Series: Monographs in Computer-Science
and Computer Applications
NO 6/75

PEP: A LANGUAGE TOR. PROVABILITY,
EFFICIENCY AND PORTABILITY

by

Sergio Carvalho
Carlos J. Lucena
Daniel - Schwabe
P.L. Rosa Filho

Departamento de Informatica

Pontiticia Universidade Catclica do Rio de Janciro
Rua Marqucs de Sao Vicente 209 — ZC.20

Rio de Janciro — Brasil

Series: Monographs in Computer = Science
and Computer Applications
~N? 6/75

PEP: A LANGUAGE FOR PROVABILITY,
EFFICIENCY AND PORTABILITY

by
Sergio Carvalho
Carlos J. Lucena

Daniel Schwabe
P.L. Rosa Filho

- Series Editor: Larry Kerschberg October, 1975

DlVISAO DE INFORMA¢OES . :
RIBLIC """ A

M oo

RI0 DATACENTRO
DIVISAD DE INFORMAGOES

cédigo/registro 1 data

B3 | 7]

a@ggﬂmA

"RIO DATACENTRO.

L.

* This work was supported in part by the Brazilian Government
Agency FINEP under contract N 244/CT,and developed by the
Information Systems Group,Departamento de Informatica,PUC/RJ..

ABSTRACT:

PEP is a very high level language aimed at Provability ,

. Efficiency. and Portability. The language PEP has a comprehensive set of

data and control structures, all of which can be easily defined axiomatically.
PEP user's.have.the ability to define. abstract data types. The language is

?informally described., and an implementation model.is presented.

KEY WORDS:

Very high level language, provability, efficiency, portability,

control structures,.abstractndata“types,himplementatidn.model,.data structures.

RESUMO:

PEP & uma linguagem de muito alto nivel.que.visa.a g;ovabiliqi
de, Eficiencia e Portabilidade . A linguagem PEP possui um amplo conjunto de
estruturas de controle e-de dados.que podem. ser facilmente definidos de forma
_axiomatica. Os. usuarios da.PEP podem.definir tipos.de dados abstratos. A lin

guagem € .descrita informalmente, apresentando-se um.modelo.de.implementagao.

 PALAVRAS .CHAVE:

:'Linguagemhde'muito alto,nivel,'provabilidade,ueficiancia, por
_tabilidade, estruturas de controle, .tipos de .dadoes abstratos, modelo de imple

mentagao, estruturas.de dados.

1. INTRODUCTION
2, STRUCTURE .OF THE LANGUAGE.
3. STANDARD DATA TYPES

4, THE IMPLEMENTATION MODEL

 CONTENTS

5. ABSTRACT DATA TYPES AND: ALTERNATIVE IMPLEMENTATIONS OF
STANDARD DATA TYPES , -

5.2. Exemples of Cluster and Representations .—=

5.2.1.

-5.‘2.2.

50203@

5.2.4,

5@2.59'

Specification of an abstract data type through

clusters

Re~-specification of a standard: structured type

through clusters

A representation level program

Efficiency. considerations

Portability.

:APPENDIX -

REFERENCES

14

23

29
29

31
31

32
33
35
36

37

39

1. INTRODUCTION

This paper gives an overview of the very high level
1anguage PEP, Thi5~1anguagé has been designed® with the objective
‘of experimenting with the idea of using a number of issues from
software engineering as a metric for language design.

The aﬁthors have attempted,tombridge the gép between
program specification and program implementation by proposing a
language of very high level (very general models for data |
abstrations). A program encoded in_ PEP doés not refer fo .
implementation level data'structures. This factvplus the ease of
verification of PEP s control structures assure that programs can
be easily proven (o checked for cons1stency) at the spec;flcatlon
leval., A spec1f1cat1on in PEP (a PEP standard’ program) can be .
automatically complled to & code which will be executed following a
simple 1mp1ementat10n model.

An altérnativevapp:oach to code generation from a-
specification in PEP consists of replacing the direct compilation
by the manual production'of.multiﬂievel'prqgrams (at a lower source -
language level) that are said to implement PEP's data types.
Following this approach it,is-péssible either to propose a particular
implementation for PEP's standard structured types (which are of a
very high level) or to‘propose implementations'for uéer's:definéd
abstract data types (not,included-in the 1anguage's1definition);

The approach is aimed at allowing PEP's compiles to generatev
code for data structures specified in more detail, thus enhanclng
more efficiency of the object code. The property of portablllty
is .achieved because of the way the multl—level implementation is
set- up. ‘

"% Some aspects of the language ‘are currently being implemggted.

- -

In the next sections we describe the general structure
of the language, define its standard data types and present its
implementation model. Finally we discuss how abstract data types
and alternative implementations of standard datavtypes can be

accomplished.,

2, STRUCTURE OF THE LANGUAGE

In this section the general structure of the language PEP

i

4]

informally described. To do so we use an extended BNF notation,
where:
~ words in non~capital letters denote nonterminals;
- words in capital letters denote reserved identifiers in
the language;
- the symbols =+ , [, 1 , + ,, ¥ , | are used as meta-symbols

in the language description, with the usual meaning.

A program in PEP consists in a prologue followed by a
sequence of modules. Comments (strings of symbols enclosed by

" and ") can appear anywhere a blank is permitted,
program ' + prologue [modulel*

The prologue is used to define global information (which
can be accessed from ecach and every module of the program). Both
type definitions (as in Pascal [w.. 72]) and declarations of
identifiers for variables and ioutines may be present in the
program global area. The proldgue is algo used to mname the m.:
module of the procram (the ‘one which should be executed first)

and the list of module names of the program.

prologue * GLOBAL [type-definition 1%
[declaration 1%

MAIN module-name IN module-name-list
G-END

-3

module-name*list > module~name [module—name]*

module~name = identifier

Modules are program units‘which can be compiled separately,
prov1ded the prologue 1nformatlon (if any) is made available to the
compiler, This 1is so because there is no type specification for
identifiers in the global access specification, as we shall see
later. All modules possess a distinct module name, an optional
module.head,vand'a module body.

‘module + MODULE modui_e~name:
| module-head
“medule-bodi_:

M-END . |
The mddu1e head°is a context Specification area. In 1t we
specify: S

'(T).how«thé,module,communicates with the.global-area

established by the prologue;

(i1) the sequence of type deiinitioné (if any) to be known
throughout the module;

(iif) the sequence of identifier declarations local to the
module., ‘

It is important to note that moduies'can commﬁﬁicate only
with the global (prologue éreated) afea, and are not allowed to
share among themselves type deflnltlons and declarations
contaimed in module heads., If such.need ‘arises, the 1nformatlon
to be shared must he inserted in the prologue created area, and
proper mention to that information must be made in the external
section of the‘qorresponding module headsQ‘ '

module-head “+ [external-part 1

[type~definitionl.
[declaration]

-

In the external part those types and jdentifiers created in the

prologue, which the module must use, are named. Access can be made by:

(i) READONLY - The module can extract information from the

‘global.location, but is not allowed to modify it;

(i'i) READWRITE- The module can both extract and modify information

contained in the global area.

