Séries{ﬁﬁdnbgraphs in Computer Science
 and Computer Applications
| N? 4/76°

-

GENERATOR FUNCTIONS IN MODULAR PROGRAMMING

. by

“Arndt von Staa

Dépattamentp,ﬁe Informatica

Pontiticra Unmiversidade Catolica do Rio - Jancairo
Rua Marquces de Sao Vicente, 209 ZC 20

Rio de Janciro Brasil

Series: Monographs in COmﬁuter Science
and Computer Appllcatlons
NO 4/76

GENERATOR FUNCTIONS IN MODULAR PROGRAMMING*

DIVISAC DE INFORMAGOES
RELET

- codigo/registro data o
@éefé 26,3

{ ;\‘.‘n"‘:\"' 0

W gosd

‘by |

Arndt von Staa

Series Editor: Séfgio-E;R. Carvalho March, 1976

';*jThls work was partlally supported by the Brazilian Government
Agency FINEP under contract ‘n® 244/CT, and developed by the
'Informatlon Systems Group of the Departamento de Informatica-
_PUC/RJ

Copies may be requested from:

Rosane T.L. Castilho, Head

‘Setor de Documentagao e Informagao
Dept? de Infoxmética - PUC-RJ

R. Marqués de;SEQ Vicente, 209 - Gavea
20000 - Rio de Janeiro - RJ - BRASIL

ABSTRACT:

, ‘ Generator functions are defined as being functions
which allow sequential accesses to successive elements(values)
in some sequence (set). We study in this paper the basic
characteristics of generator functions as well as their

implementation.

KEY WORDS:

* Modular programming, programming language design,
program module, generator functions, coroutines, recursive

coroutines, values of type type.

RESUMO:

S Fungoes geradoras sao fungoes que permitem o acesso
sequencial a elementos (valores) contidos em uma sequéncia(con
junto). Neste trabalho nds estudamos os requisitos basicos de

fun¢oes geradoras bem como a sua implementagao.

PALAVRAS CHAVE:

L Programacao modular, projeto de linguagens de pro -
gramggﬁo, médulo de programa, fungoes geradoras, corotinas ,

corotinas recursivas, valores de tipo tipo.

CONTENTS

1 = INTRODUCTION ovevuvuncvocnsncncosonnnasssnnnssooes 1
2 - TH# cQNCErrfoF ?RocRAﬁ“uoDULE e 2
'3 - GENERATOR FUNCTIONS‘.}.:.;......f.;............{.. 3
4 ~_co#ou$1NEs;,..;.,.,..................;..... 10

5 -‘ CONCLUSIONS ‘nc‘-owo.oobi-o'o‘-‘--o-ocoocoo---aoonooo‘-o 15

REFERENCES oou.ointllo-.‘.,o;l-nc'.oo;.i.o---o".-o.ot‘...- 16

iii

1.= INTRODUCTION

Some of the des1rab1e features of program modules
are. context 1ndependence and syntactlc non-lnterference
[Denn1s 731, strength‘and IOW‘degree-offcduplingw[Mxet§f73lg:;

into thelr 1mp1ementatlons) [Parnas 71]. » S
' . Modules ‘should be able to 1mp1ement specgh
of memor1es such as stacks, sequences, trees, assoc
arrays (hash tables) etc. There must then be functlon_
enable users to access elements of these memor1es, .
functlons. These functlons could access spec1f1c el
based. on ‘some sort of data space . 1dent1f1catxon [von g
von Staa 75].. Access functlons could also sequence through
elements of the set of elements contalned W1th1n the memoryt
1mp1emented i.e., return successive values upon each call to
_the functlon. Th1s kind of functlon we call 5enerator functi”onE
and 1t will be the obJect of our study. . , f‘ i
One of the prime advantages of- generator functlons

is that we are able to reduce conslderably the cases 1n whlch

data space 1dent1f1cat10ns (references, p01nters) become
necessary (or useful). Another advantages is that, together .
with transmission of types [von Staa 74, Liskov et ali}*74] we{

