il

Series: Monographs in Computer Science

and Computer Applications
NO 2/72
A TAXONOMIC INFORMATION HANDLING SYSTEM

by

Flavio Pereira de Sousa

Computer Science Department — Rio Datacenter

A TAXONOMIC INFORMATION HANDLING SYSTEM

Flavio Pereira de Sousa

Member of The Applications
Division of Rio Datacenter

PUC/RJ

This paper will be published in the Proceedings of The Congresso
Nacional de Processamento de Dados (Sao Paulo ~ OQutubroc ~ 1971)

Series Editor:;Prof. A, L. Furtado February/1972

ABSTRACT -

This paper consists of a description of an information retrieval
system designed for taxonometrics purposes, but with a reasonably wide range

of applications.

Simple implementation and use characterize this system that can
be used in batch or tele-processing by means of anEnglish-like language and

which grammar and syntax can be quickly learned.

The user can easily update the data banks,which makes the system

totally independent of specialized personnel.

1.

INTRODUCTION

Libraries, schools and other research enviromments are starting
to face the problem of handling large amounts of information eff1c1ent1y

without the use of integrated 1nformat10n retrieval systems.

The design of an efficient system of general use doesn't look
feasible for the near future, s¢ the option has been to use systems that,
although 'not of totaily generalized use, are efficient for a large set of

- applications.

This system has been used with success in areas like biology and
agronomy and can easily be used in other areas llke the partial automatlon

of libraries.

GENERAL CHARACTERISTICS OF THE SYSTEM

This is a subset of the system which was initially devaloped
and programmed at University of Colorado [1] for the CDC 6400, It was
next converted to the IBM 360 model 67 at Washington State University [2],

where it was subject to improvements.

It requires about 200 kbytes to bé compiled and about 70 kbytes

to run the load module.

The data bank can be stored on tape or some faster access sec-~

ondary storage device depending on system use, batch or teleprocessing.

The system has the capability of storing any compatible amount '
of data being the only bound, the size of the secondary storage avail-
able. The fact is due to the philosophy of the system of bringing se-
quentia11y igto core, segments of data from the secondary storage to a

fixed size area in the main core.
Queries to the system may contain boolean operators such as

and, or and not, besides allowing the use of parenthesis as in an a-

rithmetic expression.

SYSTEM STRUCTURE

The data through which the search will be made is stored in a

data bank which will be made up by a set of items. These items are the

units of information, i.e., in some subjects, an item may mean groups,

populations or any other concept being studied.

The item is made up by its identificatioh and of a sequence of
informations that will characterize it. The informations are particular
izations of what is named descriptors. It is by means of the descrip-
tors that we can compare the characteristics of the various items in
the data bank.

For example, we can consider COLOR as a descriptor, in this
case, two items will be similar if they have the same color and dif-

ferent otherwise,

The descriptor is used as a means of comparison, this de-
scriptor will be subject to particularizations and these will be the
&éscriptor states, So if in the previous example, the various colors
will be descriptor states of the descriptor: COLOR, through which

well be able to distinguish the items,

Fig.l - Hierarquical representation of elements of the system

The set of descriptors and descfiptor states will make up the
dictionaries so that the user will be provided with a vocabulary, which
he'll use, along with some keywords expressed in TAXIR grammar and
syntai, to communicate with the system. -

> TAXIR
S/ 360

User)=

o

Dietio
aries E!‘

Fig. 2 - General view of the system

The vocabulary mentioned above is the control vocabulary which

~ will avoid the user's asking the system questions which won't be under-

stood by it.

Through the information in the Accessioner Module, the system
will learn the order in which the data will be input, in which form
it'll be input, i.e., if coded or not and how big is the variety ~of

descriptors expected.