T+ should be noted that the names of all‘global types,global.routineé
and modules accessed by the module must appear iv the READONLY list.

external-part -+ READONLY identifier-list [READWRITE identifier-list;]
|READWRITE identifier-list;

jdentifier-list -+ identifier [, identifier 7%

The type definition and the declaration sections of the module
head are used to create types and identifiers local to the module.
As mentioned before, types may be defined as in Pascal. All identifiers
used in the module body must be declared in thé'declafation section

of the module head.

type-definition = TYPE type~identifiérf= type
[; type—identifier= typej*
T-END

type~identifier - identifier

declaration - DECLARE decl-list D~-END

decl-list = variable-declaration [; routine-declaration]

| routine-declaration
 wvariable-~declaration + identifier-list : type [INIT type-valuel
[;identifier-list: type [INIT type-valuell®

Types in PEP are defined in sections 4 and 5 below. The INIT
option can be used to assign initial value to the declared variables.
Note that type and type-~value must correspond (no type .conversions

are performed).

~5=

Routines in PEP are of two kinds:

‘(i) PROCEDURES- do not return values, affecting the
: computétion only through side effects;
(Vi) FUNCTIONS - must return a value of a specified type,‘
and ‘are not allowed to have side effects.
The characterzstlcs above ‘are implemented through the
proper use of parameter pa651ng and global access1ng '
mechanisms, as is done in STRUGGLE [BER 7417,

routine-declaratiom [rprocedure+dec1 lffunction-declf]*
‘procedure-decl > PROCEDURE 1 ' | o
procedure—head
,',routlneebady”
, ?ﬁﬂ&"'
function-decl - FUNCTION
function—head
- .routine-body
R=END
'Procedure and function heads contain in general:
(l) the name of .the routines
(i) a list of formal parameters;.
(lll) global access spacification;

(iv) - local type deflnltlons and declaratlons.

In addltlon, function heads nust conta1n the bas1c typepof
the value to be returned.

procedure-head > procedure~name:)
‘procedure~-formal-parameters -
procedure-global-access-specs
routine=locals ‘
procedure~name * identifier
function~head ' *+ function-name: return-type.
function-formal~parameters
" function—-global-access-specs
~.routine—locals

-6-

function-name - identifier
Procedure parameters can be of three types:

(i) INPUT - passed by value; the type of a formal
parameter, is the type of the corresponding

actual parameter;

(ii) REFER - passed by reference; the procedure is not
allowed to change the information referred

toy

(i11) OUTPUT- passed by reference;the procedure is allowed

to change the information referred to,
Function parameters can only be'of the types INPUT and REFER.

procedure~formal-parameters > [INPUT jdentifier-list; 1
' [REFER identifier-list;]

OUTPUT identifier~list; 1

]

]

L
function-formal-parameters - [INPUT identifier-list;
[REFER identifier-list;

Routines (ﬂb matter how deeply nested in modules) can access
nformation created both in the prologue area and in the containing
jodule area (module-head). This is dome by specifying in the routine
tead the type definitions and identifiers the routine wishes to
1ccess.'This establishes another difference between procedures and
:unctions: while the former can have both READONLY and READWRITE
iccess, the latter is only aliowed READONLY .access.

procedure~global—-access-specs + external-part

function-global-access—-specs - [READONLY identifier-list; 1

Note that either OUTPUT parameters or READWRITE access must be
specified in a procedure head; otherwise there is on way for the

procedure to have side effects.

-7

Functions must return a value of a basic type (to be defined
in section 4).

return—-type - RETURNS basic-type;

- In the local section of routine heads new types and identifiers
can be created. In particular, routines may be created to anm arbitrary
depth.)

To find the proper environment for an identifier of a routine
being executed, we search, in order, ‘the declaration -areas of:

(1) the routine being executéd'

'(i?)v the 1mmed1ate1y enclosing routine (if any),_
(I'ii) other enclos1ng routines (if any),

(iv) the enclosing module;

(v) the prologue.

The routine body contains a sequence of statements, to be
shortly defined.
‘.roﬁtine-body + [statement 1%

This concludes the description of a module head. A module body
consists of a sequence of statements.

module~body »+ [statement 17
Two important characteristics of modules are:

(i) modules are not block structured;
(i'i) there are no labels in PEP modules.

Statements can be either simﬁle, structured or the return
statement, Simple statements are the assignment'statement,uroutine
call statement, the module invocation statement and the record
creation statement -

statement -+ simple-statement
| structured-statement
l return—-statement

-8

simple~statement assignment=statement

o3
| procedure~call=statement
| module-invocation-statement

record-creation—~statement

Assignment statements are defined similarly as in Algol W [WH661],
and shall not be specified here. Procedure call statements.cdntain the
name of the procedure to be executed and an optional list of actual
parameters., This list has the same form as a list of procedure formal
parameters, already defined. The correspondence between actual and
formal parameters is established through the usual left to right rule,
the types of the parameters being naturally considered, Functions are
invoked by using function mnames aS'primafies in expressions, as in
Algol 60 [NAU $3], It should be noted that routines may call routines
known [in the Algol 60 sense 1 at the point of call; as a

consequence, ‘all routines are potentially recursive.

procedure-call=statement - CALL procedure-name:

procedure-actual-parameters 3

Module invocation statements have the form shown below. Since
module names are known throughout the program (being declared in
the prologue) modules can be invoked from within modules. In particular,

modules are potentially recursive.
module-invocation-statement <+ EXECUTE module-name 3

Record creation statements are used to create mew instances of

record variables, and will be defined in section 4,

Structured statements can be either the conditional statement,

the iterative statement or the compound statement,

structured-statement + conditional=-statement
| iterative=statement

| compound-sgtatement

There is only one conditional statement in PEP. This statement

was found to be able to reasonably represent most usual if-then=-else

-9

and case .constructs which can be generated 'in programming

‘languages today. Its form is as follows:

conditional-statement -+ IF Boolean-expression THEN statement
[;Boolean-expressior THEN statement]®
- I~ END 'f' .

Its execution can be described as'foiloWs.’The Boolean
expressions are evaluated in a top-down manner, untll either one
is found :to be ‘true ‘or none is ‘true. In the flrst ‘case the
statement correspondlno to this Boolean expre351on is executed,__
‘and .execution of the program is resumed with the statement \
immediately following the I-END delimiter ' :(unless the correspondlng
statement is a return statement;‘casefin.whlch the ‘execution of

the.routine.containipg the .conditional statement is ‘ended).’

