Series: Monographs in Computer Science
and Computer Applications

N? 10/72

‘ON THE REDUCTION OF THE SIZE OF TRANSITION MATRICES
by

S.R.P. Teixeira
and
L.F.A. Cunha

Computer Science Department - Rio Datacenter

Pontificia Universidade Catolica do Rio de Janeiro
Rua Marqués de Sao Vicente, 209 — ZC-20
Rio de Janeiro — Brasil

ON THE REDUCTION OF THE SIZE OF TRANSITION MATRICES

S.R.P. 'Teixeira
Assogiate Professor

and
L.F.A. Cunha
Assistent Professor

Camputer Science Department
PUC/RJ

Series Editor: Prof. A. L. Furtado November/1972

~ ABSTRACT

" Although the general context free grammar has shown to
be ‘a suitable model for programming language, it has not been used in -
practice due to time and memory space limitations, More restricted modw
-els which guarantee parsing time proportional to n (where n is the
length of the input string) have been used instead. Among these schemes,
~the use of transition matrices has proved to be remarkably efficient,
The great speed of this méthod lies in the fact that for each table.
reference it does, it makes a syntatic reduction on the sentential form,

no further searching being necessary,

The transition matrlx 1s accessed at each step of comr
pllation given the element at the top of the stack and the next ele=
ment on the input string, Some entries in the matrix spec1fy feductions

to be made while others specify error conditions,

The main disadvantage of the method is tHe large size

of the transition matrices for practical programming languages,

This paper presents a method to partition the original
grammar into several grammars so that several transition matrices are
used instead of just one, Sufficient conditions are given to allow the
proéessor to switch matrices as it is parsing a sentence of the origi-

‘nal grammar. This method has all the advantages of the transition ma-
trices technique (maiﬁly speed), while sensibly reducing the memory

space required (the most serious drawback of the original method),

Besides, for some grammars and partitions the new meth-

od is more powerful than the original method, as shown, -

The method presented in this paper is being used in the
parser of a fast resident PL/I compiler for the IBM 370/165, being de-
veloped at Pontificia Universidade Catolica do Rio de Janeiro. It has

shown great speed and moderate memory requirements,

1, INTRODUCTION

The use of formal syntax allows for the algorithmic
cohstruction of mechanical analyzers (or recognizers) for a significant
class of languages. Althought some available algorithms .encompass "a
large class of these langu;ges, their practicallﬁse has been restricted
to somewhat particular cases. This restriction has been imposed by stor-
age medium and program ekecution time limitations in pfactical compil-
ers, For this reason, although the general context free has shown to be

a suitable model for programming language, it has not been used in

practice,

The most efficient algorithm known to date for parsing
a general context free laﬁguage[ﬁl,lguarantees time proportional to at
most ‘nz » where n 1is the length of the string being parsed (in the

case of unambignous grammars).

In practice more restricted models which guarantee time
proportional to n have beénbused. Among these schemes, the \ use of
transition matrices[?] has proved to ﬁe remarkably efficient. The great
speed of this method lies in the fact that for each table reference it

does, it makes a syntax reduction on the input string, no further

searching being necessary. Besides, it allows for good error detection

1.

too, These properties are consequence of the very nature of a transitim
matrix, The matrix is apcessed at each step of compilation given the
element at the top of the stack and the next syﬁbol on the input string.
Somg entries in the matrix specify reductions to be made. Others spec-

ify error conditions,

The class of languages parsable by processors using
transition matrices is a subclass of (1,1) bounded context 1anguages|3l.
The outline of an algorithm to test whether a grammar generates a lan-

guage which belongs to this subclass is given in [?1'

The main disad#antaée of the method is the large size:
Qf.the_transition matrices'fof practical programming languages. This
paper presents a method to partition the original grammar into several
grammars so that several transition matrices are used intead of a single
one, This may result in a great reduction of the total storage area
used, depending‘on the partition chosen, Thé present method also in—

creases the power of the original method.

