Series: Monographs in Computer Science
and Computer Applications
NQ 5/75

Information Systems Group
Report n® IS-1-75
ON THE IMPLEMENTATION OF DATA GENERALITY
by

Arndt von Staa
and

Carlos J, Lucena

Computer Science Department - Rio Datacenter

Pontiticia Universidade Catolica do Rio de Janciro
Rua Marques de Sao Vicente, 209 — ZC.20

Rio de Janeiro — Brasil

Series: Monographs in Computer Science
and Computer'Applications
Ne 5/75

Information Systems Group
Report n? IS-1-75

ON THE IMPLEMENTATION OF DATA GENERALITY ol
by
Arndt von Staa

and .

Carlos - J. Lucena

Associate Professors
Computer Science Department
Dept? Informatica - PUC/RJ

Series Editor: Larry Kerschberg - September, 1975

% This research was partially supported by the Brazilian

Government Agency FINEP under contract N9 244/CT.

DIVISAO DE INFGRMAGOES
v BIBLI® ©3a

My

"RIO DATACENTRO
DVISAO DE INFORMAGOES
; TECA

cbdigo/registro data

$662 U a3

RIO DATARENTRO

‘ABSTRACT :>' Data genérality is the property through which
program modules are.able to communicate via
afbritaxy_déta s;rudtures.lsince the design.of
modulélinterfaces is‘a very difficult and error
prone activity in systems design, the implementation
of data generalitybis*a.ﬁery desirable goal in
programming. The present work describes one
appf¢a¢h<to the implementation of data generality
and sketches the algorithm for its implementation.-

KEYWORDS : - DatavGenerality, Data Types;‘Claéses, Clusters,
' ' Modularity.
RESUMO : Generalidade de tipos e.a propriedade necessaria pa

ra que modulos de programas possam se intercomunicar
utilizando estruturas de informagao arbitrarias. Co
mo o projeto de interfaces de médulos & bastante com
plexo e éujeito a erros, a implemeﬁtagio da genera
1idade'de‘tipos & desejavel em pfogramagio modular.
0 présente trabalho descreve uma maneira de se obter
»generalidadé'de tipos e esboga um algoritmo par#_'a-
‘sua implementagio.

PALAVRASCHAVE: Generalidade de Tipos, Tipos de Dados, "Classes",

‘ » '”C1us£ers", Modularidade. A

1.

~INTRODUCTION:

A very comprehensive definition of Program
modularity has been proposed by Dennis in [1]. According to
his definition, a program segment Wfitten in a given
programming language can be called a module if it follows the .
properties of syntactic non-interference, semantic context
independence ahd data generalify. Syntactic non-interference
accounts for the possibility of combining program segments
without having to make syntactic changes in:any of the segments.

Semantic context independence assures that a given segment

. cannot cause sideeffects and cannot be affected by side-effects.

In other words, its output assertion (specification) remains

invariant no matter where the segment is used within a
programming system. The property of data generalityvrequires

that modules be able to communicate via arbitrary data

~structures. Data generality allows for the full application of

Parnas' "hiding principle” [2] through which each module's
programmer needs to know only about another module's

specification and not about its internal 1mp1ementat10n.

Difficulties arise in practice with respect to

the implementation of the concept of data generality. A software

module specification language as proposed by Parnas [3] still

requlres a reference to the module's internal data structures in
the assertions that describe the module. The classical
programming solution of carefully planning the module interface
data structures. is but a distant managerial approxlmatlon of the
data generality concept (see [4] for a well-designed example of
the principle). '

Two approaches, by v. Staa [5] and Lucena [6], |

“have been proposed for the full application of the concept of
-~ data generality.‘Both‘approacheS'are based on the concept of
‘ abstract data types (or simply a data type). For the purpose of

”this introduction an abstract data type can be thought of as a

heterogeneous algebra (defined over more than one set of

objects) that can be specified by giving the family of sets or
‘domains and the operations ‘defined on them. A data type can be

- specified formally through, for instance, the algebraic theory -

-0 -

developed by Zilles [7]. They can be implemented through

programming features such as classes [8] or clusters[9].

