Series: Monographs in Computer Science
and Computer Applications
N 7/75.

ON TYPE DEFINITION FACILITIES IN VERY HIGH
LEVEL PROGRAMMING LANGUAGES

vby

Sergio Carvalho

Departamento de Informatica

Pontiticia Uriversidade Cetclca dz

Rua Marqucs deo Sac Vicente 209

Rio de Janciro — Brasil

Series: Monographs in Computer Science
and Computer Applications
NQ 7/75

ON TYPE DEFINITION FACILITIES IN VERY HIGH

LEVEL PROGRAMMING LANGUAGES *

by

Sergio Carvalho

"/DIVISAO DE INFORMAGOES
" RIRLIOTENA.

cédigo/registro data

¥ | gl o e

RI0O DATACENTRO | &
RI0O DATACENTRO DIVISAO DE INFORMAGOES -
- — BIBLIOTECA
- Series Editor: Larry Kerschberg November, 1975

* This work was supported ‘in part by the Brazilian Government
'Agency FINEP under contract NQ 244/CT, and developed by the
Information Systems Group,Departamento de Informatica, PUC/RJ.

ABSTRACT:

Very high 1e§e1 languages are being developed to serve as a
tool in the production of reliable software. One of the features of such
languages in the ability programmers have of defining new data types. In
thié paper we define one such type, the domain, &hich, when coupled with
a generalized FOR statement, can be a valuable aid to programming in high

levels of abstraction.

KEY WORDS:

Vety h1gh level language, data cypes, FOR statements,

program correctness .o

RESUMO: *

Linguagens de especificagao estao sendo usadas na produgao
‘de sistemas de computéggo confiadveis. Uma das caracteristicas destas Iihgqg
gens e a possibilidade dada aos programadorés de definir novos tipos de da
dos. Nesta monografia e definidd o tipo "domain"”, que, quando usado em
conjunto com’ um comando MFORY generallzado, pode ser um instrumento valloso

na programagao em niveis de especxflcagao.

PALAVRAS. CHAVE:

Linguagem de especxflcagao, tipo de dado, comando iterativo,

corregao de programas.

1.

3.
4,

REFERENCES

CONTENTS

INTRODUCTION AND PREVIEW =~ \ - 1
THE ‘DOMAIN TYPE ——=m—mmm- . e 2
2.1 MOTIVATION =-—=mmm -2
2.2 DEFINITION —--- 3
2.3 OPERATIONS ‘ON DOMAIN TYPE CONSTANTS —=---=-—-= 5
DOMAINS .AND FOR STATEMENTS , —-5
CONCLUSTONS 6

1. INTRODUCTION AND PREVIEW

Recently it has been recognlzed that abstractlons are the maxn tool
available for disciplined problem solving L DIJ 72, HOA 72a, WIR 71a, WIR 74]
It has been pointed out that the human mind has a very 1;m1ted‘capab111ty for
handling large problems. We can then’use.ébsﬁractions to decompose and "solve"
the originalzproblem;‘ééch’ébstraction becomes a new problem to be solved, until
we are left with an organized sequence of steps, which can be easily coded in
some programmlng language. This is the principle of Dijkstra's structured
programming [DIJ 72] and Wirth's stepwise program development -[WIR 7lal. It
has been argued that programs resulting from the application of the technique
above are more reliable, in‘aﬁ informal sense. Prbgrammers'can assure themselves
that at any time during the solutlon process,‘ the pértlal solution at hand is.
" correct.", and hence the final solut1on is also correct. We would like, however;j}
to obtain formal: proafs of program correctness. Thls requlres the use of a set
of formally deflned tools. which would allow us to encode abstactions (eltheri
functional or data abstractions, as recognized by Liskov [LIS 75 1); ‘each

partial solution could then be formally proved correcta

To define this set of tools, two main (and interrelated) approaches
are being taken. The extensibility approach [CHE 69, SCH 71 -1 consists in
allowing programmers to incorporate to a " base 1angﬁage " the features he
feels are important to the solution of his particular problem. Thus, for
instance, programmer defined data types and control structures would add to the
power of the base language at hand. Standish [STA 75] recently surveyed this
field. ‘

‘ On the other-hand, the acknowledged inadequacy of most programming
languages available today to serve. as a tool for describing partial solut1ons has
led many to develop " very high level " " specification " languages [SCH 73,
LIS 74, MOW 74 "ASW 751 . Common features of those languages are; for instance,
more powerful control structures and programmer defined data types. Although
several -such languages have been 1mp1emented, more research is still needed
in this area. In particular, Zahn [ZAH 75] points out that " gserious con51derat10n
should be given to extensions of the for’ statement to cater for progres51ons of

values defined by more general successor functions ".

-

In this paper we propose one such extension. The results that follow
were obtained during the definition of the specification language PEP LCLRS 751,
which is now under implementation.

In section 2 the type "domain" is introduced and defined, and the
operations allowed on domain values are explained. In section 3 an iterative

statement which takes advantage of domain types is presented.