Summarizing the above in BNF we'll have:

<data bank> ::= <item> | <item> <data bank>

<item> ::= <id> » <descriptor state> ,........, <descriptor state> #*

<decriptor> ::= <name> I <name®> <descriptor>

<descriptor state> ::= <code> | <name> l'bf[,yNKNOWN

<control vocabulary> ::= <descriptor> <descriptor state> ,...c.ccse.
| +eeeey <descriptor> <descriptor state>

<id> ::= <unsigned integer> _

<code> ::= <letter string> | <unsigned integer>

<unsigned integer> ::= <digit>l <unsigned integer> <digit>

<name> ::= <letter> | <name> <letter> | <pame> <digit>

<letter string> ::= <letter> | <letter string> <letter>

<letter> ::= A |B |....ciu.nna.]z

<digit »::= 0]1]2]9

a. The TAXIR language
The basic commands are:

I, ID: It's the command through which the user identifies the data bank
in use, The comments included in the identification will be asso-
ciated with each answer received from the system.

format:

ID: Any comments

For instance we can include in the comments, creation date of

the data baﬁk, where it was created, who created it, etc....

II. Accessioner Module Statement:

This statement allows the user to inform the Accessioner Mod-
ule in which way the data will be structured. Names which will be
used as descriptors and ordinality of the descriptor in the set of

descriptors, will be learned by this module.

Format:

ACCESSIONER MODULE: descriptor (sequence number,type,

exponent), descriptor (c.ocoee.co),

Where sequence number will indicate the relative position of

the descriptor, its ordinality in the'setbof descriptors of the

items included in the data bank.

Type will indicate the way the descriptor states will be
input, if by means of a name, a code or a combination of both.(NAME,
CODE, BOTH).

The power of two obtained through the specified exponent ,will
indicate the area to be reserved for the corresponding descriptor

states, i.e., if one expects a total of five states for a given

3 s+ 3 will be the selected

descriptor, then, as 22 <5<2
' th

exponent, For instance if the descriptor COLOR is the 9
descriptor and one expects a variety of 10 colors and the

descriptor states are described by names we'll have:

. ACCESSIONER MODULE: .c¢s00. , COLOR(9,NAME,4),.0000.
because 23 <10¢< 24,';here'11 be room for 16 different
states of the descriptor: COLOR. This '"room" will correspond

to rows of the binary matrix to be described later.

DEFINE ITEM: This command presents the data bank to the sys-
tem and associates an item to the descriptor states related
to it.

format:

DEFINE ITEM

§d, ds, ds, S, seeesesee. , ds* (up to 44 ds's in
the present imple
mentation)

where ds stands for descriptor state.

For example:

002521, ABC, 1960, GN*
013342, XYZ, PRESENT, BU*

IV .

Where the first number is an identification, the names that
follow are different states of a descri?tor that could for instance
be variety names of specimens. The years, 1960 and Present could be
congsidered the years the specimens were collected, represented - in
the case by a code or by a name, so the "BOTH" case. The third de-
scriptor state could be considered a color code where GN would

stand for green and BU for blue,

PRINT CONTROL VOCABULARY:

This command asks the system to provide the user with a

listing of the control vocabulary available.
format
"*""PRINT CONTROL VOCABULARY#*

the answer would have the following format.

‘1. VARIETY NAME (NAME) ‘ (descriptor)

2. YEAR COLLECTED {BOTH) o (descriptor)
1958 |
1960

1961

1962 |

1963 - (descriptor states)
1964 |

1965

1966

1967

1968

=3
- o - -

»

® ® °

S W 0 N O Ut PWwN

i

®

11. 1969

12. 1970 . (descriptor states)
13. PRESENT

3. COLOR : (CODE) - (descriptor)
1. WE '
2.. BL
3. YE {descriptor states)
4., GN
5., BU
6., RD

END:

This command stops the execution of the program or
signifiesthe end of data for the data bank. Its function 1is

determined in ceontext.

format

END#*

In the case where the END command is detected at the
end of a data stream thaﬁ will make up the data bank, tﬁe
system shall verify the presence of other commands eventually
issued by the user . If detected after any other command,

it'll be understood as end of processing.

V. Read Data Bank:

Causes the system to bring to main core a data bank

previously created

format
READ DATA BANK*
or

READ DATA BANK 1* presents to the user the
characteristics of the data bank in use, such as number of

items in it, etCoseoss

It is worth mentioning that this command actually
brings the dictionaries to core.Only after processing and
verifying the valility of the next command to the system,
the data transfer from the data bank in secondary storage
to core, is actually performed, being this process trans-

parent to the user.