are able to implement abstract ‘data types, where these abstract

data types contain also all the traverslng algorlthms necessary

for its use. For instance, the type "tree" is deflned contalnxng
the tree traversal algorithms. This reduces conslderably thff

task of writing and certlfylng programs and 1ncreases

modular1zab111ty .
" Generator functlons are usually defined 1nterna11y’

to some module, e.g. type descr1ptor. This has the advantage;;
of keeplng together in one module the set of valid operatlonsf
on an” 1nterna1 data space. Thus generator functlons 1ncrease-
the structurlng of programs as well as the 1nterchangeab111ty.
of modules. Due to their being 1nterna1 to other modules,

generatorAfuﬁctions'know both the "structure" of the underlying
set and the order (sequence) in which the elements of this set
are to be delivered. This allows, then, the design of efficient
generator functions without having to destroy the transparency
of module implementatioh.

This paper characterizes generator functions and
shows how to implement them. Some existing languages, e.g.
SIMULA [Dahl et alii 721, implement generator functions. These
implementations impose some restrictions which we attempt to

eliminate.

2 -~ THE CONCEPT OF PROGRAM MODULE

Our characterization of the concept of a program

module, or simply‘module, is similar to the one introduced by

P ~ o s o oo

743 .

Specifically a program module defines:

i - internal data spaces, internal type descriptors and
internal functions which are not known externally to the

moduleg

i =~ visible type descr1ptors and functions whlch are made

o

explicit to the exterior of the module, i.e. are within

its outside scope.

P I N

Modules may act as type descriptors, or simply as

types, e.g. .integers, stacks, lists, trees. For example, the
type integer can be described by a module defining an internal

data space, a word, and the visible operations copy, fetch, add,

~ o om0 os e P Y

moxre than the creation of an instance of the module describing

~ o n o~

Type descriptors are information and, comnsequently,

may be considered values of the type type. It is conceivable,

then, to allow the existence of variables and parameters of
this type. Such variables and parameters allow the practlce of
modular programming where ‘the lmplementatlon characterlstlcs
of a given type descrlptor are effect1ve1y h1dden from its
users [Liskov et alii 74, von Staa 74]. In most cases, type
checking will be performed statically. The conditions under:

which this is possible are examined in [von Staa 747,

sype:queue of (tzge:user_type) is

B

P T IR

Eff node: head, tail;
head'=tail‘=n511
outs1de _scope functions;

o 0 b o

user type.funct1on dequeue 1s Ve

o o

function enqueue(user type data) 1s oo

P]

‘end functlons'

~ o~

end queue;

;FIGURE 1. Example of a type descrlptor w1th a parameter of
" tvpe type.‘ e

Flgure 1 shows ‘an example of a type descrlptor which
uses a parameter of type type. Due to ‘this parameter we 'may
1mp1ement the module "queue" without nav:.ng to define completely
the 1nformat10n stored within the elements of a queue.

It should be clear from this example that Muser_ type"'
"does not need any 1nformat10n about "queue" and, conversely,
ﬁ"queue" does not need any 1nformat10n about "user _type" except

f;for the 51ze of the space occupled by an 1nstance of Wwer type".

3 - GENERATOR FUNCTIONS

We will study generator functions in a broader scope
bthan just as access functions. That is, a function which computes

the successive elements of some sequence for each successive
call will also be considered a generator function. For example,
a random number generator is considered a generator functiom,
although it is not necessarily implemented as such.

Generator functions usually possess internal parame—
ters whose vhlues must.be kept from activation to activation.
By means of these parameters the current (or next) element to
be accessed is determined. These internal parameters are
updated for every activation of the generator function. That
is, generator functions usually produce internal side_effects
delivering different values for successive activations.

. ‘ In traditional languages the internal parameters
could be declared as global variables, consequently being kept
from activation to activation. In modular programming this is
not acceptable, though, since it exposes the implementation of
the,function,;increases data coupling and may cause syntactic
interference.

i, %P order to produce the current (or next) eLement
of the sequence to be processed, the generator function may
have to resume elaboration where it last went off. We may

v¢6nc1hdeg£hen:

Pfopetty 3.1 - In order to be able to implement generator
Sy . functions in their fullest generality,coroutine

" handling facilities must be provided.

