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- ABSTRACT

The problem of finding the chromatic number of a graph and ex-

hibiting one or all optimal colorings has several practical applications.
It is equivalept to partitioningaset of objects, some of which
are pairwise 'incompatible", into the minimum number of cells, so that no

two incompatible objects are assigned to the same cell.

Situations where this applies are production scheduling, con-

st:uction of examination timetables, storage of goods, etc.

Heuristic procedures for the solution of the described problem
have been developed by Berge [1] , Welsh and Powell [2], and Wood [3].

More recently Christofides [4] has presented a deterministic

algorithm that is based on the concept of maximal internally stable sets.

This paper also employs this concept to suggest three differ-

ent approaches:

a. a simple algorithm with relatively small storage require=-

ments;

b. an integer linear programming formulation;
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c¢. a branch and bound algorithm, that keeps storage require-
ments at a reasonable level and aims at efficiency by

minimizing the number of steps.
~We have used as sub-algorithm an efficient method by Bron-
Kerbosch [5] originally developed for determining the cliques of a graph ,

but that can be easily adapted to obtain the maximal internally stable sets

A number of examples were run on an,IBM_/36b model 40,



1, THEORETICAL FOUNDATIONS

Definition 1
The chromatic number r  of a finite undirected graph is the

minimum number of colors that should be used to color its

nodes, so that no two adjacent nodes have the same color.

Definition 2
 An optimal coloring is any assignment of r colors to the

nodes of the graph in accordance with the above requirement.

Definition 3
A graph is uniquely colorable if it admits exactly one  op-
timal coloring, up to interchange of colors. '
o
Definition 4
An internally stable set of nodes is any subset of nodes of
a graph such that no two nodes of the subset are adjacent.

Definition 5

A maximal internally stable set(MISS) is an internally stable
set that is not properly contained in another internally

stable set,



Definition 6

A complete sub-graph is a sub-graph whose nodes are all

adjacent to every other node in the sub-graph.

Definition 7
N e
A maximal complete sub-graph, also called a clique, is a
complete sub-graph that is not properly contzined in another

complete sub-graph.

Definition 8

- An intersection graph is a graph whose nodes represent sets,
and two nodes are linked by an edge whenever the two corre -

sponding sets have at least one element in common.

Let:

G

(N, E) - a finite undirected graph of order n

the chromatic number of G

L2
t

m - the number of MISS of G

C = {CR,CQ,.UQ,Cr} - an optimal coloring, where Ci denotes

a subset of N assigned color i .

M(t) = {Ml,Mz,m,Mt} , 1¢t<m - a set of MISS, and

Loyt =00 M o0 M, M, e M)



Lemma 1

To every C there corresponds at least one M(r)‘

Proof: For every Ci in C, Cig;M. holds for at least one

Mj’ since each color is an internally stable set
and therefore is contained in at least one MISS.

So M(r)l can be constructee'by extending each Ci
to some corresponding Mj‘

‘ To see that all‘elementS»of M( y are distinct, note

‘that if the same M is obtained from C, and C, then

the internally stable set c' = C Uc C'M.J can
'replace C1 and Ck , and therefore C was not

optimal.

From lemma 1 we conclude the existence of one or more sets

M(r) for every optimal coloring.

However we wish to work in the opposite direction, to gene

‘rate the optimal colorings from the sets of MISS., The next two lemmas
show that N is not covered with s < r MISS,

Lemma 2

Let s _be the minimum number so that M( ) covers N, Then
each element M, of M( ) has-at least one node that 1is
not covered in Ly ﬁn 7.

Proof:lIf Mj - _(S)D%]a empty

then MjC'L(s)[ﬁj] end M(s) is not minimal.
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Lemma 3

Theorem 1

1f M(s> covers N then s 2 r.

Proof: Construct M' from each element of M(s) by taking

MZ=Mq“L Mqo

i (S)[J]

From lemma 2 we see that the cardina;ity of M' is
8 .

Construct M" by assigning each node in
Mj{\L(s)[hj] to exactly one amgng the Mﬂ whose

corresponding: Mk include the node.

By construction the cardinality of M" 1is still s.
Since M" covers every node of N exactly once we
conclude that it is a coloring and thus its cardi -

nality s cannot be less than r.

All optimal colorings of G can be obtained by taking each
M(r) in turn, assigning the nodes that are only covered
in one Mj to Cj’ and making all possible assignments of
the remaining nodes to each: C

X whose corresponding Mk

covers the node.

Note that the theorem does not exclude that the same  op-

timal coloring can be generated by more than one. M(r)‘



Corollary 1

m is an upper bound for r .

