SYM(LIM) <« LGTH;

Vi((L ="1,2,...,LGTH) '
SYM(LIM+L) < SYMSCH(L););
SYM(LIM+LGTH+1) « ATRINC;

LIM « LIM+LGTH+2, END;

1.5.2.2.1 -~ QUADRATIC SEARCH, TOTAL SCANNING

Algorithm PCBT will be applied for total scénning
in the table, extending it to variable length symbols.

- QSTV Algorithm

For
SYM " storage vector
PNTR pointer vector
SYMSCH ' searched symbol
ATRINC included symbol
LGTH symbol lenght

QSTV1. -
QSTV2. -

QSTV3. -

QSTV4 .-

QSTV5, -

N PNTR length

LIM pointer to the first
empty place in SYM

LMAX SYM length

KI « ':giod‘e\.'(SYMSCH); I <« ~N;

K + PNTR(KI+1);

If(K = §) = go to QSIVS.

If (SYM(K) = LGTH) = go to QSTV4,

|Collision| v

I « I+2; If(I > N) = ‘'overflow', END.

KI « 'mod' (KRI+ |I|:’,N) and go to QSTVZ;

|Equal length|

VL((L =1,2,...,LGTH) ;

If(SYM(K+L) # SYMSCH(L)) =go to QSTV3);

'answer' < SYM(K+LGTH+1), END;

|Insef'tioﬁ| '

1€ (LIVALGTH+1>LMAX) = 'overflow', END.

PNTR(KI+1) - LIM;SYM(LIM) <« LGTH; ‘

Vi(w = 1,2,3,....,L6TH) |
SYM(LIM+L) « SYMSCH(L);):

SYM(LIM+LGTH+1) < ATRINC;

LIM « LIM+LGTH+2; END;

., 31,

1,5,2.3 = OVERFLOW TABLE SEARCH,

For this technique the block described in 1.5 will be used
adding a field to this block. This field is reserved for the

chaining pointer. . -

Each block will contain

No. of fields . . » " Name o Storing

a) 1 symbol length. SYM .

b) . LGTH (LGTH) SYM(I+1),...,SYM(I+LGTH)
c) . - Symbol SYM(I+LGTH+1)

d) 1 ’ Chain SYM(I+LGTH+2)

This scheme is basicaly the same as that of constant lehgth,

symbols, differing in the storing of the symbols(figure 11)

.32,

PNTR 4 '
. |
—h
e
—t
—
H.C. OVERFLOW TABLE
VARIABLE LENGTH SYMBOL
FIGURE 11
Algorithm 0TSV
For
SYM storage vector
PNTR pointer vector
SYMSCH . searched symbol
LGTH symbol lenght

33

ATRINC included attribute

LM pointer to the first
empty place in SYM
LMAX - lenght of SYM
r N lenght of PNTR

OSTV1.~ KOD <« 'code' (SYMSCH);
K < PNTR(KOD+1);
0STV2.~ If(K = @) => go to OTSV5.
" If(SYM(K) = LGTH) = go. to OTSV4.

0TSV3.- |next element in the list|
LL « SYM(K); =
K <« SYM(K+LL+2) and go to OTSV2;

OTSV4.-~ |Equal length, comparison |
YL((@ = 1,2,...,LGTH)
I£(STM(R+L) # SYMSCH(L)) = go to OTSV3.);
'answer' <+ SYM(K+LGTH+1), END;

OTSV5.- |Insertion|
If (LIM+LGTH+2>IMAX) = 'overflow', END.
SYM(LIM) <« LGTH;
YL(@ = 1,2,...,LGTH)
SYM(LIM+L) « SYMSCH(L) 53
SYM(LIM+LGTH+1) <« ATRINC;
|Chaining]
SYM(LIM+LGTH+2) <« PNTR(KOD+1);
PNTR(KOD+1) < LIM;
LIM « LIM+LGTH+3, END;

. 34,

2. - HASH CODE GENERATORS .

_ In this chapter hash code generators will be defined and
which variable, should be applied to it for its execution. Finally a

comparisoﬁ between some generators will be presented.
2.1 - INTRODUCTION

A H.C. generator is function between a symbol and a
“value, ‘

| f (symbol) = value.

Let us study the following function as an introduction to

the problem.