SR '_ We understand coroutines [Conway 63, Gentleman 71]
,f%§ béing b:bgram modules which are capable of being suspended
an8 1ater_resumed 2t the same spot. An immediate consequence

‘of<£his definition is that activation records of coroutine

instances must be kept even when these instances are inactive.

More on coroutlnes will be given. later in th1s paper.
Generator functions are further distinguished from
convent10na1 functions in that they usually define thefolhnnng

three entry p01nts'

initialization entry - which prepares the generator
function to deliver the first element of the set, or

[
L

actually delivers it'

successor entry f-whlch advances the element "cursor" by

[
e
)

one element. That is, by repeatedly activating the
generator function through the successor entry, we are
able- to effectively scan the elements in the ordered set

(eequence);

e

e

e
I

‘termination entry - this is a predicate which determines
whether all elements of the set have already been

examlned.

‘Notice that all of these entry points do not have
to be provided for each éenerator function. For ekample,‘ a
- random number generator could be initialized whenever an
‘1nstance of it is- created. Furthermore, termrnatlon pred1cates§
‘are uSually absent from random number generators. Thus, a '
random number generator may be 1mp1emented as a c0nvent1ona1
'functlon with static storage, although 1t is con31dered to be
a generator functlon.’ '

From what has been sa1d so far we may conclude'

'Property 3.2 - Generator funct1ons are modules posse351ng thexrv
own storage requlrements and makrng one or more

manlpulatlve operatlons ava11ab1evto_the exterior.

: Observe that type descrlptors have the same properties.
'Thus the mechanlsms developed for type deacrlptors in [Liskov 74,
Dahl 72, von Staa 741 could also apply to generator functlons.‘_
: Consrder now the follow1ng problem. Given some set

S, produce a llstlng containing all ordered pairs of elements

in S. This could be achieved by a program similar to that

set: S(some_type);

generate A:=S,e1em_gen,first by S.elem gen.successor

23 s o st st ot

until S.elem_gen.last dos

P

generate B:éS.elem_gen.first by S.elem_gen.successor

~ oy~ ~

until S.elem_gen.last dos

P

ogtpgt A, B;

od;

od;

FIGURE 2 - Ordered pair generator. First version.

of figure 2. We are not concerned here with what these sets
represent, €.8. data base records bearing a given property,
nodes of a tree or a graph. What we want to point out though,
is that successive elements of such sets cannot be obtained by
simble addition, e.g. indexing.

The construct:

generate <control_yar>:=<origin> by <successor>

e

until <termination® do .. gg

is similar to the ALGOL 60 for statement. It is used with respect
to generator functions, though. Thus, <origin>, <successor? and
<termination> are, respectively, the initialization, successor
and termination entries of the generator function. <control_var>
may be implemented as an access typed [von Staa 761 variable
and refers to the element of the set which is currently being
processed.

 Within the program of figure 2, "get" is a type
which, besides storing elements of some type (“some_type")
also makes the generator function "elem_gen" available to the
exterior. This generator function scans all elements in the

set "s". "elem_ gen" provides the following entry points:

- "firSt" which resets. "elem'gen' and prov1des an accessv

e

[.typed value.referlng to the flrst element in the set'

[
[
[

"isuecessor" wh1ch advances aeeess to the mnext ‘element

"ngln the set,

(¥

He

(¥
i

' "last" is a predlcate whrch returns true iff a11 elementsi

of the ‘set have been exam1ned.

Suppose now. that there were only one instance. ofe

the generator function "elem gen". When the 1nternal loop, i.e.’

geggrgte B=...", termlnates, the generator function 1nstance '
is necessarily in a stete‘where the unt11 test y1e1ds true.
Now, when' term1nat1ng the 1nternal loop, the: external loop is. »
Tresumed, i.e. the. next left hand element of the ordered parr is,ﬁ
" generated. Since, by assumptlon, there is only one 1nstance of‘
the generator functlon, it follows 1mmed1ate1y that the external
,Ioop is also terminated. Consequently the program shown would
~“be.in error, s1nce only those ordered pairs are lzsted for
which the left hand element is the first element of the set

belng traversed. Generalizing we have:.

