Series: Monographs in Computer Science

and Computer Applications

NQ 4/72

A CANONICAL FORM FOR MINIMUM STATE
FINITE STATE AUTOMATA

by

" A. L. Furtado

Computer Science Department - Rio Datacenter

Pontificia Universidade Catodlica do Rio .de Janeiro
Rua Marqués de Sao Vicente, 209 — ZC-20
Rio de Janeiro — Brasil

A CANONICAL FORM FOR MINIMUM STATE FINITE STATE AUTOMATA

A. L. Furtado
Associate Professor
Computer Science Department

PUC/RJ

Series Editor: Prof. A. L. Furtado - August/1972

ACKNOWLEDGMENT

We thank Prof. M. Millan for helpful discussions

and for carefully revising the manuscript,

ABSTRACT

A well-known algorithm exists for obtaining from a finite
state automaton (fsa) accepting a set L the correspdnding minumum

state fsa, which is unique up to an isomorphism (see [1], pége 29)

The algorithm is indicated in [2] [4], and a thorough and

detailed description is given in Eﬂ

‘ ~ If the algorithm is applied to two fsa M and M' the two
resulting minimum state fsa should be isomorphic whenever M and M'

are equivalent, in the sense of accepting the same L.

However the t1me requ1rement for testing for isomorphism.

is given by 0 (n!), n being the number ‘of states in the minimum state

machines.

A simple addition to the basic minimization algorithm is
presented, whereby the minimum state machines will be equal rather
than just isomorphic. Testlng for equality is performed in linear

time,

The modified algorithm yields a canonical form for all

fsa accepting a given L,

The key idea-lexicographic ordering - has been suggested

by [€].

1. NOTATION®

An fsa is
M= (K, I,
where;
kK =
z -
§ -
qO -
F -

- mapping of K x I into K, defined.by G(qi , a) = q.3

given by:

4, qu F)

t

/

~ finite nonempty set of states; an element of K will

be represented by a subscripted q3
finite input alphabet; an element of I will be re -

presented by an a bearing a subscript whenever its

corresponding. column in some array should be stressed;

J

initial state;

set of final states (subset of K).

The mapping § can be represented by means of a tramsition @a -

trix, say A, where if G(qi R aj)iﬁ q; then aij =q.

In the minimum fsa the states of the original fsa are grouped‘

into equivalenae classes; they will be denoted by a subscripted Q, or

by a subscripted q inside square brackets indicating some chosen repre-

sentative of the equivalence class. The set of final states will be

written as F,

The algorithm involves an initial partition of the set of
states into two blocks; and successive refinements. At a general stage

k=0, 1, ... we use H(k) to indicate the current partition and B

to denote the rth block at that stage.

2, THE ALGORITHM

The algorithm is described in a PL/I - like notation:

minim: PROCEDURE;
CALL init;
DO WHILE (refinement);
DO FOR.EVERY block;
IF card (block) > 1
THEN CALL sort;
END;
CALL renum;
END;
CALL autmin;

END minim;

The input to the algorithm consists of the transition matrix,

and the specification of the initial state and of the final states.

Procedure init initializes work-matrix T, using the following

criterion;

(0)
1

a. a state will be assigned a line in block B of matrix T

if it is a final state; otherwise the state will be assigned

a line in block Béo);

-2 -

b. tij = 1 if for the state qp assigned to line i we have
§(qp , gj) = Q. where q is a flnal state; otherwise

'tij = 2,
Procedure sort is called for each block of matrix T, if the
number of lines in the block is greater than 1, It sorts the lines in

ascending lexicographic order.,

Procedure renum checks whether all lines in each block are
identical. If they are not it splits the block into two or more blocks;
doing this for every block, it renumbers the possibly increased set of

_ blocks and updates accordingly the tij'

The renumbering follows exactly the ascending lexicographic
order imposed by the sort procedure, the first block being numbered as
Bfk), the second Bék), etc., at a general step k = 0,1, If q; is
(k)

assigned to line p and 8(q; » aj) € B,

, then t, =1,
ip

It is easy to see that renum performs the refinement process.