. 2, BASIC DEFINITIONS

An alphabet is any finite nonempty set. For the alphébet
v, Vv* is the set of all strings of finite~length (words)‘over Vv, in-
cluding the null word A . V' is defined as V - {A} .

’

o 2 L

If X and Y are sets of words, X.Y={a B /oaeX,

B € Y} where a B 1is the concatenation of o and B, X0 = {A} and

x**1 = xl, x, for i=0,1,2,...

A context free graﬁmarvis a 4-tuple G = (VN’ Vo, S, P)

T’

where:

(i) Vﬁ is the alphabet of nonterminal symbols

(ii) VT is the alphabet of terminal symbols, an VT= ¢

(iii) S ¢ VN is the start symbol of G.

(iv) P 1is a set of productions of the form A + o .

+
Ae VN sy 0 €V , wvhere V = VN 1] VT « A>a

is an A~Broduction.

Unless otherwise: specified, uppercase Latin letters
(A,B,C,.,.) are used for nonterminal symbols, lower case Latin letters
at the beginning of the alphabet (a, b, ¢, ...) for terminal symbols ,

lower case Latin letters at the end of the alphabet (t, u, v, ...) for

030

words in V; , lower case Greek letters (a,B,Y,...) for words in

v*,
+ e
For a, BeV , we say o =E=9 8 , or simply o =—> B8
. . : *
when G 1is understood, if o =0 A« B =oa] o ,0a €V
! 1 2! 1 V% 4 %
A+>yeP, a =§=° B8 if o => 8 as above and az € V; .
If al =D g e, = o , 0 > 1, we say that
2 .
+ . .
o ==>o9 , and that (a_,a ,...,0_) 1is a derivation of o from
1 n 1’9 n o e e n
o . Simila i S — D > 1 then
\ ry if al R a2 R R % » D ' e‘
+ 5
a m@ e I3 ° o 3 X
. R % and (al,az, ,an) is a canonical derivation of a
from LA (an, veay O al) is said to be a canonical parse of o
2
to al + When al is not mentioned,it is assumed that al = 8. '
s * . +
Define o = q if o => 0 or a =a_ .
1 n 1 n 1 n
*
Analogously we define «a =E“> e e
1
LN = 1 ical)
If S o (s R a) , o is a (canonlca) senten~

tial form. If o ¢ V; then a 1is a sentence,

G 1is said to be reduced if for each A ¢ Vg » each A -
- : * *
production A +y e P, § == al A az == al Y a2 ===> x for

o ,0 € V¥ , X e V|
1" 2

The language ‘generated by G, is: L(G) = {x | § = ,

*
X € VT}.

For each context free grammar G there is a context free
grammar G' (called the reduced form of G) such that L(G) = L(G') ,
and G' is'reduced[F].
* 4 +
If S ==”°\al A az sy A==>8 , then § =—=> @, 8 a,=Y

and B is said to be a phrase (an A-phrase) of vy . In this case]

is a maximal A-phrase of y if it is not properly contained in another

A-phrase of y , B 1is a simple phrase if A => 8 ,

G in said to be unambiguous iff each sentence has a

unique canonical derivation,
If G is unambiguous, y is a sentential form of G ,

and Bl .and 82 are phrases of y then B1 and 82 have no symbol

in common or one includes the other{y] .

+ 5.

Next, we define three functions:

for each A ¢ VN

headG(A) ={a/aceVy, there exists a e V¥ , A m%=> a a}

= i * =t
sch(A) {X / X € V, there exist al,uz e V¥, S R al AX az}

= 1 * =t
pred;(A) {X / X € V, there exist LRL e V', S e % XA az}

G is an operator grammar iff no production is of the

form A->a BCo , o o € v* B, CeV, .
1 2t 17 2 > N

3, THE ORIGINAL PARSING METHOD

It is necessary to repeat some of the important results
of the method of transition matrices[i] in order to clarify this paper.