VII. WRITE DATA BANK:

Copies to secondary storage, a data bank (or part of

it) created in main core.

format

WRITE DATA BANK#(as in the READ DATA BANK

command, it has the second option).

- 10 -

VIII.

This command not only writes to secondary storage
the updating to the data bank, but also updates the dic-

tionaries.

NUMBER OF DESCRIPTORS :

Informs the system how many descriptors are used

in the description of the data bank.
format:
NO. OF DESCRIPTORS NN#
In our example in iII, we would ﬁave: NO. OF DE-

SCRIPTORS 3%, i.e., the items being considered will be

described through 3 descriptdrs.

b, System's Questioning Language

The queries to the system can be written in two
different ways; in the answer of the type 1 query, only
the identification number of the items which meet the
conditions established in the query will show while the
type 2 query will provide the user with descriptor states
of the descriptors mentioned in the query besides the

identification number of the item.

- 11 -

Type 1 query format:

<Query> ::= QUERY <noise> WITH <descriptor> ,<logical '
expregsion>*
|QUERY <noise> HAVE <descriptor> ,<logical
expressicn>®
<noise> ::= any string of characters not containing WITH,
HAVE , % '
<logical expression> ::= <DS> | <RO> | <DS> 1O <DS>
’ <LE> tO <LE>
<RO> ::i= FROM <DS> TO <DS> | FROM <LE> T0 <LE>
whose <DS> - descriptor state '
<LE> - - logical expression
<LO> - logical operator (AND, OR, NOT)

It should be noticed the '<noise> " is ignored by
system. Its only purpose is to improve the readability of

the query.

Example:

QUERY which specimens HAVE variety name, ABC or
XYZ AND (NOT (year of collection, FROM 1960 to 1970) OR
color, GN)#

where we have:

which specimens: <noise>

variety name...: <descriptor>
ABC OR XYZ AND (NOT (year of collection,FROM 1960 TO
1970) OR color, GN)*,,: . <LE>

- 12 -

where:

year of collection :

FROM 1960 TO 1970 :

color
GN

.

Type 2 Query format:

<QUERY> ::= QUERY <noise>
<descriptor> <LE> % '
QUERY <noise>
HAVE <descriptor> <LE> #%

<descriptor>

< RO >

<descriptor>

<descriptor state>

: <descriptor> FOR <noise> WITH

: <descriptor list> FOR <noise>

<descriptor list> ::= <descriptor> | <descriptor list> ,

Example:

QUERY list :

where we have: .

list

<descriptor>

year of collection, variety name FOR

specimens which HAVE color, YE%

..
.

year of collection,variety name:

specimens which

color
YE

13 -

<noise>
<descriptor list>
<noise> v
<descriptor>

<descriptor state>

C. Errors:

The system has the capability of detecting the
errors made by the user and provide him with meésages
informing the error code. By means of a table the user
can determine the cause of the error and take the . appro
priate action.

4. PHILOSOPHY OF THE SYSTEM:

The system makes use of a series of tables to store the
:descriptor states and indices to the rows of the binary matrix*

which contains the information about the items.

This matrix has in each of its rows, binary information
about the descriptor states; i.e., for a given data bank, one row
of the matrix will have for, instance, information about the year

of items included in the data-bank.

For example, if the year being con31dered is 1960 (a
descrlptor state of the descriptor above mentioned), the row of the
matrix will have a l(one) in the columns corresponding to the items
collected during that year, a zero otherwise. This can be easily

visualized in Fig. 3 below.

* the data-bank is stored in binary matrix form.

- 14 -

1960

1961 ' fol -r

items 1 and 3 were
collected in 1960

1 2 3

Where items 1, and 3 will satisfy the condition, i.e., they were
collected during the year of 1960.

As previously seen, the system learns which are . the
descriptors that will be describing the items in the data bank .
through the Accessioner Module. These descriptors will be kept in a
table that will have pointers to another table which will be filled

with the descriptor states.