Property 3.3 - There may be several instances (actlvatlonﬂ) of .

a generator functlon,'each at a different stage

of elaboratlon ‘and each p0831b1y related to thef

same data space or module instance.

Observe that even" when the generator funct:on is a -
31mp1e addition operation the above is true. In this case, the‘
Jmu1t1ple instances are usually embedded 1nto the program '8 code,

e.g by multiple expans:ons of ‘the for 1oop macro ')

' " We have already mentloned that generator functlons
and type descrlptors are quite similar from the melementatlon“
poxnt of v1ew. Thus, instances of generator functions’ could be”ﬁ"

_created’ in the same way as data spaces of a glven type ‘ere
;created, i.e. by means of a declaration. We will assume then,’

‘that all generator function 1nstances are declared.

‘In figure 3 we show an example of generator function
instance declarations. Since "outer" and "inner" are different
instances of the. generator function "elem_gen", it follows
immediately that there is no interference between the two

P

generate statements in figure 3.

set: S(some_type);

with outer = S.elem gen generate A:=outer.first by

o o~

outer.successor until outer.last do;

with inner = S.elem_gen generate B:=inner.first

by inner.successor until inner.last do;

outpus'A, Bs

~ o v~

ods

ods

FIGURE 3 - Ordered pair generator. Second version.

) In figure 4 we show the type descriptor "set". As
mentioned earlier, the type “gat" makes available the generator
function "elem_gen". The example shown should be clear, since
it merely reflects exactly all that has been said about
generator functions so far. ' |

A generator function instance is created whenever
control passes through the program section elaborating the
declaration made explicit by the with pqrtion. Thus, the
internal space of a geherator function, i.e. the activation
record, 1is alldcated and remain allocated up to the end‘of the
YEEE block even if nomne of the operations defined by the
generator function are actually elaborated.

There are several creation steps associated with
generator functions. One step is the creation of the code
sections and occurs usually at compile (load) time. A second
creation step occurs when'creatiﬁg an object of the type
described by the type descriptor module. This step may occur

at compile time, and does so in many present day languages, €.8.

ALGOL, FORTRAN,. SIMULA. A third creation step occurs when a
generator function instance is cfeated'during the elaboration
of the with portion. A fourth creation step occurs when an
internal function of the generator function is scarﬁéd to ve .

elaborated (e.g. outer.first)

type: set of (type: user_type) is begin set;. v
' type: elemant ig EEEESt(EEE element: next; user_type: info);
ref element: head:=null;

outs1de scape set operatlons'

Rt s At s b s e N Pa

generator elem gen is beg1n element generator'

P s ot st s 0 v A

reg element: current:=head;

boolean: end reached'=head—nu11

L

outside scope entry p01nts, | }

e R L

user _type: access function first 1s

e e e R VT YRR P VP

if end_reached then null; else head-~>info; fi;

user type: access function successor is

L e e

1f end_reached then nullj;

L N L e

else head:=head->next;

end_reached: =head=null;
1f end__ reached then null'

‘else head->1nfo'
fi; ,
boolean: function last is end_reached;
end entry_points;
end element_generator;

end set;

FIGURE 4 - Definition of the type "set".

10

4 - COROUTINES

Let us consider now a gemnerator function which
performs the infix traversal of a binary tree. Whemever a node
to be visited is found, the infix generator function must
reiinquish control to the calling procedure. Furthe:more; there
is a "past history", e.g. a stack, associated with the traversal
algorithm. This past history must be preserved from activation
to activation, possibly by the coroutine itself [Weizenbaum 63,
smith 73]. Thus, the generator function must be implemented as
a coroutine. Now, the past history could be maintained in an
implicit way by means of a recursive procedure. Thus this infix
generator function could be implemented as a recursive coroutine.

