Series: Monographs in Computer Science

and Computer Applications

NO 5/74

CHARACTERIZING SETS OF DATA STRUCTURES
BY THE CONNECTIVITY RELATION

by

A. L. Furta‘dov‘

Computer:-_rslcie’nce‘ Department - Rio Datacenter

Pontiticia Universidade Catdlica do Rio de Janeiro
Rua Marqués de Sao Vicente, 209 — ZC-20

Rio de Janeito — Bras"

CHARACTERIZING SETS OF DATA STRUCTURES
BY THE CONNECTIVITY RELATION

A, L. Furtado
Associate Professor
Computer Science Department

(Informatica) PUC/RJ

N ke e - R
™ Wivisho DEHI_NFQR‘MAQOES
R

codigo/registio data
0938 | A%,
] . R l n PP IR -t 1 o) E
Series Editor: Prof. S.M. dos Santos December/1974

M08

" RIO DATACENTRO
SETOR DE DOCUMENTAGAO

ABSTRACT

A formalism based on. the directed graph connectivity relation
is presented, where a first order predicate.calculus notation is used
with the purpose.of defining.sets of data structures and characterizing

the’structufalvdperations on them.

\Theaformalismuis;designed.seuasutOxfacilitate:the proof that
»thé“intEnﬁed operations:on instances of a given set of dafa‘structurés.
are correct, in.the sense that they do not violate the definition of
the set. '

1. INTRODUCTION

The problem 'of proving the correctness of programs that handle non-
trivial data structures has been. considered in Ehe'reéént‘yéars‘[i]m One
étep towards .this objective. is thé construction of some. formalism where sets
of data structures.and structural operatxons on these structures may . be

~defined axlomatzcally [? 3ﬂ

" The formalism to be discussed‘here'treats the data structures as.a .
‘restricted class . of directed .graphs (digraphs) [4] and employs a first order
predicate calculus nctatlone Several - graph theoretical :models of data struc-

tures are-. found in the literature [3,6,i]a

Dlgraph connect1v1ty plays-a fundamental role in the formalism. The
connect1v1ty relation: 1nduces an. order1ng on-the set of nodes, and it may be -
interesting" tovrestate several cons1derat10ns.appeat1ng in this work. in

‘terms of orders-and the basiCupropefties5offbihary relations Dﬂo

Progress 1n theorem prov1ng offers:a hope . that. certaln proofs. of
assertions’'written as- formulas from an: applied- predicate @alculus may be me=

,chanlzed, at least partlally.

In. the. present work, the class.of digraphs to be used as a model:
.of-. data structures is deflned and .then: the: appiied: predlea&e ealculus nota~:
‘tion. is. introduced: ‘A number of sets of: data structures are’ descrlbed in
order to illustrate how such sets can-be - -defined;: the other purpose of . the
formalism' - the characterization of structural operations - is discussed
with the help.of one of the sets just introduced, and it is shown how the
two. parts.of the formalism are related.

Cede.

2. THE GRAPH THEORETICAL MODEL

The accessibility to a component element of a data structure is

‘usually ensured. in the following way:

8o

The location.of some special element of the data structure

‘is initially given; often this location is somehow.associated

with the "name" of the data structure. As an example, consider
the first element of a FORTRAN array, whose machine address is

associated with the variable denoting the array.

The path from the given special element to the desired element .
is indicated under some form. Again, in the FORTRAN array the
path consists of the subscript or subscripts of the desired
array element, which are entered in aformula to compute the
address of the desired element from the addiess of the first

element.

Accordingly, the class of directed graphs to which this work is

restricted has the property that each digraph is rooted in . the sense that

there is some special node called the root from which all other nodes are

reachable, and the property that no two edges with the same label can leave

the same node. More precisely, the class of interest consists of rooted

labelled digraphs, RLDs, an RLD being defined as a 6-tuple (N,NL,EL,v,8,r),

wherel

N - a non-empty finite set of nodes, denoted by positive integers.