Corollary 2

A graph is uniquely colorable'iff it admits oﬁly one M(r) and the
MISS in M(r) are disjoint,

Corollary 3
« 1€ELyr, M. 3

Let M. &M ) 1<t<r; ﬂl ¢ Mpys
ﬁi - M(tsc:ﬁj»- M(t) for one or more ﬁj .sugh that
M, ¢ M and ¥, - M ty. -
3 ¢ (t) : (t) # empty
Then M. cannot belong to M, ..

i (x)
Proof: M(r) would certainly include ome or more of the M, and

if it also contained ﬁi’ then 'ﬁich(r) ﬁﬁi] ,an absurdity.

Corollary 4

If all nodes of a MISS Mj are covered in some other MISS and every

one of these contains at least‘one node of Mﬁ then there can be no
M(r) including Mj . .

Christofides' graph [4] given below is an example of the stuation
described in corollary 4. It admits four MISS:

M, = {1,4,6} , M, = {2,3,5} , M, {2,5,7} , M, = 12,6} ; clearly M, fulfills

" the above conditions and can be said to be dominated by the other MISS.




Theqrem 2

The chromatic number of a graph is equal to the largest chro-

.matic number of its connected components.

Proof: Number arbitrarily the colors of each connected com-

ponent, ‘

Now let C* = {cy , C: . eev 3 Ci} be an - optimal
coloring of the component with largest chromatic num -
ber,

The nodes with colors i = 1,2,...,rp for '1$rp$r of
each component can certainly be added to the corre-
sponding Cg,, which finally yields one

c=1{c,,C,, «v. , cr} .

‘Corollary 5
If a graph has cutnodes thenan optimal coloring can be ob-
tained from the optimal colorings of its components, each

component being taken together with its cutnodes.

Proof: The only restriction to\thg scheme 'in the proof ‘of
theorem 2 is that a color Ci will include a gi#en
cutnode iff, among the colors contributing to 'Ci, all
that come from components containing the cutnode do

include the cutnode.
The decompositions provided by theorem 2 and its corollary may
be convenient in view of storage and execution time considerations, as

we shall gee in section &,

. 8.



Fact 1 - The cliques of a graph are the MISS of its complement ° with
| respect to the complete graph of the same order, and conver-
sely the MISS of a graph are the cliques of its complement
" (see [6] , page 36). v

This allows us to use algorithms, originally developed for
finding cliques, to the problem of finding MISS, either by sditably
adapting the algorithms or by applying them to the complement of the
given graph. Algorithms originally designe& for finding MISS are given
in [7] and (8] . |

Fact 2 - The family of MISS of G, together with the relation Mi R Mj
iff Mif\Mﬁ # empty define an intersection graph, which is

the counterpart of the clique graph presented in [9] (page 20)

Fact 2 provides a way to represent the relations between the
MISS of a graph, which is interesting from a theoretical viewpoint and
may eventually disclose relevant characteristics in some particular

cases (see section 5).

A SIMPLE ALGORITHM

This algorithm determines the chromatic‘number r and all M(r) of a
graph. It assumes that the MISS of the graph have been previously ob~

tained. : . ‘ , .
Let M, an n by m matrix, represent the MISS. of G, with:
mij =1 if node- i 1is covered by MISS j , and
m.. = 0 otherwise

1]
Let X be a vector of m elements and B a vector of n
elements,

' .9 .



step 1 -~ Set k to false.
bstep 2 - Set p‘ to 1,
step 3 - Generate K(P) = {x,, K,, cees Kd},
q= (’;) , the set of all combinations of the numbers 1
through m taking p numbers at a time,
step 4 = Set j to 1,
step 5 -~ For every ‘lsism set x, equal to 1 if ive Kﬁ .

step 6 -~ Compute B = M.X according to the usual rules for matrix

by vector multiplication,

step 7 =~ For every 1<i<n test if some bi = 0; if so, go to step
10, o

step 8 -Set k to true.

stép 9 - Print X,

° 9

~step 10 -~ Set j to j+1; if 5 5 q go to step 5.
step 11 - If k 1is true stop.

step 12 -~ Set. p to p + 1 and go to step 3.

Indeed bu > 1 iff L 1 (node u is covered ir MISS v)and xv=1
f11sSs v is included in the given combination) for one or more

lgvem , If every bu21 for 1l<usn then all N is covered.

We look for the minimum value of 1<p¢m for which all N
is covered. When this happens we know that p = r (the chromatic

number), and print X , noting that X, = 1 means that MISS i is

included.



