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ABSTRACT

~ The Kromecker sum and Kronecker product of graphs
‘are defined. For the class of complete graphs. Km’ on m vertices,
a primal factorization is obtained in terms of the Kronecker sum

and product of prime complete graphs, Kp, p a prime,



I. INTRODUCTION

' Complete graphs play a special role in Graph Theory in that
their structure helps to characterize important properties of graphs '
which are not necessarily complete. For example, Zykov [[17] calculates
the chromatic polynomial of a graph as the Sum of the chromatic polynomials
assoclated w1th complete graphs. Kuratowski's Theorem [:Zt] states that
a graph is planar if and only if’ it has no subgraph homeomorphic to K5 or
K(3, 3).

The motivation for this study is based on the author's research
into the multilinear structures which abound in Algebraic Systems Theory.
An important property of these structures is. that they admit a canonical
"factorization” in terms of the tensor product map [ 3] followed by a
linear map. Examples of this decomposition occur in Systems Theory [:4:],
the finite Fourier‘Transfdrm [:5:], and Image Processing [ 6_].

The tensor product cah be used to decompose multilinear
structures as well as to create new ones. In our study we will factor
complete graphs by means of the tensor product. The tensor product
of graphs has appeared in the literature, and Weichsel [[7], Mc Andrew
[87], and Haréry.and Trauth [ 9 | have studied their conmnectedness
properties. Our objective is to factor complete graphs into simpler, prime

factors,

We begin by presenting basic definitions and well known
results which will be uséful in the sequel . Italicized definitions‘can

be found in Harary [ 10 |, while more important notions will be numbered.

An undirected graph G = (V, E) consists of a finite
nonempty set of vertices, V, together with a possibly empty set of edges,

E, consisting of unordered pairs of vertices.



Two vertices u and v are adjacent if {u, v} is in E. The
adjacency matrnix, A, of a graph 6 = (V, E) is an nxn binary valued

symmetric matrix whose elements are of the form:

. 0 if {vi, vj} ¢ E
ij "
1 if‘{vi, vj} € E

Notice that n is the cardinality of V.

Let n = {1; 2, ... , n}. The complete graph K= (n, E) has
every pair of distinct vertices adjacent. The compfete biparntite graph
K (mn) = (m g n, E) has each vertex inm adjacent to every vertex in
n, A 4tar is a complete bipartite graph K(1, n) with vertex "M as its
centen . '

1. Definition (Sum of Graphs) Set Gi = (Vi’ Ei)"i = 1,‘2, be graﬁhs
such that V =V, = V,. The sum of G, and G, written G,.+ Gys. is
defined as the sum modulo 2 of the adjacency matrices.

G, + G,= (V, E) such that A = (A)+ 4,) mod 2.

If G, and G, are edge - disjoint, Elﬁ E, = null set, then the sum
of G1 and G, is called the direct sum and written G, + G,e
Notice that the sum defined above avoids multigraphs.
Moreover, it is usually assumed that an undirected graph has no self-
loops, but in this study we admit a very special graph with self -

loops.



2. Definition (Identity Graph) Let I, = (k, E) denote the graph with
k vertices and k edges whose adjacenty matrix is the k x k identity

matrix, Thus,'Ik'is a graph with k isolated vertices, each having

a self ~ loop.

3. Definition"(Tensor'Product of Graphs) Let G1 = (Vl,'El) and ézla
(VZ' Ez) such that

Vl " {pl, pz, ..; ’ pn} and. Vz = {qlg qz, o g qm} o

The tensor preduct Gl ®G2 of G1 and G2 is the graph. .
6, ®C, = (V =V, xV,, E) such that |

V= {pi qjl p; €V, and q; € ¥y, 1gign, 1<j<m}
and
{Pi Qj: Py qk} € E <m=> {Pia Pz} E El and {qj’ qk} € E2
Clearly, the cardinality of V is n * m and the adjacency
‘matrix is the Kronecker product, A = A, ® A,. Throughout the sequel

 we choose as matrix indices the lexicographical ordering of the

vertices. Thus,
V= {p; 935 Py Qs «++ 5 Py Qys Py G35 ve 5 Py Quoece 5 Py Gyseces
Py It

With this ordering of V, the Kronecker product becomes



pro—— [,

all Az O * e ¢ @ & ¥ 0o & ° e *2 s * s 0 aln Az

A= A DA ” (1)
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such that every element of Al is multiplied by the whole of A2'