In case no Boolean expression in the list is true, the effect =
of the conditional statement is mnull (note that expression evaluatlon

in PEP does not cause side effects)

As an eXample,.consider
F |
a > b THEN at=a - b ;
a <b THEN b:=b - a ;
TRUE THEN z:= a
I-END
Iterative statements are the WHILE statement, .the FOR .statement
and the UNTIL statement. In .the descriptions that follow, mnote that
there ‘is no need to enclose the ‘sequence of statements to be repeated
by BEGIN-END brackets, due to the special delimeters provided in PEP.

terative-statement - whlle-statement'
| for-statement
| until-statement

The WHILE statement is copied from Pascal.

while-statement - WHILE Boolean-expression DO [statement]*W-END

] Q=

The FOR statement is in PEP more general than in most programming
languages, since control variables may range through values which
do not necessarily form an arithmetic prpgressidn.'The sequence
of allowed values for the control variable is expressed by a range

specification.

for-statement - FOR control-variable IN range-spec
DO [statement 1% F-END
control-variable -+ identifier)
range-spec + type-identifier [: Boolean-expression]
| integer-subrange [: Boolean-expressionl

integer—subrange =+ initial-value..final-value [,step 1

A type-identifier in a FOR statement must have been defined
earlier in the program, and must identify either a simple type
"enumeration"™ or a simple type "domain" (see section’ 4). The control
variables in FOR statements with type identifiers standing for range
specifications must be declared as being of that type. In the second
kind of range specification, initial value, final value and step are
integer expressions which define the control variable sequence of
values in the usual fashion (in case a step expression is not present,
the default value 1 is assumed in its place). In this case the control
variable must be declared of type integer. The integer expressions in
an integer subrange are evaluated exactly once, before the iteration
starts, '

Note that since control variables must in either case be defined,
their scope is not limited to the FOR statement. This implies that
the value of the control variable is available after termination of

the loop. .

The optional Boolean expression in a range specification can be
used to define a condition the next value of the range specification

must satisfy in order to be the next value of the control variable.

Examples of FOR statements, where S denotes the statement group

to be 1terated:

-11-

FOR {1 IN (I..10) DO S 'F-END

FOR 1| IN T : rem (i/2) =0:ai > 10 DO F~END

Where T is a type.identifier'previously.defined;

UNTIL statements are multiple exit statements. Exit control
is implemented through a list of Boolean variables (which must be
declared in the.correspondipg<madu1e'or.routine‘hgad). Initially
all Boolean (exit) variables have the value "false", Repetition
continues until one exit variable is ‘turned to . "true" (note that
there is no "normal" exit from the .loop). When this occurs the
repetition is ended and the statement following the UNTIL statement
delimeter is executed. Normally this next statement is a conditional
statement, where the values of the;Boalean3exit‘variab1es'are,tested.
In the .context of an UNTIL statement, the assignmentqu‘theﬁ“true“n _
value to a Boolean variable in the exit variables 1list is implicitly
made by simply stating the variable name in its desired place. This
also signals the dlosing of the UNTIL statement. Simifarly the
appearance of a Boolean variable in the exit varlables 1ist of an
UNTIL statement causes the value of the variable .to be set .to. "false",
Finally, it is required that each ex1t‘varlab1e in the llst'must
appear in .the group of statements to be repeated.

“until-statement = UNTIL exlt—varlable—llst Do [statement]*U“END
-ex1t—var1ables list » Boolean-varlable [OR Boolean-varlable 1
Boolean-variable = zdentlfler
Example of an UNTIL statement:

 UNTIL found OR not-found DO § U-END

Compound statements are needed only.to group.tpgether a sequence
of statements .to be executed after a Boolean expression in a
conditional statement turms out .to be "true", Otherwise they are not

necessary, due to the special statement delimiters provided in PEP.
compound-statement - BEGIN' [statement 1% END

Return statementS'proVi&é oneé:way to ‘end a particular activation

of a routine (the other being the- fiormal exit, through the dellmlterS'
P-END or R-END). '

-12=-

Note that return statements'are.semahtically meaningful

only inside a routine body.
- return~statement - RETURN

To conclude this section we present,for illustrative purposes,

a skeleton of a PEP program. The program has a global area in which:
~ a type Tl is defined;
- variables A, B (of type Tl) and C (of type INTEGER) are
declared;
- a procedure P is declared, with:
~ parameters X, Y and N;

- global access to variables A (unmodifiable) and C
{(modifiable);

~a group «f locally declared identifiers;

- the body of the procedure.

~ the program is said to have two modules, M1 and M2, of

wivizh MY is the leading omne.

Module M1l has access to global procedure P, modifiable access
to the global variable C, and in it is defined a function F, with
formal parameters X and Z, returning a Boolean value. F has
(unmodifiable) access to C, After Ml's body and the M~FND delimiter,

module M2 is constructed.

GLOBAL . |
TYPE T1 = " type specification " T—END ’
LELARE A, B: T1; ' ‘

C: INTEGER
PROCEDURE P :
INPUT.. X;
REFER Y
. OUTRUT N;
'READONLY A;
| READWRITE C;
DECLARE ™ 'procedure locals " D-END
"""';:Jfécedure body |
P-END
D-END
MAIN M1 INiML,aM2°
G-END
MODULE M1 :
READONLY P;
READWRITE C;
DECLARE)
" local variables "
FUNCTION F: RETURNS BOOLEAN;
‘ INPUT X;
REFER Z;
READONLY C;
"function body"
R-END |
D~END

"nodule M1 bbdy"

M~END |
' MODULE M2:
M2 external access"
"™M2 locals"
"M2 bodyn
M-END

-14-

* 3. STANDARD DATA TYPES

Types in PEP can be standard or abstract.

type -+ standard-type
| abstract-type

In this section we describe the standard data types of PEP. The
syntax, semantics and implementation of abstract data types shall be
considered in section 5., For a PEP programmer who wants to use an

abstract data type,it suffices to know the following.

abstract-type = ABSTRACT (basic-type) wyiry operations-list
operations~list - operation-name [, operation-name 1%

operation-name - identifier
As an example, the type definition below specifies the need for an
abstract type STACK of integers, with the operations PUSH, POP, TOP
and EMPTY, . '

TYPE STACK = ABSTRACT {ixvioni} WITH PUSH, POP, TOP, EMPTY T END
We shall now consider standard data types.

standard-type > simple-type
structured-type

| pointer~type

simple-type + basic-type
| enumeration

| domain

basic~type + INTEGER
| REAL
| BOOLEAN

CHARACTER

Enumerations in PEP are similar to the scalar types of Pascal,

and are as well considered to establish an order among its constants.

enumeration » ENUM (enum~constant [, enum~constant1®)

enum=-constant + identifier

=15~

As an example, consider the enumeration definition below:
TYPE divl2= ENUM (one, two, three, four, six, twelve) T—EKD

Another simple type available .in PEP is the domain. Integer
values constructed according to powerful formatlon rules can be

represented by domains.

