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 ABSTRACT:

The concept of an abstract typeltree is presentedwf
By means of thls tree a well deflned mechanlsm to automatlcally'
perform type conver51ons is presented. It ls shown how -the'“

exrstence of this type tree allows ach1ev1ng data generallty.,

KEY'WORDS:

Modules, modular programmlng, types, abstract typé]

trees,'conver51on, transfer,'type reflnement, type exten31on.

RESUMO:

E apreseutado‘o concelto de arvore de t1pos abstra B
tos. Por 1ntermed10 dessa: arvore e apresentado um mecanlsmoi; :
bem deflnldo para o estabeleclmento automatlco de conversoes.l
£ mostrado tambem como esta arvore de tlpos abstratos apoxa a;#

generalldade de t1pos de dados.

PALAVRAS CHAVE:

_ Modulos, programagao modular, tlpos, arvores de t1
pos abstratos, conversao, transferencla, reflnamento de t1pos,

extensao de tipos.
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1 - INTRODUCTION

In the present days, uch‘attention has'been given
to modular programmlng One of the propertles whlch modules
must possess in order to permlt modular programmlng is ‘Data
Generallty. Data Generallty can. be deflned intuitively as
~be1ng the capablllty to comblne modules 1nterchanglng l
information via abstract data types [Dennis 731. Slnce‘modules
must 1nterchange 1nformatlon v1a concrete 1mp1ementatlons of
such data types, a need for 1nterfac1ng modules via conversion
functions arrises Lvon Staa &. Lucena 757..

We present 1n this report the concept of an
abstract type tree, where this tree deflnes the relatlons wh1ch
exist among all types of a glven_program. By means of this
type'tree, a clean mechanisn for automatically choosing
conyersions can be defined.

- The abstract type’ ‘tree -is 1nf1n1te. We present thus'
a mechanism whlch turns expllclt the spec1f1c subtrees (type
refinement) necessary to’ allow compllatlon ‘to procede.
‘ e o We also present mechanlsms by means of which users
may define new types: w1th1n the ‘type tree (type extension).
This mechanisn allows users to adapt the type tree to thelrly
specific'needS'and ‘thus contrlbutes to the ab111ty ofvnntlng :
programs in a modular way. = _ . - '

: An abstract data type is a conceptual entlty.
Abstract data types deflne‘characterlstlcs,whlch yalues of -
such types possess;‘e;g.‘valid'operations,'valid values (value
set ‘axioms). It is completly machine and implementation

independent.

‘2 - THE TYPE TREE

In thlS sectlon we will introduce the concept of
an- abstract data type tree. Several’ examples are presented
whlch are based on MADCAP S [Melkanoff et a111 74] . The section



is divided into the following points:,

- The definition of the abstract type tree
the concepts of type and objects are introduced, and the

~organization of types is discussed.

= Coercions- ‘ v
the concept of .coercion is discussed, and the relation between .

‘abstract type and type realization is introduced.

- QOperations on the type tree
operations modifying the type tree are introduced, and the
mechanism to associate an implementation with an abstract

type is presented.

2.1 - The definition of type'trée

‘ Types are hierarchically'organized in a data type
tree. This type tree is a tree of abétract types, each node
defining abstract selectors, operatofs, etc. The meaning Qf-
thése selectors and operators is identical for all the subtypes
of a type. Furthermore; each subtree is considered to be " a

proper subset of the root.

If a node N possesses the subtrees ST1, ST2,.;.,STn,
the type of N is the union of these n types. If n is greater
than 1, each of the STi is clearly a subset of N. It should'be
noted that the node N may define values that are mnon existent
in any of the subtypes. In the case that there is only a’single
subtree, this subtree must define fewér elements than the*root;
since otherwise it would not be a proper subset. In figure 1
we show the abstract type tree which is predefined in MADCAP-S.
The universe of discoursé in such a tree organization
can be viewed as be1ng the root of the data type tree. We will
call this root node UNIVERSE, Its main characterlstxc is that v

any predefined type or user defined type used by a given program
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Figureul.fiﬁg””‘

1s a: subset of UNIVERSE and that a varlable of typ’ UNIVERSE
can. carry any obJect. :‘ RS j\,"_,]"i W
Several dlfferent melementatlons of: an abstract

data. type are poss1b1e. A1l these 1mp1ementatlon3‘:fare5 "
assoclated w1th the node where the abstract type 1s deflned,

The 1mp1ementat10ns may each possess dlfferent names

case of. multlple 1mp1ementat10ns the selectlon of a. spec1f_
rations,

1mplementat10n may be. done based on eff1c1ency con51

as well as by means of user deflned selectlon.