+ One may note that the definition of am RLD is analogous to the definition
of a Moore sequential machine [ol.

o2s

EL

a non*teﬁpty finite set of node labels-

a finite set of edge labels

- total function which assigns a node label to every node of
the RLD

‘v N~ NL

total function which defines the adjacency structure of the

RLD
§ ¢ Nx EL»NU {u}
where u stands for "undefined"

nbde; r € N, such that for all n e N there exists a se~
quence ‘of nodes .(nl,nz,e.., nk) with n) = r and n, *n
such that for 1 £ i < k there exist edge labels e ¢ EL

such that G(ni,e) =N

Due to the rootedness property . and the fact that § is a functiom,

a node.can.be nnlmbisuously located by giving. the - 1ocation of the root and a
sequence . of- (poasibly repeating) edge labels™.

The node and edge labelsare: 1nterpreted‘so as to make RLDs a model
for data.structures..Under.the interpretation, node labels: stand for domains,
i.e. sets of: itema of informatlon wh1eh are meaningful- for: some applxcation
and- wh:.ch‘ share: some storuage: charact:etuucs* for-instance, the, node label .
SN may .denote a set. of:' supplmer.names", each: supplier name.belngna“character
,string of up :ovZO“charactetsaufhé~édgeﬁIAbels"stand"for*functions; in order

+ The defzned sequencea*from the root of an:RLD: constitute a regular set (cf,
the pteceding footnote)a

'030

to represent many to many.n-ary relations, which arise in generalized data
bases [jd], charaeteristi@'funccions and projections are used., Thus, if
RCDy xDy,x ... xD , one defines the characteristic function

fR s Dl X D2 X 400 X Dn -+ (T,F), where forx dﬂ e Dy d2 £ Dz,@@¢9 dnE Dnﬁ
fR(di’dz’”**’dn) = T iff the relation R holds 6 for the given n-tuple.
Also, in order Lo access each component of an n~tuple, projection functions

are used: Pt D1 x D2 X vus X Di X veo X I’)_n > Di’ 1 ¢<i<n (see figgzal)a

T
& \w&? |
Pz :
A C
B
(a)

y

U
fpp
Qx/\\?
D . E

(b)

Figure 2.1: (a) triple im & terpary relation R & T, where
T=AxBx¢C '

(b) domain and range elements of function' £:T U,

where T = A xBxC and U=D x B

RLDs represent a sufficiently comprehensive model for data struc—
‘tures, as illustrated in section. 4, where. several interesting. sets. of data

structures, which are RLDs, are discusged.

w&a

3. NOTATION

In order to characterize setS"of.data:strnctureSu&’?irst - order

predicate caleulus notation is used.

The ‘concept ‘of connectivity plays & fundamental role in the
characterizationa.Aénusual,eiff ¢ and B are-nodes of a digraph D, o is
saidwte~berconnectedﬂtOn-&mtifrtheteris§at»1east30ne‘path*wffbm' a to B 3
a‘'node is:said to be connected to itself only in.case of loops or cycles.
Let F. be . the set of functions-(named by the edge labels, as seen before),
and |F| the cardinality of F; then, the conhectivity predicate is defined

as

|¥| |
k(a,8) 2. \/ £.() =8V (I \/ £,(a) =y A x(y,8)
_ i=] - i=l

The notation

restricts-the functions .allowed in the definition: to those indicated as -

subscripts; the set: {f i ,ay.,f } - is a subset-of F (occasionally it
1 2 x
maytbezthe"'-entxre*F-,f-mentmnedvexphmtly-for'clarit:y)a The notation

T It is prescribed that in-a path from o to B no node can be visited
~ more than-once, with the:only: exception of a in a closed path from o
to.itself.

o5

™ (a,B)

requires a path of length n (i.e. n~1 compositions of functions).

The alphabets of the predicate calculus notation are now introduced:

‘a. Punctuation marks: , ()

b. Propositional connectives: » D z AV

¢. Quantifiers: 3 Y

d. Individual positive integer variables: i jk lmn

‘es; Individual node variables: unsubscripted or subscripted lower case
letters from the beginning of the alphabet. It is understood that
each node variable is an element of precisely that domain indicated
by the corresponding capital letter; thus, a, ai, a2, ¢ A

f., Individual positive integer constants

g. Individual node constant: p , denoting the root of an RLD

h. Function letters: lower case letters from the end of the alphabet.