Each letter of the symbol will take the value of its order
‘position in the alphabet, such that if £(ABCD) is used, we will
have 01020304 as the value formed by the corresponding order

of the symbol letters. '

Therefore: we will have a generation of values for 1 to.

4 character symbols
f(x)min = 0l for X = A

£(X)__ = 26262626 for X = 7227

« 35 -

These limits indicate that, having X 26™ symbol, the genérating
n=1

function yields approximatly 187 of these in-between values.

These values will be continuous between - 1-26, 101-126, 201-226
etc.

What actuélly‘happens‘is:

a) The used symbols are usually a small subset of all possible

symbols,

b) The characters have a different inner code from the orderes

numbers.

Nevertheless many computers have a discontinued series.

'Example for IBM 7044

LETTER ‘A B...I J K weo R b S 4uue Z
Octal code 21 22 31 41 42 51 60 62 71

Decimal code 17 .18 25 33 34 41 48 50 57

If this code is appliéd to the previous example a 9% re-
duction in the possible generator values would be fielded, since

the upper limit increases
f(X)max = 57575757

besides this a greater discontinuitly of generated values is

produced.

. 36 .

The inglusion of numeric characfers in the symbols sligltly in-
creases the utilization factor, (number of possible generated
values/ number of in between values) also reducing the
discontinuity gaps.

- For computers with BCD codes, six bit per cﬁaracter,‘such
as the IBM 7044 there are different symbols for which equal
values will be fielded. This is due to the fact that the symbol
code .includes the sign bit. Due to the use of positive values the

absolute value of the function is to be taken.

Example

£(BCDEFG) = |22 23 24 25 26 27| Octal
£(SCDEFG) =|'-22 23 24 25 26 27 | value

We could say that the problems regarding a hash code generator are:

- The reduction of the relationship'number of ’inbetween values /

number. of possibly generated values."

- The reduction of discontinuity.

- The generation of unique values for ever& symbol or at least to
avoid that a great number of symbols generate only few of the

possible values.

- To generate these values within a compatible time.

. 37 .

2.2 - IMPORTANCE OF THE TABLE LENGTH.

The increase of the utilization factor can either lead to
solutions or an escalation of the discontinuity problems and/or gene-

ration of ambignous values. The solution uses:
value = 'mod’(f(symbol),N)

where 'mod' is the remainder of the division f£(symbol)/N. Variable N.
- will sometimes stand for the length of the table and in other cases,

the length of an auxiliar pointer vector.
Three kinds of values of N were used in this experiment.
1. ~m. 10> m=2,3,...,10 "factor of 100’ _
2, - 20 n = 8,9,10 ' integer powers of 2'

3. prime numbers

Experience has shown that the use of prime numbers for N

generates better solutions than those for 1 and 2 above,

. 38 .

TIME (SECONDS)

2.0 4

! J.) LEHGTH
00 400 500 800 1000
COMPARISON BETWEEN DIFFERENT TYPES OF LENGTHS

+=FACTOR OF 100 »X=INTEGER PGWER OF 2 » b =PRIME NUMBER
. BOUND SYMBOLS

FIGURE 12

‘TIME(SECGNDS)

24C
I

Ca4d

0.0 LENGTH

i

L 1
200 400 500 800 1000

COMPARISON BETWEEN DIFFERENT TYPES OF LENGTHS
+=FACTOR OF 100 »®X=INTEGER POWER OF 2 » D =PRIME NUMBER - -
RANDOM SYMBOLS _—

FIGURE 13

o 39 L

2.3 -

Figures 12 and 13 show these"facts,‘i.e., the choice of'the three

‘different types of lengths. The time and lenght coordinates show in

the figures a comparison between construction and searching time of

a table (in this case h.c. overflow tables).

This compafisoﬁ is made for two types of symbols:
RANDOM and BOUND.

These symbols will be defined in 3.1

CONTINUITY OF VALUES.

When trying to solve the discontinuity problem of generated

values different technique appear such as:

2.3.1 - EXCLUSIVE OR (XOR).

This method is applied for generating h. c. symbols for
more than one computer word. An XOR operation between the

symbol words obtains their absolute value and finds mod (N).

2.3.2 - TABLE LENGHT DIVISION (D/LENGTH)

This method considers that the solution to the lenght pro-
k blem is enough to generate a good value. In order to process
symbols with more than onme word in computers that don't have

XOR operation a logic sum of words can be used instead.