The results of this section are proved either directly or indirectly

in[?].

A context free grammar G ==Wﬁ, Vs Spo P) is an aug-

mented operator grammar (A.0.G) iff:

. 6.

i v

N = NVUN , NaN=g.

N, is the set of starred nonterminal symbols
(SNTS) and N is the set of unstarred nonterminal

symbols (UNTS), Elements of N, will be denoted as

* % .
A, B, ., elements of N as: A, B, .,., and

elements of N*L@ N as: A", B, ... ,
A

(ii) L ¢ VT is an endmarker,

cean * . '
(iii) t'e N, ,is a starred endmarker

(iv) The only S0 production in P

x *
Sy L sl and.L” >LeP are the only pro-

* .
ductions in which SO' _L_ or _L appear,

(v) Each production in P is in one of the forms:

A » € ©(3.1)

A > B (3.2)
‘A =+ BC (3.3)
A¥ s 2 (3.4)

07-

A + Ca) (3.5)

A* > B*a (3.6)
*

A = B*C a (3.7)

* . ' *
Furthemore for each A € N, there 1s at most one A~
production in P,
a * . *
The right part o, of an A - production A -+ a appears

as the right part of no other production.

. -+ +
(vi) For each A e N, A =E=° A does not hold. If AO=E=° Ak

the sequence A == A = , , ==> is unique
1 0o 6 1 ¢ e '

k>1,
In[ﬁ] an algorithm is given to transform any context free
grammar into one satisfying (vi) above, In[é] an algorithm is given to
transform an operator grammar satisfying (vi) above into an A.0.G., such
that the A.0.G. is unambiguous iff the original operator grammar is

unambiguous.

Lemma 3,1 - If G is an A,0.G,, then:

(a) No sentential form o has the form al AB a2 ,

%
a ,0 €V A, Be N
1’ 2]]

(b) No sentential form a has the.form alﬁ Y az .
where B is an A-phrase,‘y>is a B-phrase,
al, az eV A, Be N,
(c) If alx Y a2 is a canonical sentemtial form, and
~y 1is an A-phrase, A e N X eV, then X e N,

(d) If Be N, x ¢ vY and B == x , the last produc-

T R
tion used in this derivation of B to x 1is of the

*
form A -~> a .

If a is a sentential form of an A.0.G., a prime

phrase of a is a phrase such that:
(a) It contains at least one terminal symbol or one STNS

(b) - It contains no other phrase satisfying (a) other

than itself.
When parsing a éentential form of an A.0.G. we will de-

tec and reduce a prime phrase according to the shortest derivation that

generates it. This derivation. takes one of the forms:

" 9 L

*

A === B (3.8)
. % * %

A > B°C for A==>BD and D =>C (3.9

A¥ — 2 (3.10)
* + * *

A" == Ca for A=>Ba and B=>C (3.11)

% * :

A ==> Ba - (3.12)
* % * *

A* =5 pB'Cafor A==>BDaand D=—=>C (3.13)

: . . . + .
Note that a phrase C, produced by a derivation of the type A == C is
not considered as a separate case. This saves steps during the parse
since in practice derivations of this kind do not involve any semantic

evaluation,

Theorem 3.1 - A canonical sentential form a of and

A.0.G. has one of the forms:
*

* *
(a) BB ...B ,aa...a 220, mz21 (3.14)
1 2 212 m

v

* %
() B B ...B, Caa...a 221, m2 1 (3.15)
1 2 L 1 2 m

* *
where B1 =.J_ when 2 21, a = A

Furthemore a leftmost prime phrase of a has one of

the forms:

When parsing a sentence x of an A,0,G. G we will

*

: * *x %
reach canonical sentential form o,o =E=° X . The symbols Bl,Bz,...,Bz

are stored in a pushdown stack. B; is the top of the stack. There is
a position called E which stores C in case (3.15). For (3.14) E=empty .
2 ,a ,...,a are the input symbols to be processed yet. G is said tote

parsable byva transition matrix processor if from the top of the stack

*
Bz,

termined, and the nonterminal A such that

E and a1 the leftmost prime phrase B of o is uniquely de-

* -
S ==b> g A « > aBaoa =a
o R 1 2 R 172
V* V*
o € o €
1) T

is also uniquely determined. Note that the derivation of A" to B which
makes
- +
o A o ==>0q B a
1 2 R 1 2

has one the forms (3,8), (3.9),...,(3.13). To complete this parsing step,

. o *
each of the following three symbols: B2

part of B 1is deleted, If A ¢ N, then it becomes the new top of the

, value of E, a1 » which is

 stack, Otherwise A will be the new value of E. The process is repeated

until E = So .

. 11 .

Note that a sentence of an A.0.G, G, is of the form
O , v : v . . .
1l 81 where B is an S-phrase. The parser starts w1thvi. in the

stack, and Bl as the input string to be processed.

A transition matrix M is a matrix which has a row as-

' *
signed to each SNTS B , and a column assigned to each terminal a. So,
S o v
L

which specifies for each value of E the

with the top of the stack B, and the next input symbol a , we will

1

access the element M.,
- Bz’Al

unique leftmost prime phrase B , and the unique nonterminal A" which

+

generates B .

An A.0.G. G is a T-grammar iff Conditions 1 and Con-

dition 2 below hold.

. .. ‘ * :
Condition 1 - For each B e N, , ace VT at most one

of the following three statements is true:

* N
(a) There exists A +B e€P , ac sch(A) (3.17)
\) . x % o ’
(b} There exists A > Bag?P (3.18)
]

%* * *
(c) There exists A ->ae P, Ac sch(B) (3.19)

Futhemore if (a) holds the UNTS A is unique.

» *
Condition 2 - For each Ce N, B e N, , acec Vo at

most one of the following three statements is true: -

: *
(a) There exists A+BDeP , ac sch(D) (3.20)

R ¢
‘ ' : * % ' * ‘
(b) There exists A>BDacecP ,D =Eﬁ° c (3,21)

’ * * %
(c) There exists A+Dae P, Ace sch(B) (3.22)
had
' Futhemore if (a) holds both A and D are unique. If (b)

or (c) hold D is unique,

Before the next Theorem, it is worth to note that the
procedure that transforms any context free grammar G into a reduced
context free grammar G', L(G') = L(G), when applied to an A,0.G, G s

produces another A.0.G, G' .

Theorem 3,2 ~ If an A.0,G, G is a T—grammar then it

is unambiguous,

Theorem 3,3 - If an A.0.G. G is parsable by a transi-

tion matrix processor then its reduced form G' is a T-grammar.

. 13 .

Theorem 3.4 - If an A.0,G. G ‘is a T-grammar then it is

parsable by a transition matrix processor.

The method of transition matrices is very fast, ' its
disadvantage is the large size of the transition matrix, In = the next

section we will see how to reduce the size of the matrix,

4, THE PARTITIONING METHOD

Let G = ka‘ Vs éo, f) be a reduced A,0,G for which
we want to construct a transition matrix prodessor.‘Wé will partition G
into two grammars and contruct transition matrices for both. When par-
sing a sentenée we will detect conditions which will tell us when to
switch matrices, This scheme allows for a sensible reduction of the to-
tal memory space occupied by the transition matrices without reducing g

the speed of the method noticeably.

o | ..
Let -So +] s1 be the only S,-production in P. Let
s, eVy, S#S , S #5.
H' = (V!, V% , So, P') is the reduced form of -(VN,VTU {tl}, So, P)
vhere: t ¢V P=f{A>0/A+>aP, A# 5, "o is obtained from

o by replacing each occurrence of S1 by tl}

(= :) : Wardl | - 1
e (VNO, VTO,‘ 5,5 P,) is the A.0.6, VgV (s}, Vi - {t 1,8, P')

0 0’
where:
P' ={A+a/AaeP' , o is obtained from a by replacing each occur-

rence of tI by Sl}.