., . . e : ; . . sty
domain » DOMAIN (domain-former [; domain-former 17)
domain~former - domain-expression, ident-values-spec

[, ident-values-spec 1 [: conditionl
domain-expression = arithmetic-~expression
ident-values-spec + identifier 1IN id-values

id-values + type-identifier
| integer-subrange

The following remarks hold concerning the definition above:.

&) all domain expressions in a domain must be of type
integer; all identifiers in a domain expression must be

-of type integer;

AR . . " ; » .. o o 3
(L) . each and .every integer variablé appearing in a-domain
- expression must have the corresponding set of : values
stated in an identifier values specification; .

—p
St

in the trivial case a domain expression is an integer
number, there is no corresponding list of identifie®

. values specificationgﬁandfﬁo condition;

(iv) the p0531b1e values for varlables in a domain expressmon
can be stated elther by a type 1dent1f1er correspondlng
to - another (prev10us1y defined) domain type or by an
.integer.subrange, as defined in section 2,

- -16-

The values belonging to a domain type are those generated by
all domain formers when the integer variables appearing in the
corresponding domain expressions take on their corresponding
valﬁes, provided the conditions (whenever present) are "true". If
some condition is not present then all values generated by the

corresponding domain expression are in the domain.

The identifiers in the list of identifier values specification
in a.domain.formeriare assumed .to be nested, the rightmost one in
the list being the most deeply nested one, and .so on. Domain formet
values are ordered according to this nested priority, as in a nested
. group of iterations. Domain values are ordered from left to right,

obeying each .domain former internal order.

Each new value generated is checked against the ones already
in the domain; if already present, a value is not duplicated in the
domain.

As an example, consider another way of representing the

divisors of 12:
TYPE divl2a = DOMAIN (x, x IN (1..12) : rem (12,x) = 0) T-END

The .condition in the definition of a domain can be either a Boolean

- expression or a quantifier expression.

condition - Boolean~expression
| quantifier-expression

In a:quantifie; expression the universal (V) and existential
(39 quantifiers may be used, The general form of quantifier

_expressions is:
quantifier-expression - quantifier ident-values-spec
. . %
[, quantifier ident-values-spec 1
¢t Boolean-expression

quantifier » [-1 3
| v

=17

Note ‘that ‘the identifiers in quantifier expressions -are not
.necessanily.those’appearipg‘inAthe.&omain:fdrmer?exp:eSsidn,‘as‘
is the case when the condition is a Boolean expression.

The,domain.below.contains“all“prime:numberSmbetWeén and
including 1 and 100

TYPE prime = DOMAIN (I ;

%, x IN (2.,100) :
T3y IN (2.. x=1) :
".rem(x,y)”=zD) e T-mND
‘PEB'providéswfour structured typeS° arrays, records, sets
and tupless '

structured-type = array-type
| record-type
| set-type
| tuple-type

Array types in PEP are defined beloW}‘No'dynamié'arrays in the

-sense of Algol 60 ‘are -allowed, Memory space .for arrays is .allocated
when array 1dent1f1ers are declared.

'array-type- + ARRAY (bound~pa1r L, bound*palr]*) OF base*type
.boﬁnd-pair' > ‘1nteger~constant.. lnteger—constant

The type of array’ components(the base type) can be spec1f1ed by
a prev1ous1y defined type identifier.

base~type > standard-type
| type-identifier
Ekample:
TYPE T = ARRAY (-5..5, 0..10) OF divl2 T-END
DECLARE A : T D=END - |

Elements of array A can assume as values the enumeration
constants of type divi2. ' '

~-18-

Records in PEP are similar to records in Pascal, with no

variant part.
o . £
record-type =+ RECORD (field [; field 17)
field » field-identifier [, field-identifier 1* : base-type

field-identifier = idemntifier

As is the case of arrays, type identifiers appearing as base

types must have been defined before.

Record types are used mainly to represent linked lists. Lists
can be implemented through the use of another standard(and un
structured) type of the language PEP, the pointer type, which we

now describe,

The values which can be possessed by pointer variables are
addresses of instances of . variables declared of type record. More
particulary, pointer variables are assigned, in their declaration,
to one certain record type, as seen below. Any attempt to set such
a variable to any other variable, not of the type record or not of
the particular <record to which the pointer variable is assigned,

causes an €rrovr,

pointer~type - POINTER record-type~identifier

record—~type~identifier - type-identifier

It should be noted that pointer type fields within a record
of type A must refer to instances of the record type A. Otherwise
4 pointer variable declared to point :op A could eventually end up

indicating some instance of a differenc record B.

To illustrate, consider the program section and the remarks

below:
TYPE P = POINTER PERSON
PERSON | = RECORD (name: CHARACTER;

age,salary ¢ INTEGER 3

marital—-status : BOOLEAN:

father ¢ P) '
T -END

~19-

DECLARE Q, R : P ;
EMPLOYEE : PERSON

D-END

Remarks:

- P is the name of é.pointer type. Variables declared of
type P (Q, R) can only point .to instances of variables
- declared of the (record) type PERSON;

- PERSON is the name of a record type (otherwise a compile
time érror.would.occur) containing five fields:

 "name", "age", "salary", "marital-status” and "father".
All fields are of basic types, except the last one,
declared of type P (which is a pointer to PERSON) ;

- Variables Q and R are pointers to instances of "PERSON";

~ Variable EMPLOYEE is a record of type PERSON,

Contrary to arrays, record variables -are not created when
declarations are processed, at compile time., Instead, they are created
dinamically, as we shall see below. When record typeS'ére.defined/they
merely set a pattern which variables declared of that type must obey.
New instances of record variables are created by the.record'creation"

statement below:

record-creation~statement + NEW .record-variable SET pointer-variable;
record-variable - = identifier

pointer~variable = identifier

Execution of this statement creates a new instance of a variable
declared of a certain record type, and sets to this instance an allowed
pointer, ‘ '

Example: NEW EMPLOYEE SET Q ;

Instances of record variables are automatically deleted when are

not being pointed at by any variable,

To conclude the presentation of ' record types, we remark:

-20~

- fields within records can be accessed through their names,

qualified by an allowed pointer, as for instance

Q. age (an integer value)
Q. father (a pointer value)

Q. father.age (an integer value)

~ pointer assignment statements are allowed in PEP. So
Q :.=R 3 R : = Q. father 3

are valid assignment statements since both Q, R and father

are declared as pointers to the same record class.