In the approach by Lucena [6], the issue of data
generality arises when clusters are used to model data types
used in the context of a very high level language. The same
data types, say SET, can be asscciated to different variables
and yet be implemented differently for each variable. If these
variables need to interact within the program, the standard
compiler representation is used to effect the conversions

during execution time.

In the approach by v. Staa [5], the module
writers know the specification of a type T whose meaning is
global to a program. Each module writer may implement T in a
different wéy and yet he may transfer variables of abstract
type to another module without knowing the other modules
internal representations. In this paper we discuss the
underlying ideas of this proposal and present a sketchy
algorithm that describes how data transmition can be achieved

with generality.

BASIC CONCEPTS

An abstract data type, or simply a type, is an

algebra T=(V,0) where V is a set* of values and 0 is a set of
operators defined over these values. Types are used to model
data abstractions of the kind used in connection with very
. high level languages. Algorithms expressed in termséf vafiables
‘ Wi?hu?§SQQi§Fed abstract types are often called a program

specification. A specification can be transformed into a program

either by the automatic compilation of a type into a standard
data representation or by the possibly automatic substitution of
a typé by a valid representation selected ffom a set of possible

representations.

A data representation T of an: abstract data type

is a triple T=(V',0',D) where V'cV, 0' is a set of constructive

% For simplicity of notation and without losg of generality we
will overlook the fact that types are, in fact, heterogeneous

aleebras.

-3 =

models of the operators in the set 0 (programs that implement
the definitioﬁs of the operations in 0 £the set of axioms that
define 0 and 0' are equivalent) and D is the .description of a
particular representation for the elements of V' for a given
base machine (a set data declarations on a given programming

language).

Let & be a special element of V and V' called
: *
the undefined value, and let g be a function from V to v'.
We say that a data representation represents (rep) a data

type T, if the following diagram commutes forevery oc 0 ‘and

0'el'
vty " =g (v)
9 o |
VB =0 (8(v)) =g (f(¥))

if- T rep T and 9¢&itionally for_every v €V, such that v#d,
g(v)=v' and v'#é; we say that data representation represents

‘exactly the abstract data type.

, , Let AcV be the set of the values in-the domain-
of g such that g(a)=® and acA, for a given data'representation'
T and relation rep. The cardinality of A, [Al, is called the
degree of approxiﬁation of - the abstract data type'by a-data
representation.’The,emaller the‘cardinality,,the‘befter the

‘approximation.’

We will call BgV a set such that - vbeB, g(b) and
g(o(b)) are'defined'end the "values" o'(g(b)) that correspond
to the»g(o(b))'ere‘error messages. The cardinality of B, |B],
.reflectsithe.restrictions that .occur in practice in the
impleﬁentation of'the operation o'.:

To illustrate the above notions we can use as an

example the type INTEGER. INTEGER can be defined by the pair:’

* In some works:about the correctness of data representetion
g is defined from V' to V. The way we formulated the

definition will help presenting our forthcomming ideas.

-4 -

(set of integer numbers,{+,-ﬁ’/})

Let us call INT a possible representation of INTEGER. INT will
be defined as follows:
({1 + -2 _l6si<216},{+,-,*,/}, stored as a 16-bit word in two's

complement notation)

INT is an approximation of INTEGER because while vl*v2 is
always defined for INTEGER it may be undefined for INT
(provoking an overflow). INT is clearly a simulfation of INTEGER.

A type can be represented in a variety of ways. We

will call

IST={T1,T2,...,TH}

the implementation set of a type T. The representations TyseeesTy

simulate the type T with different degrees of approkimation.