040a

This sum must be done regarding all values as positive numbers
and, if possible, a 1 must be added to the lower order bit for
every overflow (in order to distinguish it from values that

do not cause overflow).

Next, mod(N) is taken from the absolute value of this sum.

2.3.3 - WEIGHTED SUM (WGHT S.)

This method attempts to solve both the problem of factor uti-

lisation and the discontinuity problem.

It is basically done giving a weight for every one of the
symbol characters and making a weighted sum with the assigned

weights.
The weighting function will assign a greater weight to the

first character diminishing its weight for the suceeding

characters.

2.4 - GENERATOR COMPARISON

Let us now compare D/LENGTH and S.POND for a RAND symbol in an IBM 7044
word. (see TABLE 1) ' ‘ '

. 41 .

This comparison shows the number of collisions for every
method. for different lengths and for the generator types D/LENGTH
and WGHT S.

The collisions are shown in table lenmgth percentages,the
percentage of non generated values given in column O, the percen -
tage of generated value for one: symbol given in column one, ‘the
percentage of generated value for two symbols given in column 2

(collision for two symbols), and so on. .
An upper limit of ten percent over the distributed'values
is established because this is considered a practical 11m1t for

hash code technlques.

Column TIME indicates the relative time (in seconds) for
the generation of 1000 values.

. 42,

NUMBER OF SYMBOLS OF EQUAL
' GENERATED VALUES.

Rt LENGHT | TIME (FgEE) 1 2 | 3 | ¢10]>10
S.POND | 1000%+ | 0.23 | 53.5 | 20.2 | 22.0 | 24.6 | 100. 0.
S .POND 9974xx | 0.23 | 53.5 | 20.2 | 22.3 | 24.3 | 100. 0.
S.POND | 102Lax# | 0.24 | 54.0 | 19.7 | 20.9 | 25.6 | 100. | 0.
S.POND | 10244 | 0.23 | 54.1 ["19.6 | 2.1 | 25.2 | 100. | 0.

“s.pow | 729 0.23 Qﬁiéj” 28.4 | 30.5 | 23.5 | 100. |.0.
D/FES&HI”“iOOO* 0.18 7§;§5*-;§.9 1.0 | 2.1 | 86.0 |14.00
D/LENGTH |~ 9974k | 0.20 | 38-8-| 35.4 | 3L.9 | 20.7 | 100.0 | o.
D/LENGTH | 102L4x | 0.18 | 36.9 | 37.1 | 35.7 | 18.8 | 100.0. | 0.
D/LENGTH | 1024%% | 0.18 | 88.87| 9.4 | 1.8 | 0.6 | 11.8. |88.2
D/LENGTH | 729 | 0.23 | 36.9 [37.0 | 33.4 | 23.7 | 94,5 .5{5‘

* ﬁype one length

ok "

k% -

two

three

"

H.C. Comparison

TABLE T

power of 2

prime

. 43 .

multiple of 100

We can see from table 1 that the béhavior of the WGHTS. technique for
any length is similar: the distributions are almost uniform for the
different lengths concentrating in 65Z of the collision symbols of
up to 3 symbols. The D/LENGTH technique makes a clear distinction
‘between the different types establishing prime number lengths the .
best ones. Note the good utilization factor of the generato£ shown in
the few generated values (38% in column 0). The distribution for these
prime lengths groups up to 80% of the collision values of up to 3
symbols. '

As a complementation to Table 1 the collisions producédv “in
D/LENGTH as far as distribution is concerned present the following

characteristics,

- For type one length the distribution of values is almost
uniform, presenting a constant sequence "reached values for one or

more symbols - k unreached values".

- For type two length there is no uniform distribution for
"reached values / unreached values". Tt tends to generate one value
for a great number of symbols. For length = 1024, 692 symbols gener -

ated one value.

- For type three length the distribution is bound to be

uniform, with collisions of up to five symbols.

Comparing WGTH S. and D/LENGTH time we have a ratio of 1:0.75.
Regarding this comparison the IBM 7044 hardware favors WGTH S.; this

time relation is expected to increase in other computers.

Based on the preceding comparison D/LENGTH for prime lengths
can be considered to be better than WGTH S. The WGTH S. technique is
uniform for dealing with any length. type.

a44o

3 - RESULTS

3.1 - ORGANIZATION OF THE EXPERIMENT

The behavior of time (with a * 0.02 seconds error) aﬁd storage

space variables were measured for both comstruction and search.