2. THE DOMAIN TYPE

2.1. MOTIVATION

From the data structuring point of view, Pascal [WIR 71b] can be
considered a language of a higher level than, say, PL/1 [IBM 68]., Pascal
users have the ability to define new types in their programs, and, in particular,
a "scalar type" can be so introduced. A scalar type in Pascal in defined by '
enumerating the identifiers which are the type constants. For ‘example, the type
definition below introduces a new type "div 12", whose constants are identifiers

for the divisors of 12.
type div 12 = (one,; two, three, four, six, twelve);

A left to right ordering is assumed among the constants of a scalar type.
The functions succ, pred and ord can be applled to constants of such types,
yielding respectlvely the successor, the predecessor and the ordinal number‘
(in the enumeration) of a given constant. ‘

One drawback of this form of type deflnltlon is that the programmer,
has to list all his type constants. Clearly in some situations this would be
cumbersome. Another problem is that the type comstants are identifiers, and ‘.
sometimes what the programmer wants is to define a new type whose values ere.H
a particular group of 1ntegers. For example, suppose the programmer has a way
of deflnlng as a type a certain group of prime numbers, say between 2 and 100.
Such a fac111ty would be very useful in a very hlgh level language environment

where the programmer could use, for instance, the:following iterative statement:

for i - in prime2-100 repeat S f—-end

Such a statement could be used in some level of abstraction during the

development of the solution of the problem at hand, thus relieving the programmer

from the burden of, at this early stage, worrying about programming detalls.‘

2,2. DEFINITION

In this section we show a way in which unstructured types whose constants
(integers) are generated according to powerful formation rules can be defined..
Such types in' the language PEP are called domains, and are syntactically defined

as follows:

domaid;;ype + DOMAIN'(domain_ﬁotmer { ; domain former ¥
domain_former -+ domain_expression X
' {, ident values_spec }* .

[: condition 1

domain_expression + integer_expression
ident values spec - identifier IN values

values -+ type identifier

| integer_ subrange
integer_subrange + (initial value.. final_value [, step 1)

initial value - integer_expression
final value - integer_expression

step > intege;;pxpression

The values of a domain are generated by a sequence of domain formers
(similar to the set formers of SETL [SCH 73]). Each domain former consists
of an integer expression, followed by a (possibly.absent)-list of specifications
of identifier values, followed by a (possibly absent) condition. Each and every
iinteger'variableﬁappearing in a domain expression must have the corresponding
set of values stated in an identifier values specification. In the trivial case
a domain expression is an integer number, there is no corresponding list of
identifier values: specification,. and no condition. The. possible values for
variables in a domain-expréssion can be stated either by a type identifier
(in the sense of Pascal) corresponding to another (previously defined) domain

type or by an integer subrange.

" The values belonging to a domain type are those generated by all domain
formers when the integer variables appearing in the corresponding domain

expressions take on their corresponding values, provided:

b

(i) the conditions (whenever present) are "true" ;

(ii) the value Just generated is not already in the doma1n. _

The xdentlfxers in the 118t of Ldentxfler values specification in
a domain former -are assumed to be- nested, the rightmost one in the list being
the most deeply nested- one, and so on. Domain former values arevordered according
to this nested prlorlty, as in a nested: group- of iterations. Domain Values are

ordered from left to r1ght, obeylng each domain’ former 1nternal order.

As an example, consLder another way of representxng the d1v1sore'of 122

DOMAIN (X, X IN (1..12) & REM (12,%)= 0)
‘A condition-in a;domain'former-can be either a Boolean expression or a
quentifier”expression;
- condition - Boolean expressxon
) 'l' quantlfler expression
quantifiep;expreSSLOn - - quantifier jdent_values spec

{, quantifier ident values spec P

: Boolean expre351on

quantifier - =113
| v .
Note that the 1dent1f1ers in quantifier expressibns are not necessarzly
those appearing in-the domaxn former expresslon, as is the case when the condxtlon
is a Boolean-expression. The domaln below contalns all prime numbers between and
- including 1 and 1003 ‘

DOMAIN (1 ;

X, X IN (2..100)

HE 3 Y IN (29 .X"l)

REM (X,Y) = Q)

_5...
2.3. OPERATIONS ON DOMAIN TYPE CONSTANTS

As mentioned before, domain values are ordered. Functions like
Pascal’s succ, pred and ord are thus naturally applicable to domains,
However, a slight modification from the Pascal definitions is needed to
avoid ‘a possible ambiguity with respect to type constants, This can arise
if a certain constant is present in two different.domainé, say the domain
of the prime numbers from 1 to 100 and the domain of odd numbers from 1 to 99.
To solve this problem we add to the function specification the name (type identifier)
of the desired domain. For example, if "prime" and "odd" are the names of the

domains-mentioned above, we have:
“suce (7, prime) = 11

and suce (7, odd) = 9,

.~ "Note that since no value can appear in a domain more than once, no

ambiguity can arise from the use of the functions above.