:v6a

a.

Ce

Predicate letter: «k , the connectivity predicate, possibly with

supersctipt - or subscripts or both
Predicate compasition operator: o
The syn£a§ ;of‘the valid expressions is defined in the usual way:
Terms
=~ .constants and variables are terms

- expressions involving the application of fuuctlons to terms are terms

= no other. express1ons are terms

‘Atoniic formulas

- expressions involving the application of predicates or compositions

of predicates-to terms are atomi¢ formulas

= no other expressions are atomic formulas

Well-formed formulas (wffs)

- atomic-formulas are wffs.

- expressions relating ﬁffs through logical symbols are wifs
- expressions involving wffs with quantifiers are wffs

"w no other expressions are wffs

97@

4. EXAMPLES

The notation introduced in the previous section is used for an

axiomatic characterization of a number of sets of RLDs.

Initially, the entire RLD class is characterized by a set of

axioms of the form
(V.) x(p, .)

where, for each domain, the dot would be replaced by a variable from the
domain.

' The characterization of a set will include the enumeration of the
existing domains and functions, the smallest instances of the set, and the
axioms. The smallest instances must contain at least the root, due to tﬁé
definition of RLDs (rootedness and the requirement that the set of nodes

be non—empty).
a. Chains

domains =~ A, {p}
function - x : AU{p} + A
smallest instance =~ p

axiom - (Va) n k(a,a)

The axiom requires that there be no loop or cycle on any node from
domain A. Note that there is no need to forbid c¢losed paths on the root ,
because the root is not included in the range of x. Also, no axioms are

required for the connectedness of the instances, because of the general RLD

98@

axiom, or to forbid more than one x-labelled edge fmiu each node, because
edge labels denote (single-valued) functions. These remarks also apply to

several of the sets to be presented in this section.

Stacks, queues, and other linear structures are chains; they can

only be distinguished By'the different operations allowed on them.

b, Rings
domains - A, {p}
function = x : AU{p} =+ AV {p}

smalliest instance - Cpo~

axiqm‘ = k(p,p)

c. Binary trees
domains - A ,'{p}
functions - x: AU {p} + A
y: AU{p} » A
smaliest instance - p
axioms = 1. (Va;)(Va)) ~ ({v‘ci‘(al,a'z) V Ky 0 k(a;,a,))
1 el
A (Ky(a1 »8,)V Ky O K (a, ,32)))
2., (Ya) v ((K}K(p,a‘)yki o k(p,a))

' 1 Ll
(\(ky(o.a?VKy o ﬂc(p,g))D

3. v a) v x(a,a)

099

The first two axioms require that there be no more than one path

between two pair of nodes, and the third axiom forbids closed paths.

d.

Threaded binary trees

domains - A, {p}

functions - x : AU {p} + A
y t A+ A
w:A->Ay{p}

z : Au{p} » AU {p}

smallest instance -~
‘A

axioms = '1,2,3 - same as for binary trees, replacing «k by Ky y
' ’

4. (Ya)) (332)";(31'32) z (B}ag)((r;(ﬁa.al)
v uc; o tcx(aa,al))/\uci(al,aa)"::)
Vi (p,a;)n K‘fr(al,o))
5. (Ya)) ’\v~(3 az)vcifai,az) = (Ja,)(ky(ay,a))
yuci o Ky(ag,al))/mi(al,ag))
Viky ok (0,a,)A r;(al,p)5

6. w;(pm)

7. (Ja)kle,a)

010@

A threaded binary tree [11] @ is a: binary tree where. if a node
does not possess .a: left (right) son it is connected by a left :(right)
thread to its predecessor (successor) in postorder traversal, which is

recursively defined. by the algorithm:
1, . traverse left sub-tree;
2. visit root; '

3; traverse right sub-tree,

An instance of a.threaded binary tree is shown in fig. 4.1.