- This measurement was done for prime number 1engths of the table,
in the h.c. techniques and for type 1 lengths (multiples of 100)

for bothbinary and ternary searches.

- The h.c. generator used was D/LENGHT (2.3.2), since for prime -

lengths this generator is more efficient.

- For h.c. techniques, the behavior of different utilization per-

centages, were measured.

- For linear and quadratic searches, the utilization percentages
refer to"the present number of symbols/possible number of

symbols".

- For overflow tables it refers to the relation "total number of
: symbols in the table/length of the pointer vector".

- For the table comparison the symbols used were called RANDOM.
The characferistiés of the RANDOM symbols, are: they have
1<n<6 characters, where n is a random number. The used
characters are: a letter for the first one and letters or
numbers for the remaining ones. The choice of the characters

was random too.

@ 45 o

- For the h.c. experiment a second type of symbols called "bound
symbols (BOUND) were used. It was formed as a basis for a certain

number of words on which characters or numbers were replaced.

~ The used coefficients are: linear search, Ki = KO + 1,7 quadratic

search, partial scanning

SYMBOLS

FOR ALL
THECHNIQUES

FOR DIFFE-
RENTS
LENGTHS

FOR EVERY
(UTILIZATION

PERCENTAGE

| TABLE TIME
CONSTRUCTION CONTROL
]
OUTPUT

47-a

RANPORMIZING
THE USED

SYMBOLS

e e et e

TABLE SEARCH
WITH THIS SET

OUTPUT

O

CONTINUE

CONTINUE

FIGURE A

. 47 © b

TIME

CONTROL

3.2 -~ COMPARISON BETWEEN BINARY AND TERNARY SEARCHES

Theoretically there was a chance that a ternary search
would be much better then the binary ome, due to the reduction of
the number of comparisons 1033N (for ternary) < logzN (for binary).
Besider Llueoretically reducing the number of comparisons, ternary
search must compute a new in between limit and also must increase
the number of questions by one in order to select every new search
area. The experiment showed however that both techniques yield

similar results; therefore only binary search will be compared.

Different hardware characteristics may fjeld different

results in this comparison.

. 48 .

EXPLANATION OF THE DIAGRAM (Figure 14)

'FOR ALL TECHNIQUES' were used:

Binary search

Ternary search

Linear h.c. search

Quadratic h.c. search (partial scanning)

Quadratic h.c. search (total scanning)

N U W

H.C. o&erflow tables.

'FOR DIFFERENT LENGTHS'.

For techniques 1 and 2 the lengths below were used
200, 300,,1000,

For techniques 3,4 and 6 were used
199,307,401,499,601,701,797,907 and 997.

For technique 5 were used
199,307,419,499,607,691,811,907 and 997.

'"For EVERY UTILIZATION PERCENTAGES'
- were used 50,60,70,80,90 and 100.
'TIME CONTROL'

was done using the system's. clock with a 1/60 sec precision.

TIME (SECCNDS)

20:0 4 CONST.
18.0 |

160 |

¢ GEARCH

[0 N : ' ¢ LENCGTH
200 400 603G BOO 10CC

BINARY SEARCH

FIGURE 15

. 49 .

3.3 - COMPARISON BETWEEN CONSTRUCTION AND SEARCH.
We shall define "fixed tables" as tables in which the component symbols

are known.

This kind of table, after its construction, is used only for

searches

We shall call "variable table" a table in which the component
symbols are unknown. This is the reason why the construction and search

methodes are simultaneous.

The reason for this comparison is the fact that the advantages

variable tables to different techniques

¢

in the application of fixed or

are best shown.

3.3.1 - BINARY SEARCH. -

Based on the preceeding algorithm it could be expected
that construction time would be greater than search time. The
experiment effectively shows that construction time is really

grater than search time (figure 15).

This characteristic shows that its use is convenient
for fixed tables. Therefore its construction could be done at
the beginning of the process with the ordered set of symbols ,

decreasing construction time.

The analytical equations that rule both processes are

. shown in 3.5. °

* 50 L

TIME (SECONDS)

1.0 4

0:9 |

EONEIR 56 878

LENGTH

400

N 1 1
500 800 1000

HASH CODE LINEAR SEARCH
UTILIZATION S0 0.0

"FIGURE 16

. 51 .