‘ .+ The .type_ tree is a ’eonceptual_:tree,‘ and it
‘is infinite.. Each compilation . will cause the creat1on
of a subtree of this type. .. tree, where thls subtree
.contaiﬁs all types effectively used durihg compllatlon. The type :
‘tree is 1nf1n1te since the def1n1t1on of ‘types may be based oh -
~other types (possibly UNIVERSE) Let N be such ‘a type, and T be
‘a type necessary to define N. N deflnes then a subtree whxch »
contains a copy.of the type subtree w1th root T. For example,
the type SEQUENCE is predefxned as

< 1nf1n1ty
type SEQUENCE = UNIVERSE -

S

consequently there are an 1nf1n1te number of possible reflnementa

of the type sequence, such as REALZ, INTEGER< 1nf1n1ty I

SEQUENCE2?* |, etc.

Subset relationships

The subset relationship of data types'has very

'importantvconsequences in the interpretation of the tYpe-ﬁree:

1) Operators def1ned over a glven data type (in general over a‘
glven domain) are autnmatlcally 1nher1ted by the subdomatns.

. For instance, division is deflned 1n MADCAP S as

EE

“/" ; <<REAL, REAL; S REAL>>

‘ : , AT
and it is also inherited by the integers with the same

“definition.

2) Operators can be restricted over a subdomain (or subtype of
va type), as long as the meaning of the bperators remains

unchanged This feature has the follow1ng 1mp1ecat10ns.

a. it gives more information about the ranges: of operatora
operatlng over such restrlcted doma1ns, and, therefore,

it allows the compiler to make assumptions about ‘the_;e



results. E g, in MADCAP S the operator My for reals s‘“

“vorestrlcted in the follow1ng way when applled to 1nteger8';

nen ;<1NTEGE‘R , ‘I'N.TE‘GER;‘-‘ -> 'I-NTEGER'-??' ‘

.h:hlt allows for more eff1c1ent operator 1mp1ementat1ons,
poss1b1y 1nvolv1ng dlfferent representatlons for ob;ects:h
'ﬁbThls is- poss1b1e due to, the requlrement that the B
fvrestrlcted operator has exactly the same mean””

unrestrlcted operator.

:h to the actual domaln of the parameters use

f'ﬁ) New operators ‘can be deflned over subdomalns. These pe:
‘ 'pare not def1ned over types that contaln the glvei ' )
V‘Furthermore, these new operators must not confllct with

ex1st1ng ones, i. e..they must. possess dlfferent
L 'vnames from all the operatlons occurlng w1th1n the
"'Jrfrom UNIVERSE to the node def1n1ng thls new operato

fnot 80, semantlc equlvalence 1s assumed possxbvyjre:
Cvin erroneous executlon due to 1nadequate oper”t"“

f”v1z. paragraph 2 above.,,;,gjif~”i'

Two‘disjoint suhtreesflead tohmﬁtﬁéIYﬁdi§

data types.»This disjointﬁeSs'requiremeuthls based on the"

_'meanlng of" the ‘values of a glven type and"not on the ﬂ~~3’3
representatlons of these values. Thustthe types aNa

hitype Ti_=f{50Qs500},haud'V’
‘type T2 = {10..100} -

are two dlsJolnt types 31nce the meanlng can not posslbly be

the same for both. However, both could be subsets of the type e



"sets of integers", and both could have value representations

in common, e.g. the set {50..100}.
2.2 - Coercions

Two kinds of conversions may be introduced automaticaly:

a) Conversion from one 1mp1ementat10n to another one  ~of
the same abstract .  data type.., Such - conversions
are permlsslble since they preserve the meanlng of  the

abstract obJect. Conversions of this kind may fail, however,
due to implementation restrictions [von Staa'& Lucena 751 ,
e.g. converting from a "list representatlon of a STACK to
an "array representation” of a STACK may fa11 due - to the
restricted size of the array. Furthermore, convers1ons should
not reduce precision. For example, when converting 1ntegers
to reals precision may be lost due, in general, to that rhe
fraction part of a floating point number permits fewer
significant digits than an integer. Consequently the .
conversion from integer to real must fail whenevexr a loss in

precision occurs.

b) ConverSLOn from a subtype to a supertype. Such conversions
are possible since, by definition, subtypes are effectlvely
subsets of the supertype and, furthermore, all operatzons
applied to the supertype are automaticaly inherited‘by its

subtypes.