Domains were designed mainly to be used in conjunction with FOR
statements' (section-3), but since domain constants are integer values, integer

arithmetic could be applied to them, provided:

(i) in an arithmetic expression, all variables are of the same domain

type, and all constants belong to this particular domain;
(ii) the value of the arithmetic expression is a constant belonging to

that particular domain., Note that this is run time type checking,

and. as such inefficient,

3. DOMAINS AND. FOR STATEMENTS

With the ﬁelp of domains, a cléssiof FOR statements more general than
that in most programming languages“cén be defined. This is so because control
variables in those statements may range through values which do not necessarily
form an arithmetic progression. In thé’language PEP, FOR statements are defined

as follows:

L g

for_statement - FOR control_variable IN rangeﬂﬁpec
REPEAT. statement { statement }* F_END

control_variable - identifier
range_spec + type identifier

| integer subrange

The sequence of allowed values for the control variable is expressed
by a range specification, which can be either the name of a previously defined
domain or an integer subrange. As is usual [HOA 72b], the control variable
can be assqmedvas,being declared in the séope. of the FOR statement, of the
type determined by the range specification. As an example, consider the FOR
statement belows

FOR i IN prime REPEAT S F_END

A useful extension can be easily added to the statement defined above. Suppose
one must use a sequence of integer values which is present in a domain, but
which does not constitute the whole domain (say the sequence of odd numbers
between 51 and 99). The following syntax could be used instead of defining a

new domain :

for_statement > FOR control_yariable

IN range spec

: Boolean expression
%*
REPEAT statement { statement }
F_END

Then it would be possible to write

FOR i IN odd : i > 51 AND i < 99 REPEAT S F_END

4, CONCLUSIONS

Very high level languages are‘being used asba‘means towards the
obtention of reliable software. One of the features in such languages is
the ability programmers have of defining new types. In this paper it was
shown a way in which pfogrammers can construct new types (domains) whose
values are generated according to powerful formation rules. Domains, coupled
with a more general FOR statement, can be a very useful construct in a very

high level language aimed at disciplined programming.

“REFERENCES

“ASW

75

CLRS 75

D1J

HOA

HOA

IBM

. LIS

LIS

- Mow

.SCH

69

72

72a"

72b

68

74

75.

74

71

- ASHCROFT, E.A. & WADGE, W.W. Lucid - a formal system for

writing and proving programs. Waterloo, Univ. .of Waterloo,

Department of Computer Science, 1975..CS ~ 01,

| GARVALHO, S. et alii, ~ PEP: a language for provability,

'effieiehéy énd portability, - Rio-de Jameiro, PUC, Departamento
de Informatica, 1975. ISG - 2, - -

CHEATHAM, T.E. Motivation for extenSible.languages. SIGPLAN
Notices, 4 (8) : 45-8, Aug. 1969 516l

DIﬁKSTﬁA;Iﬁ.W; Notes on s;ruétured programming. In: DAHL,0.J.

ét.éiii.fSttﬁcturéd programming. London, Academic = Press,
1972, p.1 - 72, »

HOARE, C.A.R. . Notes on data structuring. In: DAHL, 0.J. et
alii, Sgrugtured[p:égramming.:Londbn, Academic Press, 1972,
p..83 - 174, |

. A note on the FOR statement. BIT, 12 : 334-41, 1972,

IBM. System / 360 'PL/1 reference manual.. 1968..GC 28-8201 - 1,

'LISKOV, B, . A note on CLU. Cambridge, Mass., MIT Project MAC,
. .1974. Group Memo 112, ' |

... Data types and.program.qpnrectness. ;SIGPLAN.Notices,

Sp—————

10 (7 : 16 - 7, July 1975.

MORRIS, J.B. & WELLS, M, Progress report on.the language
MADCAP - 6. - Univ. of California, Los Alamos Laboratory, 1974.

SCHUMAN,. S., ed. Proceedings,of;thellnternatibnal‘,Symppsium.on
extensible languages. ' SIGPLAN Notices, 6.(12) Dec. 1971,

SCH

STA

WIR

WIR

. WIR

A\

73

75

la. ..
. ... ACM, ‘14 (4) : 221-7, Apr. 1971.

71b

LS

75

SCHWARTZ, . J.T.. vOn“programmingftanﬂinterimaregortHOn'the SETL

.project-r-installmeht:IE generalities. New York, New York

Univ., Computer Science'Depaftment,‘1973. '

STANDISH, T.A. Q[Extensibility?invprogramming language design.
SIGPLAN Notiges, .10.(7) : 18 - 21, July 1975, T

WIRTH, N. ';Program¢dev¢10pmen:;byﬁstepwise'fefinement. . .Commun.

. .The programming language PASCAL;"fﬁtta Informatica,
13 35-63, 1971.

.= On-the composition of well structured prdgrams.

Computing_Surveys:'g_(Az 1247 - 59, Dec. 1974.

ZAHN, C.T. Structured control in prgramming. SIGPLAN Notices,
10 (7)) : 13-5, July 1975,