Another structured type in PEP is the set. All elements of
a set in PEP must be of the same base type; otherwise sets in PEP

are similar to sets in SETL [SC# 731,

set~type -+ SET OF base—type
Example:

TYPE S/ = SET OF INTEGER T-END
DECLARE A : S ©D-END

Given the above the set’{1,5, 11, 17 } is an allowed value .for
variable A,

Sets can be assigned to wvariables in two ways in PEP:

() by explicit assignment as in

CAz="{1,5,11,17};
(ﬁi)' by iteration. In this case a set former (similar to the domain formers
>a1ready seen) is the right hand side of a set assignment statement.
Example:
DECLARE § ¢ SET OF INTEGER D -fND

-21-

=={ Ps P IN (20 0100) H —'3"77’ IN (2_.0p..l).;- REM (p,y)=0};
The value of variable S is the set of all prime numbers (integers)
"between 2 and 100, . ‘
It is important to mote that elements of a set are not assumed to
be ordered. | |
The follow1ng operatlons and tests are allowed on set varxables
(say. A, B) and set elements (say x) s

-‘membershlp test ¢ x ¢ A ;'

- equality test ¢ A= B;

- =-inclusion test: A ¢ B;

- set cardinality : CARD (A) ;
- powerset : POW (A);

- set union : A U B3 :
?JSet intersection } A n B 3.
= set difference 3 A‘— B.

To conclude this section bh standard data types, we present the
structured- type tuple. Tuples in PEP are based on tubiés in SETL. They
differ from sets in that tuples are ordered sequences of elements; they
differ fromeupleé’in SETL in that all elements of a tuple in PEB must
be of the same base type: |

tuple-type = TUPLE OF base—type
‘Tuples can be asslgned to tuple varlables expllcitly, as follows.

DECLARE A,B : 'TUPLE OF REAL ;
'C': REAL D=END

e

A=< 1,0, 2.1, 3.1 5 ;
‘Bi= < 5.0>;

Tuples can be manipulated in several different ways.

A tuple can be appended to another tuple through the concatenation
operator || , as for instance in the assignment statement below:

Ai=A || B;

22~

yielding as the new value for A the tuple < 1.0, 2.1, 3.1, 5.0 >.

The fact that tuples are ordered allows for the use of operations of
indexing, extracting and repetition . The ith element of a tuple A can be
accessed directly by means of the notation A [i]J. In the example below
the real variable C is assigned the (real) value of the second element

of the tuple A :
C:= A[Z].;

Sections can be extracted from tuples and assigned to other tuple

variables, as in the example below

Bs= A [1:2] ;

The first element in the bracketed pair indicates the beginning of
the desided section; the second element indicates the length of the
section . After the assignment above, B has the value <1.0, 2.1>. The

expression B % 3 has the value
< 100, 201’ 160’ 201’ 140, 201 >

Other operations and tests in tuples:

- equality test : A = B ;
- membership test : C € A ;
cardinality : CARD (A) ;

1

1

head, tail, initial, last :

meap) £ Ar1:11
TAIL (A) 9_;-?,5 A [2: CARD) 1]
INITIAL (A) -—= A [1: CARD(A)-1]

wasT (a) def A rcampa) : 1 2]

-23~

4. THE IMPLEMENTATION MODEL.

Basically a stack model is adequate to spppo:t.an implementation of the
language PEP, due to che-following languagé gharactéristiqs:

(i) all modules and routxnes are potentially recursive;
(ii) there is no storage retention: allocations and deallocatlons are
- processed on a first in last out basis.

However, a heap is also needet to. melement re¢ords, ‘sets ‘and tuples, >
which can grow dynamlcally._ ' e

Execution' of a PEP progrgm consists of a sequence'oﬁ.snapéhots, each of
Which‘having two components: an algorithm and a recotd of'eXecﬁtiQn. The
algorithm is some representa;xon of the glven program, and is 1nvar1ant
throughout the computatlon. A posslble representatlon 1s a nested set of
contours, as in [Jou71 1. ' ot

The record of execution consists of a processor, a stack and a heap. The
stack contains a series of activation records (AR'S), one on top of the
other. There are three kinds of AR'S in PEP, correspondlng to the prologue,

modules and routxnes.

a. Prologue AR

Its format is-indicated in Fig. 1 below.

5
L
+ cells for other module names (possibly absent)
« cell for main module name
<« cells for ;dentlflers (variables and procedures)
(possibly absent)
. cells for type defxnltxons (possxbly absent)
b | b

N

[—

Figure 1. Prologue AR

-2l

Both the static link (SL) and the dynamic llnk (DL). of the prologue AR
have the value nil. The prologue AR is generated at the beginning of the
‘computation, when the program prologue is being processed. It sits on the
bottom of the stack for the duraﬁion.of the computation, getting deallocated
upon program terminatiom.

Corresbonding cells are generated whenever type definitions are present
in the prologue. The formats of such cells vary with the type being defined.

Without going into too much detail, it is interesting to note that:

(1) - enumeration and domain values can be computed at compile time and
' can be stored in the stack, in the cells immediately on top of the
cell contalnlng the name and type code of the type being defined.

Also, this cell needs a pointer to the last (topmost)value cell.

(i) arrays are also static. Whenever an arxay type is defined, the
corresponding cell in the stack is a dope vector containing

- '1nformat10n such as number of dimensioms, bounds, and the like.

(ii1) record type cells contain information such as field names and

field types.

(iv) pointer type cells contain a pointer to the corresponding record

type.
) set and tuple type cells contain the name of the component type.

Global identifiers (varlables and procedures) also generate cells in
the prologue ‘AR- when present in' the prologue° These cells have the usual
format, unless the variable type has been defined before; in this case, the

cell contains a pointer to the . ‘corresponding type cell, f

Each module in the program generates a cell in the prologue AR,

pointing to the first instruction of the corresponding module.

b. Module AR

These are generated when either:

25
(i) an EXECUTE statement is found in the module being processed;

or (ii) a reserved word MODULE is found during sequential program

execution.

The general format of module AR's is given in Fig. 2 below.