TIME (SECONDS)
1.0 4

0:3 L
08 |
0.7 |

0.5 |

sEARIR B8 88

LENGTH

200 400 500 806 1000
HASH CODE SEARCH WITH OVERFLOW TABLES
UTILIZATIDN 60 0/0

FIGURE 17

. 52,

TIME (SECONDS)

100 4 100 00
0¢3 90 0,0
0.5
0:7 |
Q.5 | BC 0-0
0.5
70 00
Cudf |
B0 0,0
043 4 » 50 040
OI.E 4 —'///F
Gt ;ﬁﬁ/
3 LENGTH
0-0 — : = :
200 200 a6 . sob 1000
HASH CODE LINEAR SEARCH
. CONSTRUCTION. .
FIGURE 18

L 53 .

TIME (SECONDS)

1.0 4 100 0s0
0.3 1
0:5 |
0er | 90 0,0
0.5 L
80 Cs0
0:5 4
70 0s0
Cud |
' B0 00
©+3 4 50 00
02
ool .
3 LENGTH
0.0 = : : L
200 400 500 5OC 1000
HAGH CODE QUADRATIC SEARCH (PARTIAL SCANNING)
CONSTRUCTION
FIGURE 19

. 54 .

TIME (SECONDS)

1.0 4 100 6,0
0:3
08
Q7 80 00
Qe
B0 0.0
0:5
o4 70 070
BC 070
Sk 50 0,0
0e2
Cuil
LENGTH
<0 4 : : ; :
200 400 500 800 1000
HASH CODE QUADRATIC SEARCH (TOTAL SCANNING)
CONSTRUCTION
FIGURE 20

. 55 .

3.3.2 - H.C. TABLES.

It was proved that search time is, for these
techniques, slightly lesser than construction time (see as
an example figures 16 and 17). This characteristic makes then

fit to work both in fixed and variable length tables.

The equations that rule its construction are shown
in 3.5. '

3.4 - TECHNIQUE BEHAVIOR IN RELATION TO DIFFERENT UTILIZATION PERCENTAGES.

Given that the utilization percentage concept is possible
only for h.c. techniques and realizing that construction and search

time are similar, the results are given for construction only.

3.4.1 - LINEAR AND QUADRATIC SEARCHES.,

As figures 18, 19 and 20 show construction time

decreases as utilization percentage decreases.

This fact is explained by the number of collision

that increases as the utilization percentage increases.

. 56 .

TIME (SECONDS)

0-5 .r
100 ¢-0

Cud . 80 00
B0 0-0

023 70 00
BC 00

e 50 0/0

0.1 |

] LENGTH
0<0 : ; : +
200 400 600 800 1060

-HASH CODE SEARCH WITH OVERFLOW TABLES

CONSTRUCTION

FIGURE 21

. 57 .

3.4.2 - OVERFLOW H.C. TABLES.

The increasing of pointer vector length, with a
constant number of table_éymbols, yields a smaller number of
collisions. This results in less search time, due to smaller

lists.

The results show that theoretical considerations

‘are confirmed by the practical experiment.

Figure 21 shows in the abcissa the pointer vector

length. Every curve in the figure is ruled by the equation
t, = Ki - lengthi(POINTER)

for every utilization percentage i. This equation, as a

- function of the table length would be.

t, =K
1

He

LI 1engthi(SYM)

for K! =K, - i/100 .
i i

This consideration applies also to different tech-

niques.

TIME (SECONDS)

4 CONSTe

0:0 . , , LENGTH
200 400 600 800 1000

BINARY SEARCH

FIGURE * 22

. 59 .

3.5 = REGRESSION CURVES FOR GIVEN RESULTS.

| =0 a

After adding as origin the point time = 0 , 1ength0

linear regression was applied.

3.5.1 - LiNARY SEARCH.

The results of the regression as shown in fighres

15 and 22 (the latter using a larger seale factqr).
Give: Construction ,
t(secs) = 0.00138 - length + 0.00002 . length?

Search:
t(secs) = 0.00174 . length
The theoretical curve is
t =K log2 length
for 200<length<l000 this curve is practically equal to the

empirical curve.

3.5.2 - H.C. TECHNIQUES

. 60 .