Fig.4.1: A threaded'binary tree

It may be noted from the (recursive) algorithm ‘that the first node
of a right sub-tree to 'be visited is its leftmost node, i.e. the node reached
from the root of the sub-tree through a path of x-labelled edges only which
ends at the node; also, the root of a right sub-tree is reached from the root

.11,

of a tree through one y-labelled edge. Accordingly, axiom 4 states that:

"a node from domain A possesses no left son if and only if it possesses

a w thread to a node which in turn reaches it through a single y-lébelled
edge (the case of a right sub-tree consisting of a single nods) or through
a path starting with a y-labelled edge followed by cne or more x-labelled
edges". Conventionally, the leftmost node of the entire tree has a w thread

to the root.

Axiom 5 is the counterpart of axiom 4 for the right threads. Axioms
6 and 7 are needed for the characterization of the smallest instance; this
example shows that, if desired, one may require the smallest instance to

have other nodes besides the root.

T e 'RingAstructures

domains - A , {p}

.o

AU{p} + AU{p}
AU{p} » AU{p}

smallest instance .~ c:(?jj x

axioms - 1,2 = same as for binary trees

3. (‘da)ncx(a,a)/\ry(a,a)

functions - x

4, Kx(P’O)/\ Wy(}?mﬂ)

Ring structures [11] are obtained from binary trees by converting

each x chain and y chain into a ring, as shown in fig. 4.2.

Q120

Fig. 4.2: A ring structure

Rectangcular arrays

domains - A, {p}

functions - x : AU{p} + A
y : AU{p} + A

smallest instance - p

axions = 1. (Va)(Ya,) (V) (V3)e} o eltaya,) =
K;,o Ki;‘ (31’32)

. . ERY A i j = j i -
2 (Va)(V;),(,VJ)K# ° ky(Psa) =y 0 (0,0)
30 (Ve (Va)(Va) (VY ieicay a0 A

‘ scj(a »a)D(éa)Kj'-(a 58)/\l;i(a 9an.)

A A S M uyzﬂy“-xskﬂo

b (Yo (¥ a) (VDY i)t 0,8)

k] i, i
vcy(o,az)?(Ha;a,)gycgl,ag)A x (a,,a5)

5. (Ya) ~ k(a,a)

0130

The first four axioms ensure that whenever three nodes are con-
nected by means of an x chain followed by a y chain or the reverse ,
or an X chain and a4 y chain running from one of the nodes, then there
must be a fourth node and another pair of x and y chains, of the same
lengths, so as to close a rectangle. The fifth axiom requires that the

"rows" and "columns" of the array be chains rather than rings.

It should be noted that one~dimensional row or column arrays are

permitted as special cases of rectangular arrays.

‘g. Sparse matrices

domains =~ A, B, C, {p}
functions - x : A+ AUB

y : A» AUC
u: B~ AUB
v : C»>AVC
w:CU{p}=>cC

z : BU{p} + B

smallest instance = p

EH

axioms - 1. (Vb)(Y i)Ki(D,b) (3;2)!63;(0,0)
2. (Vb)'\:mz(b,b)/\(vc;(b,b)VKi ok (b,b))
3. (Vc)'\:rw(c,e)/\(gi(c,c)VKé) Ky(c,c))
4. (Ya)(3bv)(3 C)K_x(a.b)/\x‘y(a,ﬁ)

5. (VY 31)(V32)""(<KXC‘31 ,2,) /\Ky(al »a,))

v(ucx(a1 »3,) A Ky(az,al)))

ﬁ140

6. (¥b)(Vb,)(k, (b ,b,)D((Va,)(Va)k (a,b)
Ay (a,,b,)2 L.‘<y-<a‘2,f a,))

7. (Ve)(Ve) (e re) ((Va)(V a,)k (a e)
Ak (a,0e,)0% k (8, 3,)))

An example of the réﬁresentation’of sparse matrices adopted here

is shown in fig. 4.3, .

RN ' 4

z2l vy vy v]y
A «

‘Figa 4.3: A sparse matrix .

015 o

In the representation the elements of the matrix belong to domain
A, whereas B nodes and C nodes merely indicate the rows and columms, respec—

tively.
The meaning of the axioms may be informally described as follows:
1. The matrix is square.

2. The z-labelled edges fbrm a chain; on each B node there is a
‘closed path which is either a u-labelled loop or starts with a

u edge followed by one or more X edges.
3. Similar to axiom 2, for the C nodes.
. 4, Every element of the array belongs to one row and one column.