« cells for identifiers (possibly absent)

« cells for type definitionms (possibly absent)

+ cells for global access:(possibly absent)

RIP DL |-

Fig. 2 : Module AR

Module AR's are.deleted when the reserved word M-END is found (there is
no RETURN from modules). '

Due to the seope rules of PEP, ;he~SL'Of module :AR”s would, if present,
point to the prologue AR. Therefore this information is redundant, and instead
of the SL a return instruction pointer (RIP) is used. The RIP points to the
instrugtion'to-befexeeuted“When'the module -AR in deallocated . Tﬁo cases may

occur:

(1) Module AR ‘created: by EXECUTE statement: the RIP p01nts to the
~ instruction following" the EXECUTE statement, '

(i) Sequential entry: RIP poinﬁs to first imstruction of next module.

The DL indicates the base address of the program section being
executed when the module AR ‘was created by an EXECUTE statement, or the base

=26~

address of the prologue AR if the module AR was Created on sequential

entry.

Global access cells must contain the access type (READONLY or
READWRITE), the name of the (variable, procedure or type) idemtifier

to be accessed, and a pointer to the corresponding global location.

Cells for type definitions and identifiers are as in the prologue AR,

Co Routine AR

Generated when either a procedure is called or a function name is used
in an expression. Deleted when either a RETURN statement is executed in the

routine body or upon normal routine exit.

Routine AR's are illustrated in Fig. 3 below.

“ cells for identifiers (possibly absent)
+ cells for type definitions (possibly absent)
“ . cells for globa} access (possibly absent}
< cells for parameters (possibly absent)
SL DL

Fig. 3 : Routine AR

The SL points to the bottommost stack position of the AR corresponding
to the program section in which the just called routine is declared. The DL

points to the bottommost position of the calling program section AR.

Parameter cells must have a field in wh1ch the parameter type (INPUT,
REFER or OUTPUT) is defined. In addltlon, the f0110w1ng ‘must be observed:

a. INPUT'parameters (passed by vélue')t' v

- if variable of any -simple typé, the remainder of the formal
parameter,cell is like the actualuparame;ér;celliﬂv e

- if array varlable, a new group ‘of stack cells is created,

 similar to the actual parameter group of ce11s,"
.~ record and pointer. variables cannot be passed idas INPUT parameters;

- set (tuple) variables asyINPUT;paramenershcaqae_thezcrgapiqnl of
.a new;area.ingthe«heap{whereathe-setx(tuple)aValuéSqaré copied.

In.the formal parameter cell, a.pointer: to: this new area is set.

b. REFER and OUTPUT parameters (passed by reference):

=~ Cells for: formal parameters contain a p01nter to the correspondlngT

actual parameter cell,
Both:module .and routine AR's use, on.top of the local.identifiers

‘section; .a.portion of .the stack to perform.expression evaluation.

The processor: contains four pointers:

.

“ip: - instruction pointer, points.to the next instruction to be’executed;

ep - environment pointer, points to the base of the topmost (the active)
AR on the stack;

gp — global pointer, indicates the base of .the global AR (the one

corresponding to the prologue);

tp -'top of the stack pointer, p01nts to the first free cell on top of
the current extent of . the topmost AR,

-28-

The ip is reset during the execution of each instructionm, to point
to the next instruction. The ep points to the bottommost position of the
active AR (the one on top of the stack), and, upon deallocation of -an
AR, points to the position indicated by the DL of the AR being
deallocated.

The gp gets set in the beginning of the computation, and never
changes. Finally, the tp always points to the top of the stack, being

incremented and decremented as expression evaluation proceeds.

The heap is used to store all data structures which can be allocated
during program execution. (records, sets and tuples). Storage management
for ‘sets-and tuples‘is done internally, without the programmer's
assistance; however, records and pointers to records are entirely

- programmer's responsibility.

29—

5., ABSTRACT DATA TYPES AND ALTERNATIVE IMPLEMENTATIONS OF STANDARD DATA TYPES

5.1 Going from Specification to. Implementat1on in PEP.

One of the objectives of PEP is té reduce the gap between the spec1f1cat10n
of an a1gor1thm for the solution of some problems and its coding into a machine
acceplable form. For this, PEP allows for the organization of a program into

three distinct levels

specification

¥

cluster

representation

. The topmost level is called the specification.level. In this 1eve1 the
pragrammer 9pec1f1es his algor1thm using a very high level language (sectlons -2 Ny
and 3). At this 1eve1 he has avallable to him the usual scalar data types as well

as stru@tured data types.

The second level is the cluster level. Through the use of a modified

cluster concept the programmer may use types defined in clusters at this level.

Clusters are also used.to re—-state the semanties of a .possibly general
4standard type in terms .of more basic standara types in the language. In this case,
the code produced by the compilei for the data representation and the related -
operations defined by the cluster will be used in lieu of the code normally
produced for"the=re§1aéed very high leﬁel code. In both situations we are interested

in the effxcvency of the code generated from the cluster:

The cluster approach is due to LlSkOV and leles [LIZ 74] and consists
uf some language features to model and 1mp1ement abstract types in terms of
.operations appllcable to .objects of. the type in such a. way that the user of the:
type needs to be. concerned only with the abstract behav1or of the type as '

presented by the operations.

-30-

A cluster is an independent external module in which the
initialization of the representation of an abstract type T is
perfomed, and in which all operations P { 1< i zn)
related to 7T are perfomed. The heading of a cluster has the
following form:

T i cluster <cluster formal parameters list option>

The body of the cluster comsists of. the declaration of the
representation (which is visible throughout the cluster) and the code

for each Pj .

For more details on clusters, consult [LIZ 74, LIS74]. »

In a PEP cluster, the programmer may define the abstract type
in terms of a flexible representation (third level) and operation
bodies written using a standard instruction set for the flexible
representation. The standard operations include create, add, sub,select,etc.,

for creating instances of the data, adding components, subtracting

components, etcC...

The behavior of the standard instructions on the flexible
representation is specified by axioms (rhese axioms are presented in
the appendix). ‘

The flexible representation will usually not be a fixed concrete
representation available on thé base machine, but rather a higher level

representation implementable in several ways.

The actual implementation of the flexible representation is
specified in the bottommost level, called the representation level. This
level is considered the machine level. Here, the programmer selects a
fixed (concrete) representation satisfying the axioms of the flexible
representation . Usually (hopefully), these fixed representations will be
available from a library; however, they may be coded in yet another
cluster. At this level, the standard instruction set is implemented in

terms of machine level operations as efficiently as possible.

=3]l-

The use of flexible representations in clusters plus the possibility
of having libraries of fixed represenﬁatiooe for each base machine will allow
us to achxeve portablllty. Performance evaluatron of the various ‘coimands in
the standard instruction set for a set of concrete representatlons “ina
partlcular‘ 11brary will allow us to select a minimum cost fixed
represeotatlon for a glven appllcatlon [TOM 75 GOT74 LOW74J thus allowxng
us to achleve the goal of eff1c1ency.