- The linking among the tables and the binary matrix (da

ta bank) can be more easily visualized through the Fig. 4 below.

- 15 =

Descriptor

' : States L L
Descriptors - o Binary Matrix - -
1 | : pR—— (Dgl)l] e . - - ’ i T vy ,‘ ' @
N W ML’* OS2 s o /
‘ (05103 |s o
29 e S e SN =]
3. D3 : \ R ',,1
T B
Pointer to the N _"
_ descriptor state — litems — o —— 3
1 TR T bit
tabl? : *//kow ind1c;? =

to the blnary
matrix

F1gq 4 - anklng among the tables and matrix

When a query is lssued to the system, the process;ng of
such query will convert it to polish notation and by usxng a push
down stack (PDS), the descriptor states will be then transformed in
row indices of the bimary matrix after the searches are perfqrmedun_

the dictionaries. ’ ' '

In the type 1 query, where the descrlptor states whichv
will charagterize the item listed in the answer are . anluded, a
table laok-up on the descrlptor state table, will provide the row

index to the binary matrix which contains the information about the '

Statep

16 -

For the type 2 query, in initial look-up must be made on
the descriptor table. Next, a sequential search on the descriptor
state table is made to get the row indices of the binary matrix. In
this case, the table indices must be saved until the end of the
search, so that the states related to the selected items . can be

retrieved later.

After the row indices to the binary matrix are obtained,
logical operations such as AND, OR and NOT are performed among these
lines according to the contents of the PDS where the query previously '

processed is kept.
The items selected after performing the operations men-

tioned, are kept in a binary form,in an extra row of the binary

matrix which will be swept later for obtaining the final answer.

- 17 -

5. GENERAL FLOWCHART OF THE SYSTEM

Initialization
of work ares
etc"..

y

Read
Input

Read

/D
ommand? >———pm—msy

C

Data Bank
ommand

Read Die~
tionaries

Red Next
<::::}ma»ﬁ- ----- Command

- 18 -

)

Appropri o
ate Prog; :»Q. w
essing

et

JwError
‘Message

GENERAL FLOWCHART OF THE SYSTEM

Read New
Items

_/

\

// Definition
-

Process
and
Stone

End
of items

Store up-~

tionaries

dated dic~

\?ssi

////ﬁﬁd
of data ba

Processing |

Process

Query

y
Transfer 1
Iblock of the
data bank to

main: core

Ty

Search this
block and savE

indices to th
selected item

!

- 19 -

Print
Answer

6.

DATA BANK UPDATE

The updating of the data bank is achieved through the
DEFINE ITEM statement, in the same way that we create the data bank.
The updating of the dictionaries is performed automatically by the
system, as new items are added to the data bank, i.e.,, new descrip

tor states are included in the descriptor state table.

-"CONCLUSION

We presented some examples for taxonomic applications
for the described system, other applications such as the partial au
tomaton of libraries can be easily achieved [3], considering for
instance: author, title, publisher edition, volume, etC.....,., as
descriptors of items which will be books. As previously mentioned ,
the system in its” present version has capablllty of handling up to
44 descriptors,

The batch mode which characterizes the way the described
system works, leads to a response time, which is dependent not only
on the structure of the system itself but also on the computing sys
tem load and the level of priority assigned.tovfhese types of jobs.

This system is implemented in various uhiversities in
the United States and countrles like Israel, Italy and Germany have
shown interest in the 1mp1ementat10n of the system in thezr univer-

gities,

-20 -

BIBLTIOGRAPHY

51. Rodgers, D. J.; Brill, Bob; Esterbrook, George — TAXIR - Taximetrics
laboratory - University of Colorado (*), 1968

2. Konzak, C. F.; Walden, W. E.; Souza, F.P. - Problems andfPtogreSs in
the Management of Information on Genetic Resources - in print.

3. Dutton, R.; Massara, M.; Walden, W, E. -~ TAXIR, an information Retr#g
val Program - Time Slicer - Washington State University, V.3, N.4 -
September, 1969 ’

(*) Potential users of this system are suggested to consult the Taxi-
metrics Laboratory about the data analysis.)