These two conversions may be thought of as being
simple changes to the representatlon. From a purely abstract
point of view, the meaning of the values converted are preseﬁed.
Thus, theoreticaly at least, a transfer back to the or1g1nal
representation'ls-always possible and ylelds exactly the
original value. It follows then that these conversions are
always perm1351b1e. - ‘

From the above d1scussxon it follows that, within

a set of given implementations, it is possible to have subtypes



conta1n1ng elements not contalned in the supertype. Thls ishﬁ;*
a purely technlcal problem ‘and - does not occur at the abstract;;J
tlevel.,The problem can be: countered by “dlsJo1n1ng"vthe typeS’

where it occurs, or by g1v1ng better 1mp1ementatlons to ,the;*7?

types.4 ‘ o i . g
‘ The "broadening" operatlon (1 e. converting“to Cal

‘supertype) of an obJect should always. be assumed but the

converse ("narrow1ng i e. convertlng to a subtype) must bejf;

requested expllcltly, except in ass1gnments (see below)

Narrow1ng con31sts of;

.l) testlng 1f the obJect really belongs to the subtype (2 0

1s 1nteger but 2 4 is not), and

2) 1f 1t belongs, 1n mapplng the value to the subtype1' S g
vrepresentatlon. (Notlce that this mapplng could beﬁfihef-jh,ﬁ

'hldentlty mapplng)

C The only place where narrow1ng should automatlcalny
: be assumed is in a331gnments, where the resultlng value of thejj

“express1on is converted to the type of the target obﬁecv‘

,pA851gnments 1nvolv1ng dlSJOlnt types can be detected atgcomplli@

tlme, and must ‘be- forbldden.‘ ‘ : “

o ' Convers1ons among d13301nt types are the user s
-responsxblllty, and ‘may be performed by means of explxclty
"eanOked transfer functlons.,For 1nstance, in order to convert gf
an integer into a slngleton set, whose only element 1s thls ;”7'
same. 1nteger, an expllclt ‘call. to an appropr1ate transfer ff5”‘7
functlon must be issued. Such transfers should never be‘ft5

N
A

;ntroduced automatlcally. :

'1>2,3‘4 Operations on the type tree

, , ,‘,3?ﬁ>

. In order to achleve data generallty,‘the user mustlg

‘be. able to def1ne 1mp1ementatlons of abstract data types, VQS,“f
Well as abstract data types themselves. Follow1ng are the o

operatlons on the data type tree to accompllsh thls.':



ha)‘type‘refinement‘vand

lyb):type extension

‘a) -Type refinement”

Type reflnement consxsts 1n declarlng more preclsely

7some abstract data type. Type reflnement can be v1ewed as gan]

f1nc1us1on of a partlcular type into ‘the. comp11e t1me subtweewof
"the abstract type tree.,Recall that the type tree 1s conceptual,

a subtree of thls type tree be1ng constructed at complle:“

\based on the partlcular needs of the compllatlon. Thus typ

*'code based on the characterlstlcs of the reflned type.'

L Type reflnement is also used to assoclate a glve'

'11mplementat10n w1th an abstract type.,By means of thls mechanlsm;
'fthe compller Wlll hopefully, be enabled to generate efflclent“”“‘

1Ucode.q o

:b)iTypesektension -

, ‘ Type extens1on cons1sts in creatlng new sets
and new operators to operate upon them, or in: defrnlng subs
‘hofaex;stlng.types'and allow1ng the old operators to operate
-Ichése nenfvalues,_Type exten31on actually modlfles the dat
type tree. ln'the sequel we present the operators found 1h

MADCAP S whlch lmplement type exten31on.

»type T under T'v{g.;‘or

- type T above T' .,,;

where the elxps1s represent the rest of the declaratlon wh, h
'1nvolves the names,_domalns and ranges of the operators, jthe
names and types of the abstract f1e1d selectors, names and

‘ranges of travelers (generator functlons), etc.



}subset of T' (flg.,Z) A11 the operators valld on

,vbalso deflned on’ T and conversely, new operators'defa ed ’;

; over T do not have the same meanlng for T' Reﬂv?