Contrasting a 11tt1e with sectlons 2 and 3 we wzll describe the
syntax and semant1cs of clusters through examples' in the followxng sections

we Wlll progress1ve1y deflne our version of cluster and Lts various uses.

5.2 - Examples of Clusters and: Representatxons

5:2.1 Spec1f1cat1on of an- abstract data—type through clusters

One of the'primery'uéés"ofyc1oetéré”i§ito'createJABstrect data types
at the speclflcatlon level. As we sard before, a cluster is our- 1ndependent

external module. Ita defxnxtlon 1s the following. ‘
cluster—def1n1t1on > CLUSTER OoN rep-sPeclflcat1on WITH operatlons—llst

‘We will detail thls*deflnltlon through an: example. Let us suppose, for
biingtance,vthat‘the user‘needs‘toluse‘a "stack" in his algorithm. Since there
is no "stack" type in the. language, he must write a- cluster for it. This = .-
'cluster could look lxke o

_stack. CLUSTER ON rep ICINTEGER) WITH push,pop,top,f

1
2 DECLARE
3 st ¢ REP;;
4 D-END - ' '
5> PROCEDURE push: INPUT a;
6 st$add (' - V,a);"
7 P-END o |
8 PROCEDURE pop: ;3
9 st$SUB (' _ *);
10 P~END
11 FUNCTION top: RETURNS INTEGER;
12 RETURN st <1>
13 R-END :
14

ENU stack

-32-

Line 1 declares "stack" as being a cluster that will use same
representation (physical data structure), that is unknown at this point,
which gives a structure to integers; any variable of type "stack" can be
operated upon through the operations "push", "pop","top".. In line 3, we say
that "st" is the name of an instance of the physical data structure that
is the representation. ,

This declaration causes a call to the "créate" operation that all
representation modules (to be explained later) have; this operation has
the effect of allocating space in the memory in a way similar to the one
used for variables in the GLOBAL area., The main difference is that this
area is accessible only through the standard operations available in the
representation module.

That is precisely what the "push" and "pop" operations do; "push"
adds a new element to the representation, placing it before the first
element, and assigns to it the value contained in "a". Conversely, "pop"
subtracts the first element in the representation. Finally, "top"
consults this first element; st<1> should be read as st$SELECT (1).

A cluster may also have a "create" operation; in this case, this
operation initializes the representation with some values.

In line 1, we notice the keywords repl (INTEGER). This is an
instance of a rep-specification. What this actually says is that the
representation for this type (cluster) has one (repl) level of
structuring; the basic (atomic) type is INTEGER. At this point, we don't

specify what concrete representation will this correspond to.

5.2.2 ' Re-specification of a standard structured type through clusters,

A second use of clusters is to re-specify the semantics of a
standard structured data type for reasons of efficiency. The need for this
would rise when certain particularities in the use of this type in a
program at specification level allow us to simplify some of regular
‘operations defined for that type. Another reason for doing this is when we
want to extend or create new operations for that type.

Suppose for instance that we have a set of sets in a specification
level program, and due to the logic of the program, whenever a new set is

added to this set of sets, it is always disjoint from all the other omes

=33

already in the set. Therefore, the set—add operation would not have to
check if - 'the set beinédadded to the-set of ‘sets is already there,thus
saving execution time.

A cluster for this would look like
‘1 set-of-sets:: CLUSTER: ON' rep2 - (repl (INTEGER)) Withesosepset—addy.ee;
2 DECLARE "REP " D-END

3 PROCEDURE- .- sget-add: INPUT a;

4 DECLARE:"a' repl (INTEGER) D~END
5 S$ADD (*+',a);

6 ~P-END

.
L]

7 END - set-of~gets

In thié example,we say in line 1 that the representation for this
cluster “has: twé:levels of structuring and that the basic type is INTEGER.
Clearly, the outermost level (rep2) corréSponﬁs to the set (of sets); the
innermost level (repl) corresponds to thehsets contained in the set of sets.
Since the elements of the outermost set are‘séts themselves, the parameter
for the set-add'operatioﬁ is of the "innermost set" type (11ne4)

When: we have this kind of composite representatlon (several
levels), ve must use the "composite" selectiun. When we write s<i> we

select the whole set (repl(INTEGER)) that is in pos1t10n" i in'fepz. In
the same way; s<isj> selects the j EB element (INTEGER) in the lth set
(repl) in the set éf'sets (rep2)

As in the first example both repl and rep 2 stand for "genéric"
representations (probably different) that will be associated with a

concrete ' representation module at execution time.

5.2,3 - A representation”levelgp ogram

A representatlon level program (module) 1mp1ements a concrete data
structure with a standard fixed set of operations. Thls is the representatlon

module referred to as tepi in the previous examples.

34'

Let us see, for example, how a linked list would be implemented:

1 1list: REP is RECORD(val: INTEGER; next POINTER REP) ;
2 DECLARE
3 r : REP
4 head, last: POINTER REP ;
5 D+«END
6 PROCEDURE add: INPUT pos, elem ;
7 DECLARE
8 pos : CHARACTER ;
9 elem: INTEGER
10 1ink:POINTER REP
11 D~-END
12 NEW r SET link ;
13 link.val:= elem;
14 IF
15 pos = '=' THEN BEGIN
16 link.next:=head;
17 head.next:=link;
18 END
19 pos= '+ THEN BEGIN
20 link.next := A;
21 last.next := link;
22 END
23 I-END
24 RETURN
25 P-END
26 END list

In line 1 we say that the "template" for the representation is a
record with two fields, ome for the value ("val") and another for a pointer
to the next element("next"). Line 3 says that "r" is of the spe;ial type

REP, which is actually the template declared in the header. We also have

35w

two auxiliary variables "head" and“"last", which-will-point to the

first and last nodes 1n the list, We assume that ‘these two varlables

are properly 1n1t1a11zed in the ' create" operation for this representatlon@

It should be- noted that all variables declared in lines 2-5 refer to
memory 10cat10ns that are flxed, i.e., their ailocatlons and de-allocat1ons
-are controlled explmcltly 1n the operatzcn bodies in the representac1on,
and are not automat1ca11y .controlled by the module’s: actlvatlon and
‘de*actxvatione\Thus their values remaln unchanged between actlvatlons of

the representatlon module. ey

The operation "add" receives two input (by value) parameters, a

position ("pos") and a value ("elem") (line 6); it creates a new node
with valae "elem” (lines 12-13), and links this node in the'beginning' '

(lines 15-18) ‘or' end" (lines 19-22) of the 11st, according to "pos”, Llne
20 a331gns K (null poxnter‘value) to the next" field of the record
'tp@lnted to- hy "1ink"..