'5. There can be no more than one element belonging to the same

row and column.

6. Rows are consistently ordered, i.e. if a, belongs to a row
that comes before the row to which a, belongs, then it may
not be the case that a, and a, belong to the same column
with a, coming before a.

7. Similar to axiom 6, for columns.

-16.

5. 'STRUCTURAL OPERATIONS

In graph—theoret1ca1 terms, the structural operatlons are those

1nvolv1ng the creatlon or deletion of nodes or edges.

L L1

o Here a structural operatlon is considered ' correct if 1ts app11-
catlon at some stage in the execution of a program to some 1nstance of a

set D of data structures results in another valid instance of D.

-If7£he-définitioﬁ of' D is part of the program, 1t is adm1ssxb1e
'that after the executlon of an operatlon on an- 1nstance of D ‘an automat1c
"check of- the va11d1ty of the resultlng 1nstance would take place. .

‘Another strategy consists of pre-~defining the set of operators

‘that will be allowed for D. The description of an operator includes:
a.. The conditions under which the operétor is applicable;

b. The action of the operator, i.e. what creations and deletions

of nodes and edges are caused by the operator.

One would them prove, for each operator ## that, assuming that
d is-a'valid instance of D and that the condltlons for some app11cat1on
of ##1 to d are verified, .then all axloms in the. deflnltlon of D hold

in the resulting structure after the application of **i”

As in [li] it is possible to formalize these notiono by‘expanding'
the predicate calculus notation so ao to include individual variables for
states, represented by a lower casé sigma, possibly shbscripted, aod the
operators themselves as functions acting on stétes, and fepresented by a
poaszbly subscripted number 31gn. A third argument — a state — is added

to the connect1v1ty predlcate.

017'

As an example, let ¥¥2 be the operator on thrgadgd‘binary trees

which

a. is applicable to nodes possessing a left thread, and therefore

no left son;
b. causes the creation of a left son with the appropriate threads.

From the algorithm defining postorder traversal it is immediate
that the newly created node will point to its parent through its right
thread. Also, since the new node, rathetvthan its parent, has now become
the leftmost node in a right sub-tree, it "inherits" from the parent its

left thread. The operator is represented pictorially in fig. 5.1.F

Fig.5.1: The operator ##2
The operator is used in the wff below
(Vo) (Va;)(Va,) «l(a,,a,,002(3 a,)kl(ay,a5,# ,(0))

A K&,(as 332 9# 2(0))/\ Klz'(ag ’ai ’#Z(G))

¥ The reader familiar with graph grammars will note that such an operator
can be viewed as a productiocn vuis [},13,14],

ﬂ180

which says that "for all state o , if node a, possesse's"arleft threed,
then it will possess a left son in the state attained by applying the
operator #2 to state o."

One may now prove that if for a, and a, :

. .
K o
y 9)

0 ncx(a?_,a1 »0) A n<w(a1 »a,

held in state- v, then 1n state #2(0), sbiv‘nce
vc; ozx(az,al,#z(o)) (ﬁnaffected by‘ #,)
v,’f‘ “3(81 o2 3,'#‘2@)) »v
ARLagia, H#,(0))
ho;ds,. and be‘c{auvse bo‘f: tire trensitirity of ithe“ cennecte‘d r'els_tienj,i
= ”x(az«’ﬁa.,’#,zu(f"-))A S‘w;ﬁ,ﬁa@z#,z_,<¢>> |

holds, whlch constltutes part: of sxxom 4 and 11kew1se the remammg
_ax:.oms for threaded bmary trees may be checked., S

These proofs are usually ted1ous because a local change performed
at a given place of a structure often affects the paths between pa1rs of
nodes that are not even exp11c1t1y referred to by the operatorg Many differ-

ent cases may have to be dealt with, for each axiom, in the course of a proof.