'1) e1ther T has the same representatlon as T' (de

ﬂ‘functlons 1nv01v1ng the types T and T'” such as

b)

deflnltlon operators in T. whlch redeflne equal
voperators in T' -must: have the same. meanlng.,The

,deflned for. T' can be used exp11c1t1y (are valld)

'the,representatiom‘ofathe type;reai{'

;frestructures the prev1ous1y deflned data type’ tree, a
_places the newly created abstract data type betweenuT'

its “father", say TIF (flg:3 ),

new type (T), prov1ded that L

assumptlon), orvd«

2) if T does not'have"the same’representation”asﬁT

‘the system must be able to perform ‘the necessary
_converslons in- the representatlon. For example"

declaratlon

type I‘under:T'~like.If'Vv3

‘(the 11ke T",clause 1nd1cates that the representat;onﬁ
be used the one of T". Th1s clause 1s explalne | '

[Melkanoff et a111 74])

The programmer must prov1de the compller w1th twaw_ ar

 mapping T' in T = << formal,x,iu T'f;.;u??fand

' mapping T in T' = << formal x in T ... >> 70

type T above T' places T above T' in the data type tree. it
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A11 the operators valid on TF are now also valid on-the new
type T, and new operators defined on T that did not‘apply tob
T' are now also valid on T'. It is necessary, however, to‘j
consider the consequences of this declaration when several

data representatlons are 1nvolved.

1) The default representatlon for T is the same. as: that of
T'. In this case, the mapplng from T to TF and v1ce-versa‘

is the same as “from T' to. TF.
2) Given the declaratlon'

type T above T"11ke T

T does not. have the same- representatlon as T'., In this
~case four mapplng functlons 1nvolv1ng respectively the
'y‘types T and T', and the types T and TF have to. be defxned.~

Thls is not necessary if the declaratlon has ‘the form

L type T above T' 11ke TF.‘ T ,i.ur' e .

slnce in th1s case the comprler can deduce the conversron

routines to be used. (1 e{ the ones 1nvolv1ng T' and TF) .

: For example,-a new type declaratlon eould 1nvolve
the creatlon of the complex numbers as a superset (above) the
type REAL At this p01nt, the set of: pure 1mag1nary {numbers‘v
-could be deflned as. a subset (under) the. complex,'numbers, '
y1e1d1ng a. type 1mmag1nary wh1ch 1s d1s301nt from. the type
reslk-although the representatlons of both may be the same.

gt

2.4 - Example'of a type"oecleratioh ‘

We now con31der the declaratlon of the abstract
type stack and its 1mp1ementat10n. The ‘stack constructor takes(
a parameter of type Ezgg, and an 1nteger, the first 1nd1cat1ngf,
what -objects the stack will operate upon, ‘and the second
1nd1cat1ng the number of elements the stack can hold. The
notatron used is ‘that of MADCAP S.

‘Notice that TOP has-. been deflned as a selector -



(rather than an operator); ThlS was done to 11ustrate thq,

12

concept of abstract sélector as a pair of ‘access functlons,

for assignment and the'second'for selection.

1) ¢t
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
'13)
14)
15)
16)
17)
18)
19)
- 20)
21)
22)
23)

24)

PR

type STACK of ( ype (typel), INTEGER) under UNIVERSE afﬂ

selector "TOP" <-> type (typei) <<STALK >>;_
operator "PUSH" : << STACK 1tse1f _zz_(typel) >
"pOP" : << STACK itself >
'_"EMPTY"‘:‘<< STACK -> BOOLEAN $>

constructor STACK of(type(typel) , POSITIVE) =

<<

shared formal size in POSITIVE;

<infin

type T = type(typel) ;

shared local x in T <=~ <NULL: size items>;

shared local ﬁop in NATURAL <- O

o |
selector TOP(STACR) => Ezgg(;ypei)‘=
<< | ) -
formal a in STACK;

-> NULL if a.top = 0 or a.x [a.topl otherwise;

>>3
selector TOP (STACK) <- tzge(typei).=

<<

formal a in STACK, t in type(typel);

if a.top = 0 then fail else_a.x [a.top]‘<- t;

>>3

operator PUSH (STACK itself, type(typei)) -

<<

.one-
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;25) formal (s 1n STACK t iﬁ.Ezzg(typel));
.~26) li-. p > 8. 31ze - 1 EEEE iill fi; |
, §7) s.tOp <= 8. top + 1-"' ey
72§)f§~3xlgftopl <= t;

;125)‘}>§fff"” |

“30) ogerator POP (STACK 1tse1f) =

3D << | S
’32);£§rmal s in STACK;

33) s.top <- max (s.top -;1,'0);g; 

34) >> | v

'35) oge?ator EMPTY (STACK)‘*>IBQ6LEAN =

1 36) << | " L

- 37) formal (s in STACK)

38) -> true if s.top = 0 or false othéfwise;
39) v">>;.
40) end type STACK;

3 - CONCLUSIONS

We have shown 1n this report a clean mechanlsm for
automatically selecting: coercions among abstract data types and
their implementations. We have also shown how data type
‘exten31b111ty can be. obtaxned thhout violating the general

fconsxstency rules.
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