Note that Go is an A,0,G, but it is not reduced.
1,’?{) is the reduced form of

H! = (Vy, V2, S

H = (Vs Voo S2P) . G o=V

1 Nl, VTI, Xl’ Pl) where:

L * . : . * *)
X £y, le -y w, x,1, le =vvitie=pyx>Lsl, L1y

There is a complete example in the‘appendix;

Note that since Go and G1 are A,0,G,'s we will try .
to construct a transition matrix for each, We will succeed only if bath
G0 and G1 are T-grammars. In case this does not happen the next two
lemmas say that G is not a T-grammar.

Lemma 4.1 ~ If G is a T-grammar then Gy is a T-grammar.

Proof - The result follows by observing that Pog P,

Lemma 4,2 - If G is a T-grammar then G1 is a T~grammar.

Proof — The proof of this and subsequent Lemmas and The-

orems is omitted for lack of space.

N

The converse of the two previous Lemmas is not true,Both
G, and G, may be T-grammars while G is not. This case is illustrated

by the example in the appendix.

We will now proceed to explain the method to detect the

conditions to switch tables, Consider the A,0.G. G and assume both
Go and le are T-grammars, Let x = a8, ... aa . be a sentence gene-
rated by G. We have ao S 1.

= @ '3 LI Y o i °+ - <
Let 8 a11 all+1 a11+ ny= 1 n,2 1, i21, i+ ny 1 <n be

the leftmost maximal Slwphrase in x, Since x 1is a sentence, B is
a prime phrase also. It is essential to consider a maximal phrase be-

cause we may have a S, -phrase within another Sl-phrase.

1
Assume we start a canonical parse of x using a transi-

tion matrix processor for G We will be able to proceed correctly un-

o »
o) 3 9 * *
til we reach the canonical senential form A1 . Aj a; oo an+1 (see

1
Lemma 3.1 (c) and Theorem 3.1), A’: =1*, j21. Then we will look at

the transition matrix for G0 (denoted as Mo), for the action is the
*
case E = empty, for the pair (Aj’ a;). Because a Sl—phrase is about

1
to begin, the correct action in this case should be to reduce the prime

*
phrase a, (see Lemma 3.1 (d)) to the unique Aj+1 » such that

A;+1 > aille P . One possibility is‘that column ail may np; exist in
M, (row A; certainly exists in MO), or in case it does‘there is
no action for (A;, ail) and E = empty, Invthis case we gdd to M0
for» (A;, ail)’ and E = empty, the action to reduce ail to A;+1 fol~-

lowed by an order to switch (denoted SW) to the transition matrix of Gl’

The other possibility is that there is already an action in M0 for

N * -

(Aj, a,) and E = empty, In this case there is a conflict and we can-
. 1 .

not resolve the ambiguity with the context used with the transition

matrix, Consequently our method will not work (see Lemma 4,3),

*
What was said above for a particular pair (Aj, a,)
: ‘ 1
* % :
has to be done for each pair (A , a), where A ¢ predG (Sl) and
0

awe-headcl(sl). If no conflicts occur we will then obtain a new matrix

|

we will call My .

Now, we want to modify the transition matrix for G,

(denoted Ml) to allow us to continue the canonical parse correctly un-

til we reach a canonical sentential form as:

* *
(a) Al L Aj Sl ai1+ nlo.. an+1 (401)
* *
(b) A e Aj B ail . nl... a ,, Where (4.2)
+
S, =D B
1 G1

