Series: Monographs in Computer Science

and Computer Applications

NO 5/72

ONE THE USE OF MODELS EMPLOYING BOTH SIMULATION AND ANALYTICAL
SOLUTIONS FOR SCHEDULING COMPUTING CENTERS

by

D. P, Bovet

Computer‘Science Department - Rio Datacenter

‘PO‘n ificia Universidade _Catdl‘.i‘_ca“‘c:iq'.Rviofd'e Janeiro
~ Rua Marqués de Sao Vicente, 209 — ZC-20
.. Rio de Janeiro' — Brasil

ON THE USE OF MODELS EMPLOYING BOTH SIMULATION AND ANALYTICAL

SOLUTION FOR SCHEDULING COMPUTING CENTERS

D.P, BOVET

'Visiting Professor from the
University of Pisa

This paper was published in the Symposium Computer Simulation
Versus Analytical Solutions for Business and Economic Models.

Gothenburg = 28 a 30 August ~ 1972

Series Editor: Prof, A, L. Furtado ‘ September /1972

ABSTRACT

Large scale computipgﬂcgnpgrs are expensive faciligigg
where considerable savings qgh;pgﬂgcpieved through improved
schgdh}ing of operations. Sggé?girgroprietary packages that
use both simulation and analyticél solutions have been develo -
ped to yield optimized schedulings. This paper discusses in
some details several approacheés that have been taken to solve
thls ‘problem and explains the" tradewoff existing between accura
cy ‘of the” ‘results obtained and%costs 1nvolved in setting up the
model.

1. INTRODUCTION

Computer centers are expensive facilities where conside -
rable savings in costs of operation may be achieved through a. better

‘utilization of available resources.

This paper is concerned with the problem of scheduling
‘ productlon jobs over a large period of time (tipically one week or

one. month) for business orlented computer centers.

Production jobe are usually characterized by large
execution3times,bby well known requests for resources (CPU time, core
memory, scratch files, tape drives, etc.) and, eventually, by prefixed
deadllnes for execution (payroll programs to be executed every friday,

etc.).

-

In the early days of computers when jobs were run in a
strlctly sequential way and when no form of multiprogramming was yet
Lntroduced the scheduling problem was a trivial one because each job
executlon could be represented as a non overlappable segment on the

tlme axls.

- Presently, medium or large scale computer systems
include several autonomous processors (tipically CPU and I/0 control-
. lexrs or channels) that are able to execute concurrently several inde-

pendent Jobs or subjobs.

As an example, in a modern multiprogramming system,
job A may be using the CPU while, at the same t1me, job B is using
1/0 controller 1 to transfer data from dlsk 3 and job C is using

1/0 controller 2 to transfer to tape 4.

It should be clear from the ‘previous considerations that,
in order to improve the throughput (average number of jobs processed
per unit of time) of a multiprogrammed system, it is necessary to
execute simultaneously jobs whose requests for resources are as

complementary as possible.

In the ideal case, a CPU-bound job should reside in memory
w1th other disk-bound and prxnter—bound jobs. In practice, however ,
Job composition can vary greatly from time to time and thus the effec—
txve progress rate of a job in a multlprogramm1ng environment depends
not only on the sxngle job characteristics hut also on the character—

istics of other jobs currently under execution.

‘ Having briefly ;eyiewed the main problems associated with
scheduling jobs in multiprogrammed computer centers, the notion of

automatic pre-scheduling is now introduced.

Today the task of pre~schedu11ng jobs on the input file of
the computer is pexformed in most cases by the operator or by the head
of the computer center. This is accomplished manually by examining the
resource requirements of each job and its eventual deadline for execus

tion.

Once the pre—scheduling has been performed, the operating
system of the computer is responsible for the effective scheduling
and attempts on a local scale, that is by scanning a limited portion
of the input queue, to select those jobs whose resourse requirements

are less subject to mutual interference.