In accordance with the usual refinement process renum puts two states

. (k) :ce.
qi.agd.qj in a same block Bu iff:
(k-1) (k-1))
a. q; € Bs and qj € Bs , for some r;
b. 6(qi , a) € Bék—l) and G(qj , a) € Bék—1> , ¥a ¢ I and
a a

some t_.
a

Procedure autmin builds the transition matrix of the minimun
state automaton from matrix T. It also indicates, with respect to this
minimum f£sa, which is the initial state and how many the final states
are (it turns out that the final states will be the ones with lowest
subscript, this being the reason why it suffices to indicate their

number).

The output of autmin is the output of minim itself.’

3. AN EXAMPLE

We show how minim works by means of an example. Some remarks

presented while showing the example will be formalized in section 4.

Let M = (K, Z, §, qps F) be an fsa with transition_matrix:

! 2 3

91 % 49 45

921 9 92 4y

93 | 99 9 15

9 q# 99 9

A= g5 | g4 4 3
q qé q, q

9 | % 49 dg

9. | 9 %% 47

a dl 9, q,

and F = {q;, 43, 955 975 g }

99 = 95

Let M' = (K', I, 63, qé, F') be another fsa with transition

matrix:
! 2) 23
qj q,° q,° 4!
LI L TR P A2
A' = 93 LA 3 q'
qz qlﬁ qsa Q4'
1 q,' 45" q,'

Each step of minim as applied to M and M' is shown below:

M) a, a, a4 ey az‘ a4 a2y a,
q1221 ‘q1.221 q13'31

d3 2 2“ 1 q, 2 2 1 45 3 3 ‘1

oM es| 22t 1l 2 21 Ljes)3 3 1
init Qé ? 2 1 sort ‘&"m% ? 1 renum q7 3 3 ;5;
gl 2 2 1 9.2 2 1 gl 3.3 .1

1 2 1 lao| 1 2 1 2 lg,[17 2 1]

2 9y 1 2. 2 2 "q4 1 2 2 q,| 1 3 3

lag| 3 2 2 %t 2 2 3% 2 3
w2z | w1t 2 2 | _jufr 3

‘ a
F a ‘a, a, a, a
e B Bl q41421 [3 & 1
ql 3 3 1 1 . . q7 5 X |
B - 4 1 1lq |4 4 1
s 3 . O s sort qq| 4 4 1
sort q7 ? 3 i renum q7- : 1’ : i : .
%8 3 ’ dg _ — :
1+ 2 ' 2 1 2 |q,|1 2
2 g 1 2 1 2 |9 1 2]
| 1 3 1 2 3 3 g1 2 3
9g| 1 g
; | | * 4
3 fq, !t g, T a1
) 1 Yo ! g 1
& a a 31 32 3.3
5 %, Q Q
af 4 5 2 Q1Y% 0% O
1 |q 2 autmin, Q| Q5 Q5 @
4| 3 ! qlQ o g
ag| 5~ 1
i I G- 10,09
4 q6 2 3 4 QO.’ Ql
3 |9
a, a
3 3 3 1 %2 % 1 2
' v i3
" H 1 1 2 1 1 {4
,) '
: ' '1'2 2 1] renum 9,
A' init q:; 1| sort q3v_ ™
— 3 — . EE— '
g 2 aff1 2 1 2 |a
2
’ q, 2 a1 2 2 3 |4
| ! 2 2 ,
b 1 1| 1 q

1 a2 8.3 al Vaz a3 al 8.2 8.3
n) 3 1 1 q _4i i1 . a3[3 & 1
fore,| |a5)3 3 lremm | |aj| 3 4 llsore| lgjj 4 4 1
2 qg 1 2 1 2 qg 1 2 1 2 qé 1 2 1
131 2 3 3lggl1 2 3 3lagl1 2 3
ay/ 1 3 3 4 lgh| T 4 4 41yl 1 4 4
| ‘?1 3 a3 i U
B N R T
renum |2 di 5 5 1 autmin QE‘MQE QW Q
I ERCH I S N B i 3yl oy ey Q)
blayl 2 3 4 Q| Q) Qg ‘.Q;
50ay| 2 5 5 Qf Q Q Qg

EARRCHIS

Q) = ¢

A comparison of what happens to M and M' shows that:

1. the output of minim is the same in both cases;

2. the blocks of the matrices T(k) and T'(k) have a different
number of lines; ' T

3. however, just after init, the classes of distict lines of
each of -the two blocks are the same, althougﬁ they do not

necessarily dppear in the same order;

4, again,‘at a general stage k:

W® Ly &

a. after renum, matrices T and have equal classes
of lines in each block, except for a permutation of the
lines; '

b. after sort, matrices T(k) and T'(k) still have equal
classes of lines in each block, and they come in the

‘same (lexicographic, ascending) order.