Before proceding let us examine first the mechanism
of passing control between modules. We refer the interested
reader to [Johnston 71] for a detailed discussion about run-time
configurations.

A module may receive control only through well
defined entry points. There may be several entry peints -to one

module. Every entry point defines an effective entry value

which determines where elaboration has to begin (or resume) when
control is transferred through this particular entry point.
Effective entry values may be variable. For example, a coroutine
usually allows elaboration to regsume at omne of several .
predefined points within the text. Whemnever a coroutine
deactivates, it sets the corresponding effective entry to refer
to one of the elaboration resumption points. We need thus a
deactivation construct which also sets the value of the
cffective entry to refer to the resumption points. ,

In order to pass control back to the caller; we

need an effective return value. This value is also associated

with the entry point through which control has been pas%ed to
the module. Thus, an entry point could be viewed as the-name
of a composite data space containing the following kind of

values <effective entry; effective return>. It should be noted

11

here that an effective return value could be a more comp11cated
‘structure than Just a return’ label ‘e.p. address. Fot lnstance,
an effect1ve return value could ‘name the actual’ return polnt,
as well as the entry ‘points of several error recovery entries.
In ‘some cases the data space contaxn1ng the effective returns
may be. shared by several entry points. This is the ‘case, for
'example, 1n subroutlnes (or funct1ons) which posses mu1t1p1e
‘entry p01nts, e. g. the sine/cosine function. f

’ A module instance is an 'elaboratable"‘copY'of‘ a

‘program module. Usually a module instance cons1sts of a
(shared) portlon of code and a (non-shared) portlon of work1ng
storage, i.e. an activation record. Module instances are

‘creatéd when a creation section associated with the module is
elaborated. Usually there is only one creation section per
lnmodﬁle and this creation section is provided in an implicit
dforﬁ‘ﬁy the language processor. Observe that, when a module is
a macro, the creation of a module instance corresponds to a
macro expan31on. . '

A creation section which is implied by the language
proceeeorjis called a prologue and its elaboration precedee_‘
the elaboration of the first syntactically visible statement
“of the module.'Thus, the effective eﬁify value can easily be

initiadlized to refer to an approprlate prologue in which case

it will be called a creation entry.»

Creatlon may occur all at once, e.g. as in FORTRAN 1v,
or 1t could occur in several steps, e. g. in ALGOL 60 the shared
portlon 18 created at complle (load) t1me, whereas activation
records are created and destroyed dur1ng execution. Termination
is the operation of destroying a module instance. It should be
clear that, if a retention mechanism is implemented [Berry et.alii 73]
actual termination could be delayed with respect to the v
iﬁstant when the termination operation is performed.

| A module instance may be activated only if it has
already been created and has not yet been terminated. Thus, in
order‘to‘aCtivate'a'non‘exiStingvmodule instance, first some
creetidn'sectiohiof this module must be elaborated. In order

“to prevent incorredt execution, the effective entry values must

12

be initialized to refer to either a creation section or to
abort. Observe that‘if control is passed to ééggg, an error
condition is flagged and the program execution may reach a
premature end. By a similar argument we may conclude that = all
effective return values must be initialized to abort.

. . Consider now recursive coroutines. With reapect to
deactlvazlons, a recursive coroutine may deactivate and return
control to the exterior, or it may deactivate (terminate) and
resume elaboration of another instance of this coroutines This
_implies then the existence of at least two effective reéurn
values and, also, of two entry points. It implies furthermore,
the necessity of deciding which effective return is to be used
when deactivating. Since this decision depends on the
algorithm to be implemented, it wugt be provided by the
.programmer. It follows then, that deactivations must be éble
to name the entry point containing the return point to be used.