For example, K2®K3 has adjacency matrix

hoox, " h,®@h [0 1] g [0 1o

1 0 1 0 1 =

11 12' 13 21' 22' 23!
1m'fo o o o 1 1]
122 lo o0 o 1 o 1

3t|e o o |1 1 0

21* o 1 1l 0 o o
2'f1 o 1|0 o o

23' [ 1 1 o | o 0 O



4, Definition (Kronecker Sum of Graphs). Let C. = (n , El) and

, _ » 1
G2 = (m, Ez) with respective adjacency matrices A and B, The
‘Kronecker sum of G, and G,, written 6, ¥ ¢, is,

G, ¥6,=6,®I, +I A, (2).
and the adjacency matrix ié, . '

Aé,ll %, = A@I_+I ®B 3
Notice that in Definitions 1 through 4 we can treat
operations on graphs or on their adjacency matrices interchangably*.
With this in mind, one can easily verify the following identities:

@I =I_ = I ®L
LI =L, - L0

ii) G, +6G, =G, +G

1 2 2 1

iii) (6, +6,) @65 = 6, ®G, + 6, ®6,
iv) Gy @ (G, + 6, =G,@C, + 6;®E,

Unfortunately, ¥+ and (¥)are noi commutative operations, but they are
ST G, oo oo

associative,

v) G, ¥6G6, %G, =G, % (G, ¥6G

2 3) ﬁm(Gl ¥ GZ) Y G3'

vi) © 6, @6, @6 =6 ® €, ®cy = € ®%) @,

* Thus, we use the terms tensor pofduct and Kronecker produét

inéetchangably.
-5-



Lastly, we present several notions about factorizations.
A factor of a graph G is a spanning subgraph of G which is not
totally disconnected. A factorization of G is the ditect sum of
factors G, . Kinig [ 11 ] has studied n-factors and n-factorizations,
where an n-factor is regular of degree n. We now present what

appears to be ‘a new type of factorization.

Definition (Primal Factorization) Let G = (V, E) be a graph. A
factorization of G is primal if G can be expressed in terms of the
Kronecker sum and Kronecker product of prime complete graphs,
Kpi, p; prime,i = {1, 2; eos 5 k}

Our objective is to study the class of graphs which admit
a primal factorization., Before doing so, we present a known result

from Number Theory.

Theoremv([:jzl, P.p. 155 = 156) Any natural number m can be &ecomposed

as the product of powers of primes

e e e
1 2 k
M=PT e Py eeeee By - (4)
where 2 < Py < Py soccceen < Py



ITI. MAIN RESULTS -

We now state and prove the main theorem of this study.

l.viheorem _Every complete graph Km,‘m > 1, admits a primal factorization.

Proof: In order to prove the theorem we use the following

2. Leﬁma Let p and q be relatively prime such that m = pq, Then

B

Ky = K, ¥ Ky Kp@Kq (5)
= Kp@lq + Iqu + Kp@Kq (6)

Proof: Since m = pq we may write the ideﬁtity

Ry + T, = (R + Ip)(Kq + 1) )

!

"~ The bilinearity of the Kronecker product permits an

expansion of the right hand side of (7)

Kot Iy T K@K K BT * HOK ¢ L®%

Also, Im = Ip(:)Iq which permits gapcellétién of that term
en both sides yielding,

K = Kp@Kq, + Kp@Iq + I,®K, (‘8)



The terms on the f.h.s. of (8) are edge~disjoint because

of the structure of the adjacency matrices. Thus

B B @Ky * K ®Ig + L, ®Kg = Ky T Ky + K, DK,
> -

One can also ve:ify, by means of the adjacency matrix,

that

K =K FK +K ®K_
m q P‘Q®P

Although the K?onecker sum and product of graphs are not commutative

operations, thgup:imal factorization for m = pq = qp "commutes''.

Now we return to the proof of the theorem. Given a
natural number m, we obtain its decomposition as the product of powers

of primes

e e e
1 2 k
M= Py s Py eeceens Py o (%)

where the primes are orderedgiéxiébﬁfaphically into a string of -

length ] e,.
i=l

R is calculated recursively as follows:

Set =
et mO 1.

