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ABSTRACT;
BRI Convergence propertles are studied for two ”noh;
tconformlng finite elements of degree two and three for the
:plate bending problem, which were introduced respectlvely by
_MORLEY and FRAEIJS DE VEUBEKB Unlike - some v;vf‘other
fnon conforming elemente, such- as - the soetalled J Zienkrew1cz
7tr1angle, they turn out to be very suitable for the case"' of
querﬁ boundarles 51nce success in the patch test f' ' is
fguaranteed wlthout any restrlctlons on the shape of the plate.
ﬂFurthermore, one. is- allowed to suppose that no klnd of cunved
helements are needed to attain the same rates of convergence
?derlved by LASCAUX & LESAINT for the polygonal case, because
QOf the’ low degree of the corre3ponding space of polynomials.
fTwo kind of support conditlons are examlned. For the- clamped
'plate, the above assuptions are verlfied for both elemente.

This provides a simple alternative to avoid the ' complex;ty
;involved in handling curved boundaries with ' standard
,conformlng elements. In the case of the simply : 'supported

'plate, Morley s element preserves the same convergence
properties as in the polygonal case w1thout curved elements.

For Fraeljs de Veubeke s triangle however this is .- ~only
p0551ble w1th the use of second degree parabolas 5 : to
}approximate the boundary. In addltion to the above - results,
:an 1ndlcatlon is given for the optimal choice of P01sson

coefficient to be used in the variational formulatlon ; 'er_

,clamped plates and numerical examples are shown.

KEY WORDS': |
. Finite elements, curved boundary, : convergence
in Soholev norms, non- couforming, patch test, plate bending,.
_Fraeljs de Veubeke, Strang.



RESUMO:

_ Dois elementos triangulares n3o conformes conheci-
;dos'como elementos de Morley e Fraeijs de Veubeke, introduzi-
dos para a resoluqéo do prdblema‘de flexdao de placas | sdo
3tratados. Sua relativa- smmpllcidade devida ao baixo grau ‘dos
_pollnomios correspondentes, aliada & flex1b111dade traduzida
,pela ndo existéncia das restrigdes a aplicagao com sﬁcesso
de outros elementos correntemente utilizados para placas re~ 
tangulares, tornam seu uso altamente indicado ao caso de bor-
‘do curvo. Para ambos os elementos demonstra-se que nesse, ca-
'$0 nao. & necessério'Se recorrer aos elementos curvos para se
“atlnglr resultados comparavels aos da placa de bordo retili-
neo, quandc este & engastado. Se o bordo curvo ‘€& simplesmente
apoiado, o elemento de Morley mantém a mesma proprledade.
Entretanto .para o trlangulo de Fraeijs de Veubeke a _‘éproxi~
magao do bcrdo por arcos de pardbola do 2¢ grau se faz ‘aconse
‘lhadvel. Enfim, uma indicagao ‘quanto a escolha do valor otimo
do coeflciente de Poisson a ser utlllzado na formulagao varia
cional para placas engastadas é fornecida. Todos os resulta-
dosasao acompanhados de exemplos‘numerlcos. ‘

PALAVRAGCHAVE :

Elemcntos finltos, bordo curvo, converqenCLa em
normas de Sobolev, nao conforme, "patch- test", flexao de. pla

'cas,‘Fraeijs de Veubeke, Strang.



1 - INTRODUCTION

Our starting point‘is the proposal by _FRAEIJS DE
VEUBEKE [1] of a family of non-conforming trianqles for solving
the plate bendlng problem, whose degrees of fredom are functional
values, normal derivatives or mean values of normal | derlvatlves
along the edges. | |

These elements have the interesting property T of
providing convargence with no restrictions on the shape of the
:domaln, unlike many other nonaconformxng elements freqmently used
fox rectangles or parallelograms, In fact, the case of such
plates has been extensively studied and many efficient methods
including conforming finite element methods are available for
qeneral polygonal plates. |

For the case of curved plates however, llmltatLOhS or
oomplexity involved render the use of most of these methods
unrealistic. So, if it is possible to verify that the convergence
properties derlved for the polygonal case by LASCAUX & LFSAINT
£ 2] for some elements of low degree belonging to this famlkj
remdln valid if the curved boundary is approx1mated by ‘a polygon,
then they provide an extremely pratical and sxmple pOSSlble

solution.