We have to consider the case (b) above because productions of the form
A+~ C (3.1) do not correspond to prime phrases and consequently are
not parséd separately, Note that M1 will not work above because it
uses only _L_ as a right delimiter to the maximal Sl~phrase, and will

not use a, .
i,+n
1 1

We say that two elements & , ¢ of transition matrices
are compatible iff there is no value v of E (including EEEEX) for
which the sequence of actions (or orders) in £ (if any) differs from
the sequence of actions in ¢ (if any). In this case, to merge ¢ in-
to £ will add to £ all sequences of actions in ¢ which did not
exist in £ , If £ and ¢ are not compatible, the merging will produ-

ce a conflict,

*
We will now proceed to modify Ml' For each A ¢ VN ,
1

* * *
A #1 the entry in M. for (A ,;L) is deleted from M. (has all

1 1

actions erased in Ml) and the original entry is merged into the entry
for (A*, a) for each a e sucy (S;) (note that we may have a=.1).
Similarly, f;r each ace VT1) 0a # 1 the entry in M, for (.Lf, a)
is deleted from M1 , and merged into the entry for (A*, a) for each
A* € predGO(Sl). (note that we may have A* =.lf). Finally, the entry
in M, for (_Lf,J_) is deleted, and the original entry with all

o y o o o *
actions substituted for SW's is merged into the entry for (A ,a),for

. 18 .

. .
each A ¢ predG (Sl) a e suc, (Sl). If no conflicts occur in the a-

o 0 . \
bove process then the matrix M1 with all the modifications in called

v
Ml .

With M (instead of Mi) we will reach the situation
(4,1) or (4.2) and then we will execute SW and éwitch back to Mé cor-
rectly. The return to Mé is done atvthe right time since no two maxi-
mal Sl—phréses may be adjacent (see Lemma 3.1 (b)). If there is any
coﬁfiict in the construction of Mi » then our method will not work

(see Lemmas 4.4, 4.5, 4.6).

The transition matrix processor startswith M) and switches
between Ma and M{ whenever it executes an order SW. If no action (or

order) is found in one of the matrices, then an error has occurred. This

modified processor is called a segmented transition matrix processor

Lemma 4,3 - If there exist ,A* € predG (8.,
ace headG (Sl) , and in ° M, for (A*, a)
and E = 2mpty, there is an éctionjkhich is
different from the action to reduce a to
the unique B* such that B* + a € P, then

G 1is not a T-grammar,

*
Lemma 4.4 - If there exist A € Vg A* ¢ 1 * .
1
a ¢ suc, (S,) such that in M, the entry
GO 1 1
for (A*, 1) 1is not compatible with the

entry for (A%, a) then G is not a T-gram-

mar.
Lemma 4,5 - If there exist a eV, , a # L,
1
A* ¢ predG (SI) guch that in T1 the entry

0
for (_L?, a) is not compatible with the

entry for (A*, a), then G is not a T-gram-

marx .

Lemma 4.6 - If there exist A™ ¢ pred. (S,), a € suc,(S,)

e . G0 1 G0 1
A* #1* , a# 1 such that in T, the
entry for (%, 1) with all actions sub ~ -
stituted for SW orders is not compatible

with the entry for (A*, a), then G is not

a T-grammar.

Theorem 4.1 - If Mé and M; can be constructed with-
out any conflict then G is unambiguous and the language parsable by

the segmented transition matrix processor is precisely L(G).

A algorithm to produce a segmented transition matrix
proceséor fpr e ;usiﬁg Corand G1 will follqw the steps detailed in
this paper. Firstvit tests whether G0 and G1 are T—grammafs in order
to construct M0 and Ml[?], Then it constructs Mé and M; , if any
conflict occurs the method fails. In this case Lemmas 4,3, 4.4, 4,5 and
4.6 provide conditions to determine whether the original grammar G was
a T-grammar. In the appendix an example is given where G is not a T-
grammar, buﬁ nevertheless there is a segmented transition matrix proces-
sor for_ G. Furthemoré, the product of the'numﬁer of}SNTS and the num-
ber of terminal symbéls of G 1is 154, But Ma is only 9 # 7 = 56 and

1
154 is over 30Z.