In SIMULA, we are able to create module instances
by means of the new operator and being, thereafter, able to
deactivate (detach) and activate specific instances (resume)
at will. However, from the point of view of modular progfamming,
this has the inconvenience that we must tell the user that the
generator function is a class and, thus, a different kind of
module than other functions. For this reason we took the more
‘elaborate approach of consideriung coroutines as being program
modules rather than named objects of a given class. ‘

Deactivating through specific entry points wmay
cause some unusual control flow interactions between modﬁles,
since, in some cases, the effective return value to be pSed is
not the one associated with the entry point used to activate
the deactivating module. This is, some deactivations could be
relative to an emtry point aséociated with another sub quule
of the coroutine.

By 1n1t1a11z1ng the effectiwve entry value to become
a creation entry, we may create and activate a coroutine’ w1th
the first transfer of control (activation) to it. Subsquent

activations of this coroutine can be prevented from creating a

13

new instance, simply by setting the effective entry values to
refer to some portion of tha code Whlch is not a creatlon |
section. It follows then, that coroutine instances need not be"
created by an explicit construct external to the coroutine.
~In figure 5 we show a deflnltlon ‘of the type
"binary_tree". Within "blnary-tree we define the infix
traversal generator functiqn 'infix". The’ purpose and 1mple- |
mentation of this generator function has been descrlbed |
_earlier, ; - . ,v, IR
‘ Within "infix" two- proceduxes (modules)are deflned.

The recursive procedure (co functlog) "start subtree which

—r—y - -~~~

o~~~

performs the actual traversal and the coroutlne (co functlog)

Ezpeobiuary tree of (type: user_ type)is begln blnary tree"»

~ RS~

type.node is struct(ref node-left, rlght;'user_tygezlnfo);

R

ref node'root' =null;

outs 1de Scove operatlons H

0 0 s o s iy Ny P

generator infix is begin infix ' ;

PO o o ot s et b ~ o~~~

co. function start subtree(value ref node: pointer)is

T N

Psggg subtree,
if p01nter#nu11
then call start subtree(po1nter->1eft),

o~ o o

A c deactlvate next(p01nter->1nfo),

B: _ call start subtree(pomnter->r1ght),
’ fij '
end subtree;
 user type.access co functlon next 1s begig'next;,

~ AT~ 2t 0 e~

~ s~

C: call start subtree(root),

“repeat deactlvate next(null),

P A L R R]

end next;

~ o~ o~

end only_ known_entry;

end infix; ...

FIGURE 5 - A recursive coroutine aé’generatorlfuncticn

14

"next" which gerves as a communications link with the exterior
of "infix". That is, control can be passed to "infix" only_
through "next". It follows then, that "start_subtree" must
deactlvate through "next" whenever a node to be visited has
been found. Observe that deactlvatlon through "next" requlres
also the passing of an access typed value naming the node to
be visited. - : _ : i

‘ The effective entry value of "next" is initieiized
to refer to the prologue of the procedure body of co fBESEEEB
"next". Thus, “next" is a creation entry for a newly created
instance of "infix". Traversal of the tree is ihitiated ‘due
to the statement "C" which invokes "start_subtree". ‘The‘: |
effectlve entry value of "next" is set to refer to statement
"g'". Whenever deactlvatlon ‘occurs due to elaborating statenment
"A", thus avoiding the reelaboration of the prologue of “the
co functlon "next" Thus, "next" becomes a 51mp1e actlvatlon
_entry when control passes through the statement "A" the flrst
time. Once the traversal has been completed, ”start_subtree
.returns (deactivatee and terminates) to the original celler,
i.e. statement "C". Elaboration proceds then to statementf"D"
which will deliver a null value for this and all. subsequent
activations through 'next". Thus, every 1nstance of the
"infix" generator functionm traverses the underlying tree once
and only once. ‘ '

It should be noted here that we are unable to-
implement generator functlons as recursive coroutines in?
SIMULA. This follows from the fact that when the executlon of
an object is deactivated (detached) we do not have the recursion
hierarchy to resume execution of the external caller. Instead
“execution preceeds at the next lower 1eve1 within the recurs1on
hierarchy. Thus, in SIMULA we must keep exp11c1t track of
recursion by means of a user defined stack. We w111 not dlscuss

the consequences fo this "regstriction"; instead we refer the

interested readexr to [Knuth 74].