We shall see in the next section that this happens if and

only if M and M' are equivalent.

In the example M is not minimal and minim performs the double
task of reducing it to a minimal fsa, this minimal machine being given
in a canonical form. Since M' is already minimal, minim merely performs

a reordering process which as before gives a canonical form as output.

4, THEORETICAL CONSIDERATIONS

"Let M(M) and M(M') be the minimum state fsa corresponding to
the £sa M and M'.

There is an isomorphism (see [i]» page29), between K
and K' defined by:

0: [qij - [‘I'jj

Since © is an fsa isomorphism, it must take final states

into final states and the initial state into the initial state:

Lo (G - B0 = Dede i Carde
2. ® (Eq.oj)'n‘ E{'Oj

Smce © is also a labelled dlgraph 1somorphlsm it must

preserve the adJacency relation:

30 (e = 0= vacz o0 (B ([o, D -
Lo ooy o7 = D3Ca'y] Ll

From (3) and (1) we have:

4, 0 (qu) = [q" j-» ¥Vael, DS (Eq :l, a_l 3‘ 1ff
E'(l:q] aﬁef‘;" |

One notational point deserves explanation:

In the minimal state fs'a[. we have:
¥ a eI, (l'_'qi'_], a) = Ej;l

Now consider any such Eq :I which is a state in the
minimal fsa The fact that add1t10na1 (trivial) refinements to the

mlm.mal £sa can nelther split nor fuse nodes. so as to change I:_—q a:l

can be indicated by writing:

Co,0 = CLoy, 30 = o = Cove Dy, T -
where [[qja:lj""’ E. qua:] :] are states in the

(trivially) successively minimized fsa's, obtained from qua:] .

This means that adding an arbitrary number of matching

], and hence to § ([:qi:], a) is simply

square. brackets to qua—-

a permissible notational change.

In particular it justifies our writing

[_5 (Eqi]» a)_|

as a state in the minimal fsa in (3) and (4).

We show that if the minim algorithm is applied to (M) and

' (2) 2)

M(M') the resulting matrices T(l)and T will be the same at each II

Consider all pairs (Eqi:], Eq‘jj) such that © (I:q;_]) =

Cat; 1.

j

In II(O):

[qij € B{O) iff]:q'j] € Bi(o) , by (1)
Vacel EG ([:[1 (0) i
> (g i a)| € B, iff

CoCayds 00 e 5P L oy @

- 10 -

Hence the equality, up to a permutation of lines, of block

30 ¢ 5 ©) o 5 ©

1 » and of B, ', to By . The sort routine will change

. this to strict equality, and thus T(-o)- =-T! ©

),

Assume that in I
Vaesz, [6 (o, al e Bg: iff

')
Co o'y, ol e 7y

and cqnseciuently? +after applying sort, T(k) =T! (k)‘._,ﬁ-
I[(k+1) ; t:he appllcatlon of renum will give:

5. I-__q;] € Békﬂ) iff Eq'j] € Bt':(kﬂ), by the induction hypothesis

6. Vaez [6 (qu,a:] £ Br(1k+1> ‘iffv

a. .

Cs (l:q , &) e B'(kﬂ) , by (3) and (3)

To understand (6), note that (5) apphes in H(k 1 to all

states qa. q' b such that 6<([:qa:]) = [:q b——-l’ But by (3), © holds

- 11 -

in particular between all [:6 ([:qi:], ai:] and [:§v([:q'j:], af:],
¥acel.

So again all blocks are equal up to a permutation of lines,

(1) _ 00 (k#1)

which is performed by sort. We conclude that T , com —

pleting the proof. :

We~gee that YA (M) and M(M') being isomorphic implies that,

after applying minim:

- Y T_"’ T';
b. the initial state will be the same (see (2));

c. the final states will be the same (see (1)) ;

since the foregoing.argument shows that states between which 6 holds
will always be in blocks with the same subscript, and at the end of

the process the final subscripts are used to rename the states.