. - k
For j ."0, 1, see o Z ei - 1’
i=]l :

let mja@.1 = mj . pj+1,



where pj is the (j + I)St prime in the string (9),

+1

Using the lemma, we compute

K = K FRK +K ® K (10)
i S A R
k th
The algorithm terminates on the ( ) e ) iteration,
’ i=1

yeilding the desired primal factorization.

o
Notice that if m is a prime, then the algorithm will

calculate Km on the first iteration

+)
el
+ o

K =K K ®K
ml m mo m mo

[}
tal
+»
=
+

m 1 KmKl " Km‘ Il *+ Im®K'1 _+ KijL

=k + I @O+K® O

Figure 1 shows the primal factorization for K. and Table 1

lists the primal factorizations for 1 < m < 12,

Primal Factorization of Kﬁ
Figure 1
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TABLE 1 - PRIMAL FACTORIZATIONS FOR 'Km

Primal Factorization for Km

m Prime
Decomposition
1 1 Kl
2 22 K,
3 3 K3
) - . .
4 2 K= K, # ISZ + K2®K2 = K2.® I, + 12K2 + KZK2
5 5 | K5 v |
6 2-3 K= K, ¥ K3 + K@Ky =K, @15 + LK, + K@K
7 7 K, :
3 e T 4ok
8 ? Rg= Ky ¥R, + K@K,
= K2® Ié@ I, + 12®K2®12 + 12@'12(:91(2
FEL@K®I Y K@ L®K, ¢ Iz‘.K2,®_K2
1 KOK,®K, |
2 . - . . ° M . .
9 ,3° Rg® Ky f- 1_(3'+‘_K3®K3‘- K3®13 + 13::%®'K3,.1+‘K3@K3
10 203 K™ Ky ¥ Ks + Ky @F5 = By@ I5 + L, K;* K, K
11 11 Ky
2 P R . . Lt 33
12 2°3 K, ,= K2®12®_13 + 12®K2®13 + 12® 12®K3

EICIICEE * L, @K, @K, +K,® T, @K,

+K2®K2K3

- 10 =




3.

4,

By observing the primal factorization for K8 and K9 in

Table 1, one sees the motivation for the

e e

Fact To each factor of Km’ mspl1 csancoo pkk, one can assoclate

k

‘& nonwzero binary representation of length E ey in the following

i=1

° . o

manner: define the mappings Qt—+ Tp and 1 K such that the
. 1 i

subscripté, Pys match the lexicographical ordering of product of
powers of primes for m. Insert a Kronecker product between each two

digits of the binary representation,

‘For example K12 has 12 = 2°2°3; its binary representatios

anq corresponding factors are shown below:
001 » I, ®I, @K, ; 010+ L,@K,® I, ; 100+ K,®I,®1,
011 » IL,@K,®K, ; 110 » K, @K, @15 5 101 K, ® I, ®K,

111 » 1<2@1<21<3 o

Fact " The binary representation (and the prlmal factorization)
can be expressed as Q - {0000 ... 0}, where Q, is an n-cube [16]
k
and n = z 8y ¢
i=1"

The mext result shows that the Kronecker sum and the
Kronecker product in a primal fact@rlzatlon are complements of one
another. The compﬂement of a graph G = (V, E) is the graph G= (V, E)

in whxch two vertices are adjacent in G if and only they are not

—11—



adjacent in G. It is well know that for any graph G = (V, E) such
that the cardinality (V) = n, K =G+ G,

5. Proposition: Lgt'ﬁ = pq where p and q are relatively prime

Then,in:;he“primal factorization of Km:

i) - K = K § 1
1 ‘Kp' ®v q er Kq _ (11)
and ‘
ii) kK K. ‘ -
i RE o =, K ¥ 12
P ~a.95 Rp ® q E (12)

Son .
3 ‘e

Demonstration: We u§é~the fact that Km =G+ G and note that

K, = K ?'*F Kq 3- K ® K v. The ,conclusion follows. By using the

recurlxon relatlon (10) the result is extended to any decomposition
for m aa the product of powers of primes.

III - CONCLUDING REMARKS

o The maln result of this study 1s that every complete
graph admits a prlmal factorxzatxon. Moreover, the Kronecker sum
and product of graphs in the factorization are complements of one
another. |

These‘facﬁs':while interesting in their own right, fit
1nto a much richer mathematical framework: The Representatlon Theory
of ‘Finite Groups [:12, 13J and Lie Algebras [14] Harary [10]
states that the group of amtomorphlsms assocxated Wlth K ~is  the
symmetrlc group S of ail permut1ons on m. Thus, the prxmal factori=~

zation of K is a representatlon of S over the field of binary

- 12 -



numbers. Since the temsor ﬁroduct plays an ifiportant role in repre-
sentation theory, it might be possible to find factorizations for
other groups associated with graphs in terms of ;'primitive generators"
and the Kronecker pperat:i.ons. |

- 13 -
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