For example, let us assume that the abstract type T
models the concept of stack. A stack can be characterized, for

instance, by the well-known operations: empty, pop, push, ete. In

this case T, could be a list implementation of T, T, an array

1
implementation etc.
Let F be a function with n>0 arguments of type T to

some domain D.
F: TxTx...xT - D

To achieve data generality we want to be able to
use the function F within a program module, using T; as an
approximation for T (TieIST) in the case where thg arguments of
F were passed as parameters from a module that used Tj as an

approximation of T.

In the appendix we illustrate a programming
mechanism which incorporates this concept. We left this example
to the appendix in order not to interfere with the central

ideas of this work.

Before discussing alternative solutions to the

data generality problem we need to introduce another definition.

.?5_>

_ A'conVérsion is a function from a data
representation to another data rebresentation; We will write
x:Ti, to mean that x is a variable of represehtation‘(type)"
Ti,'that is, x takes its values from the domain D. .. A

‘ . S g : i
conversion Cij is then specified as

’

Where Ti’TjelsT' A conversion is said to be

‘meaning preserving if W, ve and for the function gT,from

. . . i
T to the.1th representation T.,: ‘

a)g, (V)=0<=>C; (g, (v))=0
1 . o1 :

b>gr.(v)#¢’Cij(gf.(v))#¢_énd

6o, (=05 oy)
k| i

SELECTION OF DATA REPRESENTATIONS _.

We are iﬁte:estgd:in“the glfefnatiVé_app;oaChes
to choose.the representation into which paraﬁéfefs'shouldfbe:_
converted when passing the_approximationbof a type‘from'a ‘
module to another. One\possible'Choite,would‘be"td\chdosefé
standard representatlbn and use it as a default option. The
approach we will favor later on w111 be motivated by eff1c1ency
conslderatlons. We will sketch an algorlthm through which a '

systematic selection of representatlons can. be made.-

The'standard'representatlon approachvcaﬁ Be v‘
carrled out along the follow1ng lines. Let us deflne for each
type a canonical 1mp1ementat10n (representatlon) ‘T eIST, such i
that parameters of type T, belng shlpped from another module,

would always be converted into’ Te ' Th1s operatlon 1mp11es that"

-6-

are defined (if we want the modules to be able to communicate),
Several objections can be raised with respect to this approach,
For one thing, T. can lead to an inefficient execution of a
given critical (oftenly executed) operation of T. Besides, Ci
may not be definable, in the sense that T. is not a meaning ¢
preserving representation of T,, Oor may be a very costly

operation.

To overcome these difficulties, we propose a
method which is presently being considered as a basis for a

%
language being designed at PUC .

We start by defining a set of meaning preserving

conversions

for signific&t pairs of implementations Ti’Tj eIST. As-a next
step we associate a cost functionwiii with each cij' We
foresee the mechanism being described, used in connection with
a language with a strong typing capability. That is, the
language is capable of knowing the actual type T, and formal

type Tj at parameter association time.

When converting from T; to Tj we may not find a
conversion function Cij that performs the operation. Inspead,
we may need to look for a sequence of conversions wheteh Wi
composition produces the samekeffect of Cij' That is, we need
to be able to detect a sequence of conversions such that:

L=])
Cij,C12 C230"'O_Cn—1 n

Where
i "1 °j

T:=Tﬁ and 1l<n, and such that

Cr% exists for all the pairs (r=1, 2=2),
(r=2, %2=3, ..., (r=n-1, %=n)

% Pontificia Universidade Catolica do Rio de Janeiro

-7 =

Additionally, the Cr2 are required to be meaning preserving and

the sum

(r=n-1, %=n) ' E : y
= : f(- b ot {Wg“”
Tl)
(=1, 2=2) = ' P .
needs to. be minimal over the set of defined conversions.

Graphically this sequence can be visualized

as follows

If such a path choice exists within the library
of conversions, we can achieve data generality and portability

as a byproduct.

It needs to bé stressed that if we want to
achieve intercommunication between modules (e.g.co-routines) it
is required that another sequence of convérsionsCji also exists,
possibly the inverse of Cij; that allows the conversion from

Tj to Ti.