5Q2@4=-‘Efficiency.Ccnéiderations

The efficiency problem can be - tackied in many ways in PEP. First,
;a s exemplified before,l we. canre-specify' the semantics of a standard

T«strtm::t:t.t‘r:‘ed data type and’ 1nerease ‘the efflclency of some operations,

Another way is to gather statmstlcs on the use of standard operétlons
of rep's [TOM75], and ‘also on the use of such operatlons in a. g;ven program.
In this way, we would be able to: determine which are the crucial. operatxons
for that specific program and provide the representation where these
particular operations are more efficient.’ 3 .

Note that a rep is supposed to make the best possible use of the
resources of a given machine; it does not have to be coded in PEP. Now,
supposing that each machine hééfféﬁéilable a library of representation
level programs,: with statistics"géﬁﬁefed about their operations, it is not
difficult to envisage a system where éhe:representations.would be selected
automatically [LOW74].

Finally, there are sgméisituations when the specification level
"drives" the cluster'in an inefficient way. For example, consider the

statement (b is a sequence)

_36..

bi= head (b) || 'a'||tail (b)

This would be translated into 4 operation calls (head, tai1,||ﬂ ||).
But if we look at this closely, we will notice that this is equivalent to
(suppose r is the representation of b) ’

r $ INSERT (*a’', 1, "+') (insert 'a' after the 1lst ‘element) .

To avoid such situations, the user is able to define "patterns" of
operations. Whenever an operation matches the pattern, a specified piece of
code is generated, instead of the standard compilatiocn code. This

pattern-matching is activated through an option for the compiler.

35.2034 Portability

Our approach to pertability is based on the idea of standardizing the
instruction set that operates on the flexible representation. This notion was
suggested by the work of Standish ' [STA73] where an attempt is made to '

axiomatize the basic properties of all data structures.

Assuming a’storage structure that behaves like Standish's data spaces
we have converted the selection and assignment operations into a set of
convenient basic upgratioﬁs that form the instruction repertoire of our
cluster level (ioeai,'df,our flexible representations). These basic operations
have a very simple and universal seméntics which does not depend on the actual

implementation of the flexible representation.

-37-

APPENDIX

Let r e rep(t). Then a value of ¥ is a sequence of t's selected by
consecutmve integers startlng from 1. The 1ength of 'such a: sequence is ‘one
less than: the first index i such that the selectlon of the Jth element yields A.

The operations. assumed are: .

add: rep (£) x { "+' , '=' }x t > rep (t)

add: (S,p,e) A add e to. the beginning or end (dependlng on whether

p1s '+' or ' ') of S

sub: rep (t) x t » rep (t)

sub: (S,e) 4 remove e from S if e is in §

select: rep (t) x int + t , . ,

select: (8,i)=S<i>.A the ithleleﬁent of S if i;'exiets and‘Aiotherwise

replace: rep. (t) x int x t}+'irep (t) o :. _ a

replace: (s,i,e) Qv change the ith element of S‘;o‘e if S<i> = A

insert : rep (t) x int x {'+' AL t + rep (t) |

insert : (S,i,p,e) A insert e into S before or after

(depending on whether p is '+t or '-') the i*® element of S.
In the above,”wheneﬁer aenelemene is“insertedmer-rehoved the indices

arevshiftedvtOrpreservefthe.factrthat.consecutivelinfegers.from.l,through the

~length: select non-A elements. Formally, we haveyfolloWing4axieme:

Let r = rep (t)
1) ver o [(Vi) (lgi< length (v) > (select (v, i) e t A select (v, 1) 278)) 1

2) v=add (s;'+',e) iff [length (v) = length (s) +1 A select (v,1)= e A

((vi) (1sis length (s) > select (v,i+l)=select (s,i)))]

3) v=add (s,'-',e) iff [length (v)=length (s)+1l A select‘(lengthv(v))ee A

((Vi) (lsis length (s) > selectv(v,i)=select (s,1)))1

~-38-

4) v=sub (s, e) iff
' (HJ ve = gselect (s,J) 2 [1length (v) = length (s-1) A
((Vi) (1i<j-1 o select (v,i)=select (s,i)))
A ((Vi) (j+1si< length (s) = select (v, irl)=select (S 1)))] A
((23)>e = select (s,J)) > vms '

5 v =5 iff (‘«’j) (select (v,j) = select (s,3))
6) v = replace (s,i, e) 1ff
((select (s,1) = A A(V-]) (G=» select (v,j)=
select (s,J)) A select (v,1)=e) ‘
DV = insert (s,i, "+', e) o lff [1<1s length (s) > (length (v)alength (5)*'1:_

AV (ISJSL) > select (V,J)" (S,J))
((V3) (i*lsj< length (s)) > select (V,J+1)-se1ect (s,3))
A select (v i+l)= e)] '

>,

8) v = insert v(s i,.}_ ’e) o lff [1(15 1ength (S) 2 (length (V) =1ength(8)+1
A (Vi) (sis i-1) > select (v,i)=select(s, 1))

A ((V3) (isjs length (s))> select (v,j+l)=select (s,j))

A select (v,i) =e)]

Notation: v <i>= select (v,i)

=30=

REFERENCES

BER 74

GOT 74
JOH 71
LoW 74
NAU 63
SCH 73
TOM 75
WH 66
WIR 72

BERRY, D.et al. - SIRUGGLE —- structured ge nerallzed;goto-less
language (prellmlnary‘Ver31on) Los Angeles, University of

California, Computer Science Department, 1974. Memo.~-134,

GOTTLiEB, C.C. & TOMPA, F.W. - Choosing a storage schema.
Acta Informatxca, 1973°

vJOHNSTON, J.B, — The contduf model of block structured

computations. Sigplan ﬁ&ﬁicés, 5 (2), Feb. 1971,

LOwW, J.R. = Automatic c&&ing choice of data structures.Stanford,

Stanford University; Computer Science Department, 19745 STAN-CS-74.,

. NAUR, P.ed. = Revzsed report on the algorxthmlc language Algpl 60,

Communlcatlons of : the ACM, 6 (1) Jan. 1963.

SCHWARTZ, J.T. - On programming: an interim report on the SETL -

project, Installment I : Generalities. Néﬁ Yofk,_New York Univqrsityﬁv

Courant Institute of Mathematical Sciences, Computer Science
Department, 1973. '

TOMPA, F.W. = Evaluatlng the efficiency of storage structures.

Waterloo, University of Waterloo, Department of Computer SCLence, ”;ﬁ
1975@ CS-75-160 N

WIRTH, N.; HOARE, C.A.R. — A cbntribution to the development of
Algol. Communications of the ACM, 9 (6), June 1966.

WIRTH, N. - The programming 1anguage Péscal; revised report. Zurich,
Eidg. Technische Hochschule, 1972. '