TIME (SECONDS)

140 4 100 ©-0
03 30 0/0
065
0.7
06 80 0.0
05 70 GO
04
60 0.0
-3 50 00
0.2
01
' LENGTH
020 4 : : { :
200 400 500 800 1000
HASH CODE LINEAR SEARCH
CONSTRUCTION
FIGURE 23

© 61 .

TIME (SECONDS)

100 4 100 0-0
0-3 + '
0:5 |
0s7 30 0.0
0e5

8O G0
0.5

70 G0
Cud

60 0/0
03

50 0/0
G-
Cod

LENGTH
020 4 : : : 4
200 400 6CO 500 1000
HASH CODE QUADRATIC SEARCH (PARTIAL SCANNING)
CONSTRUCTION
FIGURE 24

. 62 .

3.5.2.1 - LINEAR SEARCH

100 = 0.00196 ,‘table lengthloo(secs)
tyo = 0.Q0089 . table lengthgol(secs)
togy = 0.00061 . table 1ength80.(secs)
tyg = 0.00047 . table 1ength70 (secs) -
t60 = 0.00035 .:table 1ength60 (secs)
t50 = 0.00028 . .table }eng;hso (gecs)

Figures 23 shows a graph of these curves.

3.5.2.2 - QUADRATIC SEARCH (PARTIAL SCANNING)

100 = 0,00103 . table 1ength100(secs)
tyg = 0.00072 . table 1e?gth90 (secs)
tag = 0.00056 . table length80 (sec;)
t70 = 0.00045 . table length70 (secs)
t60 = 0.00036‘. table lengthsb (secs)
t50 = 0.00026 . table‘lengthso (secs)

Figures 24 shows a graph of these curves.

. 63 .

- TIME (SETONDS)

40 4 106 0-0

0-9

0:8 |

047 - 30
Qo
80
70
B0
50
LENGTH .
0:0 4 — R—. :
200 900 £00 &00 1002
HASH CODE QUADRATIC SEARCH (TOTAL SCANNING)
CONSTRUCTION
FIGURE 25

. 64

G0
00
00

TIME (SECONDS)

1.0 _’_
0:9 |
0:8 L
07 1
Cel5 |
0.5 L '
100 G0
Cud 30 0.0
d
0.3 58 88
60 00
0:2 50 00
Cal)
LENGTH

040

200 400 500 800 100¢
HASH CODE SEARCH WITH OVERFLOW TABLES
CONSTRUCTION.

FIGURE 26

. 65 .

3.5.2.3. - QUADRATIC SEARCH(TOTAL SCANNING)

ti00 = 0:.00097 . table length (secs)

tygg = 0.00962 . table length. (secs)
tgy = 0.00049 ;:tabie length'(secs)l
tyg = 0.00039 . tableblengthv(;e;s)
t60 = QGOQOBZ W ﬁableilength (secs)
tgy = 0.00024 .. tabie length (égcs)‘

Figure 25 shows a graph of these curve.

3.5.2.4 - OVERFLOW TABLE SEARCH.

Eygg = 0.00045 .- PNTIR length (secs)
tyg = 0.00040 .: PNTR length (secs)
téo = 0.00034 . PNTRflength (secs)
t70 = 0.00031 .. PNTR length (segs)
teb = 0.00026 . PNTR length (secs)
t50 = 0,00021 .. PNTR length (secs)

" As a function of the table length.

. 66 .

0.00045 x

T
n

T
(]

0.00036 x

0.00027 x

PUO
il

(a3
n

0.00022 x

t
1

= 0.00016 x

(o]
i

= 0.00010 x

4. - CONCLUSIONS.

table length

table length

table length

table length

table length.

table length

pointer length

table length |

1.
1.1

1;25
1.43
1.68

2,00

In a general way h.c. techniques optimize processing time

as more space is available for table storage.

This is not time for binary search since time remains

constant for a given number of symbols in the table.

4.1 - PROCESSING TIME COMPARISON.

If we compare processing time among all techniques, with

no regard to storage space, it becomes clear that overflow h. c.

technique yields the best result, followed by quadratic and linear

searches,

. 67 .

For a comparison between the latter three and binary

'~ search , we have the following result, since they take up the

%

same memory space to store the
"symbol - éttfibuté" paif.
1. ngdratic h.c. search (total scanning) 100%
2. Quadratic ﬁ;ca‘search (partialVS;anning) 1007
3. Binary searghn

4. Linear h.c. search 100%.

4,2 - STORAGE SPACE COMPARISON

For a given problem regardless of the use technique,
both SYM and ATR will have equal lengths. For binary search,

linear and quadratic h.c. searches storage space is, -
1) N . (,length(SYM_) + length (ATR))

Where N is the number of symbols in the table and length(XX)
is the length of the named field.