_ v Manual pre~scheduling is adequate or even mandatory in all
compute:'centefs where computer load varies impredictably with time
and where the list of jobs to be executed on a given day is known only

the moment jobs are picked up by the operator to be read in.

In many business oriented computer centers, however, the

y great maJorlty of jobs are productlon jobs whose frequency of execu-
tion and ‘duration are known a prlorx. In such cases, manual pre-schedul-
ing has;been advantageously 1ntegrated if not replaced by automatic
‘pre-schedullng techniques that y1e1d a time table over an extended

perxod of time of the Jobs initiation times.

.. Ruling out, for obvious reasons of cost, experimentation
on computer systems. of several possxble pre~schedulings, all existing
automatlc pre—schedulxng techniques are based on the use of models of
both the jobs to be executed and of the computer system upon which)

theseijopsqvill be executed.

As a consequence,. automatic pre*schedulera include both a
scheduling algorithm (SA) and an avaluatlon algorithm (EA). The sched-
uling algorzthm is based on heurlstlc ‘techniques to yleld at a reduced
cost a, suboptxmal pre—schedullng of jobs: in order to apply it, an
evaluatlon algorithm is used!that measures the effectzve progress rate
of the various jobs simultaneously:executed on the computer system.
During the exeoutzon of the SA the EA signals perzodxcally the na-
mes of those Jobs whose (sxmulated) execution is terminated and new
job 1n1t1atxon times are 1nserted by the SA in the time table entries.

Assumxng that a sultable evaluation model is available, the
SA of a pre-scheduler is based on those operation research techniques
developed to solve packing problems (1): the algorithm may be a single

pass or a multipass one and it must include some heuristic rules to
select from the many possible sequences of "jobs a sequence that satisfies
the initial constraints and thus optimizes some objective function

like the global execution time or the_remaining computer idle time.

A different situation exists with respect to EA where

both simulation and analytical models have been successfully used.

.. The following sections of'this-péper dicuss alternative
approaches used in the de31gn of EA's° Special emphasis is given in
section 4 to a mixed approach that uses both simulation and analytical

techniques.

2. EA'; BASED ON SIMULATION TECHNIQUES

Simulation techniques héve been used to develop both gene-

ral purpose (2) and specialized models (3) of computer systems.

IBM's CSS for example models application programs through
alternances of pseudoinstructions requiring CPU time and other pseu=
doinstructions requiring the use of I/0 channels and peripheral devices

(see fig. 1)

"label 1 | ‘prbcess 30

write file 1
read file 2
process 50
| wait
process 75
send file 3
vreturn

(fig. 1) "A Detailed Model of Application Program"

.- 4 -

. The simulation of each pseudoxnstructlon requires in gene-
ral several dlstlnct events to model the operating systems interactions

and the occurrence of I/O interrupts.

CSS like other computer simulators aims at an accuracy of
the model rather than at a reduced cost both in.terms of development
and use. For that reason, these models are more appropriate as tools
to predict the effects of software or hardware modifications in a com-
puter system than as Evaluation Algorithm for automatic pre-schedulers,

3. EA's BASED ON ANALYTICAL TECHNIQUES

‘ Simple analytical models have been developed to measure
the effective overlapping capabilities between I/0 and CPU of a

computer system with respect to a single program.

Auerbach's reports (4) for instance use a rough technique
to determine the total execution time of benchmark programs based on
the CPU instruction timings and on the execution times of the I/0 rou-
tines. Total execution time is then\deﬁgrﬁiﬁed as the maximal between

CPU and I/0 operations execution times.
A more detailed treatment of this problem can be found in (5).

No satisfactory analytlcal technlque has been deveIOped for

measurlng the execution time of programs in a multiprogramming environment.