On the other hand if two fsa Ml and M2 satisfy a, b, ¢ they

certainly are the same fsa.

Until now we considered the application of minim to minimum

state fsa. However we note that if 95 5 +er 5 4q; € [:hi:] they
1 P .

will always stay in the same block at each partition n(”) and they
will correspond to identical lines in T(z) (otherwise the minimiza-
tion process will put them in different blocks and they would never
be put in the same state in the minimum state fsa); so they can be
treated as a single state [:3;:].

- 12 -

This means that minin can be applied to any fsa, minimal
or not.

The following summarizes the above discussion:
Theorem: two fsa M and M' are equivalent ~ iff after
applying minim to M and M' assertions a, b, and

¢ hold.

Corollary: minim provides a canonical form to all fsa
which accept the same regular set.

5. IMPLEMENTATION

A program to implement the algorithm is developed from
its description in a straightforwérd way.

It is easy to check that, if n is the number of states
in the given fsa, both init and renum will take O(n) time.

Procedure sort uses the shell SOrt method
[:5:], which is known to take O(n log n) time.

The DO WHILE loop in the worst case will be executed
n-~2 times, which corresponds to n-2 refinements. So the loop will
total (including sort and renum) O((n-2)(n + n log n)) = O(nz‘log’n),

this being the dominating time requirement of the algorithm.

Letting t = ## I, storage requirements include the n x t
transition matrix, a bit-string of length n having non-zero elements

- 13 -

iq_the positions corresponding to the subsc:ipts of the final states,
a work-matrix T with n lines and t + 1 columns (the additional column
indicates in what block is the state whose.éubscript corresponds to a
given line); an n auxiliary array represénting the current order of

the states, and the & x t, £ ¢ n transition matrix of the minimal

fsa.

The sort procedure does not actually exchange the lines of
the work~matrix. We preferred the usual indirect sorting technique

using the auxiliary array.

The total storage is therefore n.t +n' +n.(t+1) +n+
%.t, where n' is the number of words required to store a bit-string

of lenght n.

Clearly the storage requirements are linear on the number

of states.

- 14 =

APPENDIX»_E

PROGRAM LISTING

- 15 =

TEST:PROC OPTIONS (MAIN);

DCL (M,N)BIN FIXED;

GET LIST(M,N);

BEGIN;
DCL (T(M,N),P) BIN FIXED;
DCL F(M) BIT(I),
'DCL SFS BIN FIXED;
DCL (IS,SIS) BIN FIXED;
DCL Z(M,N) BIN FIXED;
DCL (I,J) BIN FIXED;
GET LIST(T F,IS) ;
CALL MINIM(T F,IS,M,N,Z,P,SIS;SFS);
PUT SKIP EDIT('#STATES - ,P,'INITIAL STATE = ',SIS,

*¥FINAL STATES = *,SFS)

(A(10),F(3),X(5), A(16),F(3) ,X(5),A(16) ,F(3));

PUT SKIP(2) EDIT('TRANSITION MATRIX = ') (A(ZO));
PUT SKIP EDIT(((Z(1,J) DO J=1 TO N) DO I=1 TO P))
(COLUMN(1), (N)F(4));
: END; i i
MINIM:PROCKT,F,IS,M,N,Z,P srs,szs),
DCL (T (*, *) 2) BIN FIXED;
DCL'F(*)'BIT(l);
DCL SFS BIN FIXED;
. DCL(IS;SIS) BIN FIXED;
DCL Z(*,*) BIN FIXED;
DCL.A(M,N+1) BIN FIXED;
.. DCL .B{M) BIN FIXED;
DCL (LjK) BIN FIXED; -
DCL CHANGE BIT(1) INIT(IEB)*“
DCL LESS ENTRY (BIN FIXED,BIN FIXED) RETURNS(BIT(1));
CALL INIT ;
DO WHILE (CHANGE);
CHANGE-'O'B'

%,o WHILE(L < M);

: DO K=L BY 1 WHILE(A(B(L) 1) = A(B(K) 1));
END;
K=K-1;
IF K> L
THEN CALL SORT;
L=K+1;

. CALL RENUM;

END;: © .

CALL AUTMIN;

/% AUXILIARY PROCEDURES */

INIT:PROC ;

DCL I BIN FIXED;
‘BEL J BIN FIXED INIT(OB),
DO I=1 TO M;

IF F(I)

THEN DO;

. J=J+1;
A(I,1)=1;
B(J)=1;
END;

™ 16- .