M! is 7 x6 = 42, So,the savings of memory positions as compared to

5. EXTENSION OF THE PARTITION METHOD

The method .described in the previous section may be
ei%éﬁded when thévgrammar G i§ pértitioned in more than two parts, In
this case ﬁe'will have the'grémmars GO,GI,...,’Gi with matrices
MO’MI"°"Mi respgctiVely. Agalogogsly to what has been done when i=1,
we construct matriceg Ma,Mi,;;.,Miw. The processor starts with ‘matrix
Ms and may switcﬁrtéyiﬁé » 1 £j <i. Then it may switch to Mé >
1<skgi ,k#] and so forth, In this general case we will need a

pushdown stack to be able to remember the matrix (Mj .above) to return

to when we finish processing using Mia This was not necessary when i=1,

The results, Lemmas, etc... for this general case are
analogous to the case when i=1 , and the details will not be given

here.
6. CONCLUSIONS

The method presented has all the advantages of the
transition matrices technique (mainly speed), while sensibly reducing

the memory space requirement (the most serious drawback of the original

method[z]).

Besides the partition of the original grammar may in -
crease the power of the original method in some cases, as shown (appen—

dix).

The method presented in this paper is being used in
the parser for a fast resident PL/I compiler for the IBM 370/165, being
developed at Pontificia Universidade Catolica do Rio de Janeiro.It has

shown great speed and moderate memory requirements.

REFERENCES

Earley;'J. - An Efficient Context Free Parsing Algorithm. Comm. ACM

13 (Feb. 1970), 94-102,

Gries, D. - The Use of Transition Matrices in Compiling - Comm. ACM

11 (Jan. 1968), 26-34.

Floyd, R.W, - Bounded Context Syntatic Analysis. Comm. ACM 7

(Feb. 1964), 62-67,

Hoperoft, J. and Ulfman, J. - Formal Languages and their Relation

to Automata - Addison Wesley, New Yourk, 1969,

Ginsburg, S. - An Introduction to Mathematical Theory of Context -

Free Languages. McGraw-Hill Book Company, N.Y., 1966,

. 23 .

APPENDIX

Let N be an operator grammar whose productions appear

below:

S - as a5, S > S e
1 2 2 2

s » C S +> e

1 : 2

C + Ce s2->g1)h

C -+ e D - i

B + Bec D -+ D j

B » £

S+ bBd

Using the ideas of the algorithm described inBﬂ we

may obtain the reduced A.0.G. G whose productions appear below:

s°—>J_*s_L A* > 1
A* > a A* > e

1 2

A* > b A* > £

3 "

A* > i § > A*S
5 6 2
A* > A* § 3 S » C

6 1 1 1

S » A* A* > A* B d
1 7 7 3

8 8
C -+ A* B > A%
2 9
A* > B¢ B > A%
9 4
S =+ A* A* > Se
2 10 10 2
S -+ A* S -+ A%
2 2 2 12
A*. > A*pp A* o+ g
<12 11 11
D -+ A% D > A%
| 5 13
A* ‘5 D,
13 3

G% has 14 SNTS and 11 terminals. Note that G 1is not

a T-grammar,

'Gg‘has the productions:

- 1*s | S -»A*‘s"

S. =

0 6 2
A*¥ 5 A* g a - A* 5> g

6 1 1 1 ‘

S -+ A* A* > g ¢
2 10 0 2
S i A% A*¥ 4 e

) 2 2

S - A% A* > A*Dn
2 i ' 12 n
A* 5 ¢ D - A*
1 13
A* » Dj D -+ A*
13 5
A > i 1* » 1

5

G has the productions:

X - 1* s 1 S » C
0 1 1
cC - A* c > A*
8 2
A¥ 5> Ce A*Y > e
8 2
s -+ A* A¥ > A* B d
1 7 7 3
* %
A3 > b 5 J_
B -~ A¥ B - A%
9 4
A* > Be A* f
9 L

M, is 7 x 6. M! does not have a row for _Lf and a

1 1
column for _| but has an extra column for a, and an extra row for

A? . Consequently we still have that Mi is 7 x 6.