For linear and quadratlc h.c. searches we consider an

utilization factor K.

2) N . K . (length(SYM) + length(ATR))
K = 100/utilization percentage.

For overflow h.c. technique besides SYM and ATR we have the
field CHAIN and vector PNTR; therefore storage space will be:

3) N . K . (length (PNTR)) +

N . (length(SYM) + length(ATR) + length(CHAIN))
In a general comparison equation 3 becomes

4). N . gg; (length(PNTR) + length(CHAIN)) +
"N, (length(SYM) + length(ATR))

For
5) N « (K + (length(PNTR)) + length(CHAIN)
6) N « (R-1) - (length(SYM) + length(ATR))
As much as..S;is‘closer.to 6 the performance. of the overflow

h.c. tables is better than the performance of the other ones.

4.3 - METHOD FOR DETERMINING THE MOST CONVENIENT TECHNIQUE.

As a method for determining such technique the follqﬁ

ing procedure can be tried.

. 69 .

a) With the approximate number of symbols in the table

and
b) With the usable memory space, the

c) Utilization factor K is determined through the use

of the equations 2 and 3 of 4.2

d) Having computed K, the utilization percentage and the
number of symbols{given by a) the length either the
table or the pointer vector is found (making an approxi

mation to the next prime number)
e) With the parameters obtained by d, the most efficient

technique is found through the use of the graphs or

through the regression curves.

4.4 - ADDITIONAL CONSIDERATION

The behavior of the different techniques for special con

ditions is analyzed below.

4.4.1 - DELETION OF SYMBOLS IN THE TABLE

Binary search. The inverse process of symbol

insertion showld be done, through a negative displacement.

4.4.2 -

Let I indicate the element to be deleted:

YL((L = I,I+1,...,N-1)
SYM(L) + SYM(L+1);
ATR(L) < ATR(L+1););

N « N-1, END;

Linear or quadratic h.c. search. These techniques do not
allow for the deletion of symbols since when an attempt is made,
it interrupts the search sequence (an empty place is found). The
solution to this problem: could be to flag a symbol as non active,
avoiding the interruption. This flag can be used as a replaceable
symbol marker.

Overflow h.c. search. The elimination of a symbol is done
by deleting the element in the corresponding list. The élgorithm
should be modified so that the available space will absorb the
deleted element. This can be achieved by creating a list of

available space.

BLOCKED STRUCTURES..

- Binary search. Insertion and deletion in the table °
imply that displacements will be made, which is aslow action as

compared with other techniques. The deletion of symbols implies a

.total scanning of the table.

. 71 .,

= Linear and quadratic h.c. searches. The insertion of
symbols is no problem. The deletion implies the use of the pro -

cedure analyzed in 4.3.1, forcing a total scanning of the table.

- Overflow h.c. search., No problems are associated with

deletion or insertion of symbols for this technique.

There is no need for scanning all the table since the
list of symbols with the same code are: groupings of elements. of

equal level, arranged in a decreasing order of levels (figure 27).

T - [[=L 1) o
- —~ N —— - ~— -

g

LEVEL I LEVEL I-1 LEVEL 0

FIGURE 27

The deletion of elements of equal level (always done at
the beginning of the list or at its higher level) is done by

eliminating all nodes until a different level node is found.

Therefore this is the technique bust suited for this con-

dition.

Note: The notation used for describing the algorithms in this

work was adapted from Knuth's notation.

BIBLIOGRAPHY

Peter J. Denning. Computing Surveys ACM2 , 157-159 (1970).

James Bell R., Comm. ACM13, 107-109 (1970).

Leslie Lamport., Comm ACM13, 573-574 (1970)0

Robert Mé-r-r-i-s, Comm ACM1l, 38-44 (‘1968) .

Alan Batson, Cqmm ACM8, 111-112 (1965).

Knuth Donald E., Fundamental Algorithms Adison Wesley (1968) pag 1-9.
A. Colin Day, Comm ACM13 , 481-482 (1970).

E.G. Coffman Jr.
J. Eve » Comm ACM13, 427-432 (1970).

. 73\0