END;
DO I=1 BY 1 WHILE(J<M);
IF = F(I).
THEN DO;
J=J+1;
A(I,1)=2;
B(J)=I;
" END;
END;
DO I=1 TC M;
"~ DO J=1 TO N;
A(I,3+1)=A(T(1,J),1);
END ; ‘
END;
END INIT;
RENUM:PROC;
DCL (I,J) BIN FIXED;
DCL K BIN FIXED INIT(1B) ;
DCL TEMP BIN FIXED INIT{1B) ;
A(B(1),1)=1;
DO I=2 TO M;
IF TEMP=A(B(I),1) & LESS(B(I~1)) | TEMP<A(B(I),1)
THEN K=K+1;
TEMP=A (B(I),1);
~ A(B(I),1)=K;
END;
IF K > TEMP
THEN CHANGE='1'B;
DO I=1 TO M;
DO J=1 TO N; ‘
A(L,J+1)=A(T(I,J),1);
END;
END;
END RENUM;
SORT:PROC;
DCL (TEMP1,I,J) BIN FIXED;
DCL D BIN FIXED INIT(1B);
DO WHILE(D <= K~L+1);
D=2#%D;
END; ,
DO WHILE('1'B);
D=(D-1)/2;
IF D=0
THEN RETURN;
DO I=L TO K~-D;

J=1;
R:DO;

IF LESS(B(J+D),B(J))

THEN DO;
TEMP1=B(J); -

. B(J)=B(J+D);

B(J+D)=TEMP1;
J=J~-D;
END; .

- 17 -

ELSE GO TO X;
IF J »>= L
THEN GO TO R;
END R;
X:
END;
END;
END SORT; .
LESS:PROC(I,J) RETURNS(BIT(1));
pcL (1,J) BIN FIXED;
DCL K BIN FIXED;
DO K=2 TO N+l;-
IF A(I,K) < A(J,K)
THEN RETURN('1'B);
IF A(I,K) > A(J,K)
THEN RETURN('0'B);
END; _
RETURN('0'B);
END LESS ;
AUTMIN:PROC;
DCL (I,J) BIN FIXED;
P=1; '
DO J=2 TO N+1;
Z(l,J'l)’A(B(l),J);
END;
DO I=2 TO M;
IF A(B(I-1),1) < A(B(I),1)
THEN DO;
P=P+1;
DO J=2 TO N+1;
z(P,J-1)=A(B(1),J);
END;
END;
END;
SIS=A(IS,1);
SFS=1;
DO I=2 TO M WHILE(F(B(I)));
IF A(B(I),1) » A(B(I-1),1)
THEN SFS=SFS+1;
END;
END AUTMIN;
END MINIM;
END TEST

- 18 -

APPENDIX pey

SAMPLE PROBLEM

We give the input and output corresponding to the fsa M
of section 3,

9 3
2 2 5
1 4 4
2 2 5
3 2 2
6 4 3
8 9 6
6 2 8
4 4 7
7 9 7 .
'1'B '0'B '"1'B '0'B '1'B '0'H "1'p '"1'p '0'B
5
b. output

- 19+

: .*¥STATES -

TRANSITION MATRIX =

NN =

Wi W W wuWun

2
1
1
4
5

5

INITIAL STATE =

- 20 =

1

#/FINAL STATES=

2

REFERENCES

[:lj HOPCROFT, J and ULLMAN, D. = "Formal Languages and Their
Relation to Automata" ~ Addison-Wesley, 1969.

EZ:[HARRISON, M. = "Introduction to Switching and Automata Theory"
McGraw-Hill, 1965.

[37] MILLAN, M. and CARVALHO, R. - "On the Construction and
Minimization of Finite State Automata" - technical report -
PUC, 6/1971.

T4_| BIRKHOFF, G, and BARTEE, T. - "Modern Applied Algebra"
McGraw-Hill, 1970.

ES] EERZTISS, A. - '"Data Structuresv - Theory and Practice"
‘Academic Press, 1971, ‘

[:ﬁj CORNEIL, D. ~ "Graph Isomorphism" - Technical report -
University of Toronto, 18/1970.

-21 -