15

5 - CONCLUSIONS

‘ - In th1s paper we have: reintroduced the concept of
generator functions [Newell et alii 65, Knuth 64]. We have
shown their basic characteristics and also descrzhed{hdw. to
implement them. By méans of generator funcfidné'webéxe~ab1e'
to hide seqﬁencing algdrithms and fhus allow explicit limnear
constructs (fgg statement)pfo accéss succéssive-elengntS’of,
some seq.uence.) ' e
B - Several problems nust st111 be 1nvest1gated as
for. 1nstance the abillty to prove the correctness of generator
functlons [Cllnt 73] and the definition of an elegant ‘syntax.

This" paper 1ntroduces no new concepts. Its mer:ts;
“ however, liesin the approach ‘taken and, also, in the attempt
to reestablish the utility of generator fuhctioniwhiph; with

few exceptions seems to have been forgo;ten.

16

REFERENCES

BERRY, D.M.; CHIRICA, L.; JOHSTON, J.B.; MARTIN, D.F.; SORKIN,A.
' On the time for retention. Los Angeles, UCLA, Computer

Science Department, 1973. N - 20.

CLINT, M. Program proving: coroutines. Acta Informatica, 2
(1): 50-63, 1973.

CONWAY, M.E. Design of a separable transition diagram compiler.
Comm. ACM, 6 (7): 396 - 408, July 1963.

DAHL,'O.JQ} MYHRHAUG, B.; NYGAARD, K. Simula 67 common ba%e

"'"iéﬁguage. 0slo, Norway, Norwegian Computing Centre, 1972.
S - 22. ‘ :

DENNIS, J.B. Modularity. In: BAUER, F.L., ed. Advanced course omn

software engineering. Berlin, Springer Verlag, 1973.
p. 128 - 82. ‘ .

GENTLEMAN, W.M. A portable coroutine system. In: INTERNATIONAL
FEDERATION FOR INFORMATION PROCESSING. IFiP congress.
‘Ljubljana, 1971, Computer Software Bbokiet TA-3.)
Amsterdam, North Holland, 1971.

JOHNSTON, J.B. The contour model of block structured processes.
SIGPLAN Notices, New York, 6 (2): 55 - 82, Feb. 1971.

KNUTH, D.E. et alii. A proposal for input/output conventions in
ALGOL 60. Comm. of the ACM, New York, 7 (5): 273 -.83,
May 1964.

KNUTH, D.E. - Structured programming with go to statements. ACM
computing surveys, New York, 6 (4): 261 - 302, decf1974.

LISKOV, B. et alii. CLU design notes. Boston, M.I.T., Project
MAC, 1974. "

MYERS, G.J. Characteristies of composite design. Datamatién,
Barrington, 19 (9): 100-2, sept. 1973.

NEWELL, A. et alli. Information processing language V manual.
2 ed. Englewood Cliffs, N.J., Prentice Hall, 1965.

17

PARNAS, D. F Informatlon dlstrlbutlon aspects of programmlng

SMITH,

languages. In: INTERNATIONAL FEDERATION FOR
INFORMATION PROCESSING. IFIP congress. LJuleana 1971;
Computer:Softwafe Booklet TA-3, Ansterdam, North~
Holland, 1871. e

D.C. et alii. ML ISP2. Stanfard Sténfdrd University,
Computer Science Depértmeht, 1973. S%AN-CS-734356.'v

VON STAA, A. Data transmission and modularlty aspects of

programming 1an5uages. Waterloo, Unlver31ty of Waterloo,

Department of Computer Science, 1974. CS~ 74 17.

VON STAA, A, On the design of languages for a d13c1p11ned.use

of references. Rio de Janeiro, Pontificia Universidade

Catollca,‘Departamento de Informatlca, 1975, MCSCA -
n? 12/75. '

WEIZENBAUM, J. Symetric list procéssor, Comm. of the ACM, New

York, 6 (9): 524 - 44, Sept. 1963.