In a network environment a programming system
with the deseribed capability should be able to go back to the
user and interact with him in the case of imposgsibility of
accomplishing a particular conversion. In this case the system
should describe the environmental contraints (size of words in
each machine etc), that were responsible for the problem. The
user in such a situation should be able to reply and propose
some '"roundings" that would weaken the requirement of meaning

preservation, so that the processing could successfully terminate

A number of interesting features can be stressed
in the method outlined. It follows directly from the above that
the method is very general ‘and oriented to the achievement of

maximum efficiency.

The method cpuid be implemented by means of
_) imee Pl eTe . , .
THUNKS [11] and occurs in a degemerake form in ALTRAN [10]. The

-8-

method also suggests a new direction to the open problem of

generality efficient code for very high level languages.

It can be proved without too much effort that if
we have a library of conversions, all that is required of its
structure in order to be able to produce every possible
conversion is that it form a strongly connected directed graph

of coanversions.

In a very high level language all implementation
details (in particular data structures that are oriented towards
the base machine) are hidden from the user. As a result of that,
a general purpose compiler that compiles directly from the
abstract data types used by the language (e.g. general sets and
sequences) have to be general enough to allow for the
implementation of the typically associative operations used at
the language level (usually called specification level). This
fact has led in all reported experiences to the generation of
prohibitively expensive object code. The approach suggested in
this paper induces a technique through which a compiler can
select the best representation (from an existing repertoire) for
a particular application of a type and also allows for the
selection of paths of transformations that enable adjustments in
the form of implementations for very different uses of the same"

data type.

Following this suggestion when defining a very
high level language, an abstract type needs to be specified

through the following tuple

T=(0, IS CS)

T’
The meaning of each element can be illustrated

through an example:
0 is a set of operations which define the type;
e.g.{+,-,%,/,:=} for fixed binary

IST is the implementation set of this type;
e.g.{precisions (15,0),(12,3),(31,0)} for fixed binary)

C..: x:T +x:T.
1] i J

3., CONCLUSIONS

In the present paper we attempt to contribute to
the better understanding of the problems of communication
between program modules, We outlined omne approach to data
transmission that can help bridge the gap between the goals
of ease of prégramming'and program efficiency. We are aware
that a number of issues. remain to be investigated in-this
féalm‘aﬁd‘that we will be raising a number of important
problems as we proceed with the implementation of the method

described here.

, -10-
APPENDIX

In figure 1 we show.the function concat. This
~function receives parameters and type descriptors associated
with these parameters. We alsc show the minimum set of
operators that have to:be provided in order for the function

to.be used.

o~ o o 0 o~~~

ref type~1l function concat (type type -1 contalns(lnteger size;

Ezgg type—2, type 2 eleml *]; ref type-l a,b);
begin concat; -
integer length = a->size + b->size;
cdncat'—obtain(length),
for i:=1 until a->size do
concat- >e1emE1].=a—>e1ement[i];vgé;
for it=a->size+l unt11 length do
concat->eleml i]:=b->eleml i-a~>sizel; od;
end concat;
The following parameters were made explicit

ref type—l‘ obtaln(length),

Fig.l Example of a function which accepts types as parameters

11

In figure 2 we illustrate the definition of a

type which will be transmited to concat.

r
outside-scope scope;

o~~~

in gger fetch functlon str1ng~1ength string-size;

Rmtms mopsrmsmm

o~ o~~~

get:=new string(length),
ref string function constructor(b1t(2)vector[*]—

~

e
be glnlconstructor,

integer length=upper bound(vector),
constructor:=get(1ength);
for i:=1 unt11 length do

~ o~

constructor->string- elem[i]£=vector[i];

end constructor}

end scope;

end string;

Fig. 2 Definition of the type "string of bit (2)" .