One may also prove that the set of operators formed by #2, #1
(represented in fig. 5.2), and #3 (defined as the counterpart of #2
for the creation of a right son) generates exactly the set of threaded -

«19.

binary trees,

Fig.5.2: The operator %ﬁl,'which creates from a 'null" structure

the smallest non-trivial threaded binary tree

The proof that this set of operators generates only threaded binary
trees is done by induction on the stage of the generation, whereas the proof
that all threaded binary trees are generated uses induction on the size of
the structures (the size is often the number of nodes, but in other cases it
may be convenient to consider the number of edges, or the number of compo-

nents, etc.).

In practice, a set of operators that allows the generation of the
intended structures may be expanded in order to permit other structural
operations that the current application may require. In the example, the
inverses pf ##2 and ##3 might be introduced for performing the deletion
of a left or right son, respectively, but this expansion would not enlarge
the generative power of the set of operators. Certain modern programming
languages have adopted the practice of incorporating the allowed operators

in the definition of each set of data structures [15,16]

020,

6. CONCLUSIONS

The proposed predicate calculus formalism is based on - the
connectivity relation, which is a well-understood graph property and one

that can be tested efficiently [17].
‘As- described, the formalism consists of two parts:

a. the axioms that characterize a set of data structures sta-
tically, i.e. convey the properties that must remain invariant

under -any operation;

b the-axioms that indicate the applicability and the action of
the operators-which transform a vhlid‘instancé‘Of'a set of

data structures into another valid instance of the same set.

The axioms of class a are non-comstructive; in the sense that
they do not give a direct indication of how an instance of the intended
class can be generated. They can be used as asﬁérfions7tb'Bé*verified”‘g
posteriori , after a data structure has béenVQpéféied*u§0ﬂ; or a priori
by characterizing the operators through the class b axioms and proving
once and for all that their application preserves the class " a ‘axioms.

ACKNOWLEDGMENTS
The author is grateful to Prof. S.M. dos Santos from PUC and to

Prof. J. Mylopoulos and C.C. Gotlieb from the University of Toronto for

several helpful discussions.

0210 :

REFERENCES

1.

Burstall, R.M. - "Some Techniques for Proving Correctness of Programs
which Alter Data Structures” in "Machine Intelligence" 7 - Edinburgh

University Press (1972).

Hoare, C. - "Notes on Data Structuring” in "Structured Programming" -

Academic Press (1972).

Standish, T. - "Data Structures — an Axiomatic Approach" - TR2639 -

~ Bolt, Beranek and Newman (1973).

Furtado, A.L: - "Data Schemata Based on Directed Graphs" - Ph.D. thesis,

- “University ‘of Toronto (1974).

8.

9.

10.

Earley, J. ~ "Toward an Understanding of Data Structures" — CACM, 14,

10 (1971) 617-627.

Rosenberg, A. - "Data Graphs and Addressable Schemes" - J. of Computer
and Systems Sciences V, 6 (1971) 193-238, '

- Bachman, C. = "Data Structure Diagrams" - Data Base - ACM/SIGBDP 1,2

(1969) .
Suppes, P. - "Axiomatic Set Theory" - Van Nostrand (1967).

Booth, T.L. = "Sequential Machines and Automata Theory" - John Wiley
(1967).

Codd, E.F. - "A Relational Model for Large Shared Data Banks" - CACM
13,6 (1970) 377-387.

0226

11.

12,

13.

14.

15.

16.

17.

Knuth, D. = "The Art of Computer Programming” - vol. 1 - Addison-
Wesley (1968). '

Nilsson, N.J. - "Problem - Solving Methods in Artificial Intelligence"
McGraw-Hill (1971). '

Pfaltz, J. and Rosenfeld, A. - "Web Grammars" - TR69-84 f'UniverSity
of Maryland (1969).

Mylopoulos, J. - "On the Relation of Graph Grammars and Graph Automata"-
Proceedings of the 13 SWAT (1972) 108-120

Dahl, ‘0. =~ "Hierarchical Program Structures" in"Structured Programming"-

‘Academic ‘Press (1972).

'Liskqv, B. and Zilles, S. - "Programming with Abstract Data Types" -

Proceedings of a Symposium on Very High Level Languages - ACM/SIGPLAN
(1974) 50-59.

Corneil, D.G. - "The Analysis of Graph Theoretical Algorithms" - TR65 =~
University of Toronto (1974).

823.