An exception is constituted by time sharing systems where
users require limited amount of CPU time and where most I/0 activity
is limited to page swapping between &aiﬂ and secondary storage., In
such cases, keeping also into accoun@rtﬁeﬂ%onsiderable delays involved
in data transmission and the frequent updating comnands used by time
sharing users, it is possible to model users' interactions with the
system with few random variables tepreaentiug the interarrival rate
of commands and the number of quantum of time required and to derive
the global response time of the system for a given traffic. A com=
#rehenaive review of analytical time sh&ting models is found in (6).

t

4, EA'

8 BASED ON SIMULATION AND ANALYTICAL TECHNIQUES

In recent years, coﬁeidergble‘aptentian has been paid to
mixed EA's using both simulation and analytical techniques that allow
the determination of throughput of a multiﬁrogrammed computer system
for a given program load.

Unfortunately, these EA's are imbedded in proprietary pro=
grams of software companies and the available documentation is rather

succinct.

In this section an approach similar to the one used by
SCERT (3) is outlined.

A first simplification made by SCERT and by other similar
gechniques consists of modelling application programs through two dis-
tinct sets of values: CPU requireménts and I/0 requirements. CPU
requirement expressed in seconds may be obtained, knowing the ins -
truction execution times for a given bPU, by estimating the number and

- 6 -

the type of CPU instructions corresponding to a program execution.
Similarly, I/0 requirements are obtained by describing the number of
records accessed for each file. Secondary storage access time and
éupervisor overhead are then added separately to the pure data trans—
mission time to derive the total time sbeht in accessing each distinet
file. Finally, using a technique similar to the ones illustrated in
section 3, the total execution time of a program in a uniprogramming
environment is derived. Simulation gf_:uds in multiprogramming
proceeds according to the following fulesk during the simulation of
an operating interval (e.g. an 8 - hour éhift), a critical path list
is built of all application programsfthat are condidates for execution

during that interval.

Each application program 1s descrlbed as a partially orde-

red set of Jobs and each job is executed as a sequence of steps.

The critical path list which is;constantly updated during
the simulation contains ‘the names of all the jobs which remain to be
executed in order to terminate-the corresponding application programs.
Each job in the list is characterized by an earliest starting time ,
that is the earliest time at which a11 Jobs preceding it have been

completed and a latest starting time , that is, the latest time before
which it is possxble to execute the Job and all its successors and still

terminate the execution of the applicatlon program before the deadline

established by the user.

Besides deadline constraints, jobs are ranked by priority
and time of arrival. Each time a new job enters the system, it is
inserted in the queue of jobs waiting for schedullng and a new job
schedulxng is attempted .according to the procedure illustrated in

fig., 2.

"beginning of job"A;>

i
H

i
i

v

Insert new job
into according
to priority

**4 "end of jdb")

= > —t Wait until next
Queue of jobs waiting Yes W o e RT
for scneduling empty? beginning of job

No
— A4
New steps + §
v,
- K +1

No

y

Apply scheduling algorithm

to the K=th job in the queue

N

Is the K-th job in the queue
accepted by the scheduling
algorithm?

1. Yes
\/

|new steps -+ newistepéu
U(first step of K~th
job),

event

No

Is K > number of jobs in the
queue?

Yes

v

| Post "begin slice" event at

current time

“QLV

Wait until next "end of job"
or'beginning of job" event

*ACTIVITY SCANNING THE QUEUE OF JOBS WAITING FOR SCHEDULING"

FIGURE 2

-8 -

The scheduling algorithm itself that decides whether a
given Job will pass the job scheduling test performs the following

ver;f1cat1ons on the job:

= are they too many jobs already scheduled (some systens
have an active job list of finite size)?

~ have all predecessors of that job already been executed?

= is it possible to run that job and all its successors

within the given operating interval?
- has the latest starting time of the job been reached?

= will be introduction of that job produce interference

with others previously scheduled jobs so that one or

v more of them could become critical (there is a ﬁoésiw

- bility that they won't terminate before the end of the

operating interval)?

If a job passes successfully the job scheduling test,

it becomes active and starts competing for the resources of the system.

The execution of steps corresponding to a given job. is
illustrated in fig. 3. For reasons of simplicity, dlscrete sxmulatzon
techniques are not used and an analytical formula is used to determine

the degradation factor of each active run during a given time slice.