Figure 3 shows how the transmission is accomplished

ref string a,b,cy

é'=constructor(array(01 B, (10'B));

b:=constructor(§££§z(11'B));

"c:=concat (type-l::string(elem::string-elem,size::string~
1ength,obtain::gét,type-Z::EiE
(2)), a:ta, b::b);

with the type "string"

Fig. 3 Use of concat

-12-

Note that in figure 1 the operation contains(...)
makes explicit the parameters that are transfered when "string"
is used. In figure 3 the type "string" is transmited to concat,
The names defined by "string" and the names expected by concat.
are different. This difficulty is overcome through the

association of the parameter names.

The sintax used is:

<name of the formal parameter>::<actual parameter>

The symbol <name of the formal parameter> stands
for the textual name of the formal parameter that will be
associated with the value of <actual parameter>. The construct
array(...) in.figure 3 defines a function which creates an
array of as many elements as the actual parameters in the list.
The elements of array will be initialized to the actual values

. 0of the parameters.

13

REFERENCES

[11

21’

[3]

41

5]

[6]

(731

(sl

91

{101

[11]

[121
' ' Series: Lecture Notes in Economics and Mathematical

Dennis, J.B., 'Modularity'; in Bauer, F.L. ed; Springer

'Verlag; 1973

Parnas, D.F., 'Information Distribution Aspects of Design

Methodology'; IFIP Congress Proceedings; 1971

Parnas, D.F.; 'A Technique for Software Module Specification
with Examples'; Communications of the ACM Vol 15, n? 5, May
1972 '

Mc'Keeman, W.; 'Compiler Structure'; Proceedings'of the

First USA - Japan Computer Conference; 1972

Staa, A.v.; Data Transmission and Modularity Aspects of

Programming Languages; Research Report CS-74-17, Department

of Computer Science, Univ. of Waterloo; 1974

Lucena, C.J.; On the Synthesis-of Reliable Programs,-

Technical Report, Computer Science Department, Univ. of

California, Los Angeles; 1975.

Liskov, B.H.; Zilles, S.N.; 'Specification Techniques for

Data Abstractions'; IEEE Transactions on Software Enginéeri&g,

Vol. 1, n? 1; 1975,

Hoare,IC.A.R.;,Proof of Correction of Data Representationg
Acta Informatica Vel. 1, fasc 4; 1972 '

‘Liskov, B.H.; Zilles, S.N.; 'Programming with Abstract Data .

Types'; SIGPLAN Notices Vol. 9; 1972

Brown, W.S.; ALTRAN User'slManual. Bell Telephone Lab.,.
Murray Hill, N.J., 1973 '

'Iﬁgerman,,P.Z.; 'THUNKS a Way of Compiling Procedure

Statements with Some Comments on Procedure Declarations';

Comunications of the ACM, Vol. 4, n?'l;‘April 1961. "

Bauer, F.L. ed; Advanced course on Software Engineering;

Systems n? 81, Springer Verlag; 1973.

ERRATA

VON STAA, Arndt & LUCENA, Carlos J. - On_the implgmentation of data generality..&

Pages Lines Vhere it reads ‘ ~ Please, read
3. 2 in the O (the 4k of... in the 0; the siit of...
3. 10 . for very 0 € Ouus - for every 0 £ O...

3. Replace the figure in the text by the figure bellow

g

=g (v)

0 v

W '=0' (g(v))=g(0(v))
i 8 simultation... . simulation...
4, 9 in a veriety.,. I in a variety..Q.
4, 24 'argumenfiof.;; e arguments of.,.:
6. 14 for significat... for significant...
6. 22 ‘conversions which... " conversions whose...
7. 17 sequence of conversion C... sequence of conversions C...
7. last degenerate... ' incomplete

DIVISAO DE inroRwas
: . Ma
’ BIBLIOTrCY COFS

codigo/registro | data

Ri0O DATACENTRG

" RIO DATACENTRA :
NMSAO DE INFORMAGOES
.. BIBLIOTEC®