The algorithm proceeds up to the end of iteration p = r , thus

trying all combinations in K and printing those that cover all N.
y (x) P

We see that the algorithm yields all M(r)' Tt is not difficult

to use theorem 1 to generate all optimal colorings from the M(r)’

A simpler form of the algorithm consists of replacing multipli-

cation by union, computing B by:
5= u
veKﬁ

where MV is a column of matrix M. Then we look for a combination Kj

giving B = 1n where 1n is a vector of n . onmes.



3. AN INTEGER LINEAR PROGRAMMING FORMULATION

This algorithm determines the chromatic number r and one M(r)

of a graph, assuming that the MISS were previously obtained.

The matrix multiplication scheme in section 2 suggests the

foliowing formulation for the problem: -

Let:
m .
] m,x, 21 ,1<ign
j=1 ]
0<g xj <1 s 1£j<m

be a set of constraints, and
m

x, = minimum

j=1. J

the objective function.

The value of the objective function, which simply counts the
number of MISS in a solution, will be the chromatic number. The subscripts
of the nonzero elements of X will indicate the MISS that are in the solu
tion. Normally the linear programming algorithms will stop as soon as one

optimal solution is reached (meaning that only one M(r) is obtained).

Matrix M does not always satisfy the conditions'(sgg.tld], page
124) that guarantee, when using the simplex method, that an optimum solu-

tion with integer values for X will be reached.



4.

However integer linear programming algorithms are available, and
more specifically algorithms for the so-called set covering problems [}i],

of which this problem is a sub-class.

A BRANCH AND BOUND ALGORITHM

This algorithm determines the chromatic number r and one opti-

mal coloring of a graph, assuming that its MISS were previously obtained.

We shall call Sk’l = (M,V) a state vhere:

M 1is a set of MISS;

"V is a set whose elements Vi are.the number of MISS that cover

node i, in the state.

State S}’l is formed in the preliminary phase when the MISS

are determined (e.go'by the Bron-Kerbosch algorithm).

étep 1-6et k 'and zto 1.

step 2 - Set _2 and w tol.

k,L

Search for a node i with minimum Vi’ .

step 3

k,2

step 4 - Form T with the elements of M covering i, and T with the

k,L

elements of M ’~ mnot covering i; let the cardinality of T be

p and the cardinality of T be q.

step 5 - Set v tol .

< 13,



step 6 - Form M' with:

step 7 = Form M

" step 8 -

step 9 -

step 10 -

-

- , <a‘ o -
F Tv , for all 1< j<q, if ij‘TV # empty.

ae

b. Tj - Tv , for all v+l € j <p .

In other words, M' will contain all the MISS having nodes
in common with the selected MISS Tv , such nodes in common
being removed from them; note from the range of j in item
b that already selected MISS from set T are not consid-
ered. |
k+l,w ,with T, , for all 1< j <gq, if 'E,nrv =
empty. T | !

MISS having no ncdes in common with '1‘V are immediately placed

in the new, state Mk*l’w . Some MISS from M’ may be added

to Mk+1’W ,depending on the outcome of steps 8 and 9.

Consider M" = M'&)Mk+1’w ; let the cardinality of M' be s
and the cardinality of M" be t.

Complete Y Lien Mg , for all 1°¢"j ¢'s , if Mgng;
for all 1 <xs¢t. ‘ |

The symbol '¢*' means 'is not properly contained'; so the
case M'j,= M"x , which of course occurs for all Mé , does
not cause their rejection.

M§CZM;f means that all nodes in. M&- are also covered in M"x,
which has at least one node more.

If the cardinality of VoREL A 1, stop.

e 14 o



step 11 - Compute V

k+l ,w from Mk#l,w

@

- step 12 — Set v to v+l and w to wtl .

If v<$p go to step 6 .

step 13 - Set £ tof+1 .If L2z goto step 3.

step 14 -~ Set z to w-l .

step 15 ~ Set k to k+l and go to step 2.

As in all branch and bound algorithms we do not want to try

all possibilities, which means here to try all combinations of the m
MISS k = 1,2,...,r MISS at a time,

The bound conditions are:

ao

do mot select a MISS T if the remaining MISS in the
state do not enable us to cover one or more.nodes not yet

covered; this justifies steps 3 and 4;,

do not generate more than once the same combination of

MISS, only altering their order of appearance; this is

- the reason for the range of j in item b of step 6;

do not further consider for a sequence-of’MiSS a MISS Mj
such that Mj - 1§§:lgx - Tv 3 seg c@rollary 3 of section
1 and steps 6 through 9; it may be interesting to remark
that I~ik-=ﬁhj""w is the set of MISS of the sub-graph obtained
by removing the nodes in Tv from the set of nodes of
the original graph (or containing sub-graph, if k # 1) ,
and that the M, thus rejected are non-maximal inter -

nally stable sets of the sub-graph.