The basic idea underlying the degradation factor conééﬁt“
is the following: if run 311 requires 2200 msec of execution time, 1n
uniprogramming, run 321 requires 1500 msec, and run 331 requires. 1300
msec, then the simultaneous execution of 311, 321, and 331 in a mul:lh

-9 -

'"Begin slicd'

Computer remaining uniprogramming
execution times of currently
active steps

{{ "end slice"

| new steps+ § |
»
K% 0

RN

Add new steps to currently

active steps

Determine the degradatlon
factor of all act;ve steps

J{.

Determine the termination times
of all active steps using the
corresponding degradation factors.

Call t'the smallest of such times

I

Define old stegs as the set of
-steps terminating at to,e t'

+

SO

K+«K+1

Is K = number of elements in
old stegs?

No

A

(Is the K~th element of old steps)

e ——————y—,

the last step of job j?

LYes

Post "end of job" event
for job j at current time No

!

v
nev steps <+ new steps U (successor
step of K-th element)

| Remove K-th element of
old steps from avtive steps

Post 'end slice" event at time t'

v

Post '"begin slice" event at

Walt until next "begin slice" or
"end slice" event

"ACTIVITY

current time

DETERMINING THE TIME SLICES DURATIONS"

FIGURE 3
=10 =

prog;am@ing environment can be estimated during the first time slice
of 2730 msec by stating that due ﬁo the Hardware and-softwafe éharacﬁ
terlstics of the system considered and to the competition for the same
reaoutces, 311 will have a degradation factor of 2.5, 321 a degradation
factor of 2.9, and 331 one of 2.1, In other words, during the f1rst
2730/2 5 of its total run time of 2300 msec and the remainlng unlprow
grammlng execution time after the first slice is equal to'

2300 - 2730 / 2.5 = 1108 msec.

The algorithm to compute’ the degradatlon factor is probe~

bly. the most dellcate and most confidential part of EA's, although it

1s ‘not hard to imagine some of the pr;nc1p1es underlylng its structure.

-1l =

5. CONCLUSIONS

‘The internal structure of automatic pre~schedulers has
Been_briefly discussed in the previous sections. It appears at the
present time that a mixed approach that uses both simulation .and
analytical solutions is the only feasible one when dealing with complex

- multiprogrammed computer systems.

Experience deriving from using automatic prewschedulers
has ‘already yielded some interesting conclusions: predictions ob -
‘tained by using the model differ from 107 to 207 with respect to.
actual execution times for typical batch operations and the execum

tion time of the model itself has been kept at a reasonable level.

New problems aré actually coming to the surface with
the introduction of commercial re#l time multiprogramming systems:
in such cases the approach outlined has been proved to be inaccurate
and relatively expensive due to the larger number of evenﬁs-to be
simulated and other techniques will have to be fgund to deal wiﬁh

- these new problems.

- 12 -

REFERENCES

€Y

)

(3)

(4)

&)

(6)

A. R, Brown - "Oprimun Packing and Depletion"

Mc Donald/American Elsevier Computer Monographs 1971

0. J. Dahl -~ '"Discrete Event Simulation Languages"

Programming Languages p. 349-395, F. Genuys editor, Academic
Press 1968.

J. Le Foll - "Problémes d'evaluation des systEmes: la méthode

PRESTE" , METRA, n? 1 p. 27-55, 1971.

Auerbach INFO, Inc. - Standard EDP Reports, Vol. 1.

H, Hellerman, H. J. Smith, Jr ~ "Throughput Analysis of Some

"

Idealized Input, Output, and Compute Overlap Configurations
Computing Surveys, vol. 2 n? 2, p. 111-118, 1970.

’

J. M. Mc Kinney - "A Survey of Analytical Time~Sharing Models"

Computing Surveys, vol. 1, n? 2 p. 105=116, 1969

- 13 =