. lbda .



The algorithm stops (see step nn with card (Mk+1’w) =1 be~
‘cause, from bound condition a, this means that all the nodes not yet
covered can be covered by the single remaining MISS. On the other hand
if card (Mk*l'w) > 1 at least two more MISS have yet to be selected
to see this recall that in every state all MISS are reduced to the

nodes that were not covered so far, and that they are all maximal (MISS

of a sub-graph).

A heuristic criterion that sometimes speeds up the process is
to select the Iv in the decreasing order of their cardinality. In
other words, from the MISS that cover node i choose first the ‘MISS

that covers the largest number of nodes.

Let us consider now an example. Let G be the graph:

. 15,



N oL s W N R

R S S RIS ORI e

-
|

i=1 v M
4 2-2 2 3
7 3-3 2 5 i=6 V M i=2 VvV M
3 5-2 (3_6——>2-1 [2_5—>7-1[7]
5 6-1 3 7 5-2 5 7
6 7-2 5 7 7 -
7
5 v M i=2 v M
6 2 -2 [ b -2
7 3-2 [2_9 5 -
-2 3 6 6 -1
5-2 4 5 v M
6-2 4 6 3 -

We note that:

- a. as opposed to the algorithms in sections 2 and 3, this

algorithm produces one actual optimal coloring, instead of an

M(r) ; in the example the optimal coloring is

¢, = {1, 4} ,{3, 6} , {2, 5} ,{7} :

b. if we go on with iteration k = ¢ some although uot all other
optimal colorings may eventually be produced; in the example

these would be:
c, = {1, 7}, {2, 3}, {4, 5}, {6}
Cy = {1, 7}, {2, 5}, {3, 6} , {4}

. 16 .



5. CONCLUDING REMARKS

A comparison of what the three algorithms do suggest the

following mixed strategy:

a.

use the algorithm of section 3 or the algorithm of section
4 to obtain the chromatic number r and one M(r) or one
optimal coloring; if this is all that is needed in a

given application, stop;

use the algorithm of section 2, but only to generate the
éombinations of m, r at a time (since r has been deter
mined in a); this gives all M ), again one may stop if
this suffices, which may well be the case since the set of

all M(r) indicates all possible optimal colorings;

if all possible optimal colorings in explicit form are re
quired,do all possible assignments ‘described in theorem 1

of section 1 .

The worst problem with algorithms dealing with MISS is that

the number of MISS may grow exponentially thh.n, as it has been shown
for cliques [12]

For example, in a graph with 39 nodes each three of which fom

a triangle, there are 313 MISS. Fortunately we can resort to the par-

titioning (section 1, theorem 2 ) into 13 connected components; this

leaves us with 3 x 13 MISS, noting besides that we shall only handle

3 of them at each time, If testing fbrﬁgraph equality'(or , much worse,



for graph isomorphism) could be done at a reasonable cost we could redu-
ce this to the total of 3 MISS.

Corollary 5 provides a slightly more involved partitioning

scheme, -

A careful management of core storage, by using list structures
and by freeing all parts of them that are no longer needed, is also man-

datory for moderately large and for large graphs.

It is hoped that the representation of the MISS of a graph by
means of an intersection graph will help to investigate more deeply the
coloring problem. The intersection graph of the MISS from the graph of

section 4 is:

M1 = 1 4 MG =3 7

M = 1 7 M =4 5
2 7

M = 2 3 M =4 6
3 8

M = 2 5 M =5 7
b 3

M = 3 6




_ It may be interesting to remark that one of the MISS of this
new graph is formed by the nodes 'M , M s M“ » and another MISS by
M1 s M5 , M 3 on the other hand M ,M ’Mu ’ M9 were the MISS of
the or1g1nal graph that were used 1n the optimal coloring that we ob

tained through the algorithm from section 4 .
In case the MISS in an M(r) are all disjoint then:
a.’M(r)' is already an optimal coloring;

M(r) is one of the MISS of the intersection graph of the
MISS from the original graph.

A second monograph to appear in this series will present

~ the information structures and the PL/I programs to implement the al-
»gorlthms of sections 2 and 4, as well as some measurements of
requlrements and execution times.

core
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