The analysis in the following sections Will.show that



this assumption is true for the so-called Morley triangle (quadratic)

and, in some cases, for the Fraeijs de Veubeke triangle (cubic) .,
2 - SOME BASIC RESULTS

In this paper we consider WP (n) as the Sobolev space
2
of functions defined over an open set Q of R, where p ¢ [1,«),

and its norm and semi-norm.

(%P ax ax, /P

Il'llm,p,ﬂ= {laTém‘
. Q

/

1
o 1
(%P axdx} /P

l'|m,p,9 = {lu%=m Q

J

whit the usual modification if p = «.
it p =2, i.e., if WP ()= u"(Q) we drop this index.
Let the plate be represented by the bounded domain {

2 .
of R with boundary I and u be the Poisson coefficient of

the material of the plate which is supposed homogeneous:

If the load is proportional to a function , which
we suppose to be bounded (f'e‘Lw(R) =>f ¢ LZ(Q)), then the
solution of this problem is’the displacement function u that
minimizes the functional J(v): . |

| 2 ’ 82v z ézv 82v -

(1) J(v)= (bv) dx,dx,+ 2{l-u) [ () - 5 ) dX, 43X,

g q 9%19%, 3%, X2 '

- 2|fvdx,dx,
Q

' 2
over the space of admissible functions v = a subspace of H (Q) —

which is the same as finding u satisfying suitable boundary



conditions and such that:

‘We next define the two elements treated here:

Morley's element

DegreeS'offreedom:

{9

functional values at the vertlces,

inﬁ*

f;rst normal derlvatives at the mld points of the. edges.

.Degrée.of the;polynomlalz 2. (complebe)

) VR

eFreeijs de Veubeke's elemenf

- Degreesof freedom~
3 functional values at the vertlces.

Q3 functional ‘values at the mld pomnts of the edges,

:e3 mean values of flrst normal derlvatlves along the edges.
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~ pegree of the polynomial: 3 (incomplete) satisfying the following

condition: ,
Its value at the centroid ¢ is given‘:by‘ a fixed
linear combinatiocn Cf'its‘values at the vertices  and
mid éoits of the edges, and mean values of: first

‘derivatives taken in the direction of the medians [2] .

'_Let T be a glven triangulation of the domain Q .,

h

&nd ¥V be the space of trial functlons whose restrlctlons over

h

each trlangle K belonging to T, is a polynomial of degree 2

h
or 3, respectively according to the element, defined by the degrees
of freeﬂom.given above. The degrees of freedom ly;ng on ' ’the
“boundary T - of functions belohging to these spaces must vanish
accbrdihg'to(support conditions. For instance, if the plate is
clamped, the degrees of freedom related to normal derivatives

taken at the boundary edges vanish as well as those _co:respondiﬁg
to functional values at boundary points. If the plate‘ is "simply
_suppcrted}oniy the latter vanish. | |

We define additionaliy'

h = max { diameter of K}

KeTh

. 2 )
Ve € Vh does not generally imply vy € H(Q)'_l which compels us
to the definition of another norm for Ve | |
It can be proved [2] that the expression

2 o2 ’ 2
v _ : 3 Vh 2 9 Vh .2 3 V
2)  |lvyll= {z [ (—r) +2(— D )]dx dxg
B Ker, /X 0xy 9%,3%, 3%,

. . : 0
1 ‘Generally,the inclusion Vh € C (R) is not satisfied either.
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is a norm over Vh_ for both clamped and simply supported plates.
: D .

This norm is often called the discrete H (Q) norm and it
coincides with the usual norm whenever — v,€ H(Q).

Let now U

5 be the unique solution of the discrete

.problem:

. _
Find uhe»vh
(Ph) 3 such that | | ‘ |
a (uh,v y= ;v aK‘uh’Vh)='(f'vh) ¥ v, € Vh
\ Ket, '
: h
;where
(£,v)= | fv, ax,dx,
Q
“and _ _
, ' 2 2 2 2 2 2
'aK(u,v)= AuAvdx dx,+ (1-p) | [2 i U 9V - §~% ng - 9*%~§w¥3dx1dxa
E K K 9¥19X; 09x,9x, - 3%, 3%,  9X, 9IxX,
' The uniqueness of the solution is due to the v, -
~ellipticity of the bilinear form ay(uy, vy) for physically

admissible values of Wy,

1
2

0 s u <

Sco, for both cases of clamped énd simply supported plates

we have [2] :

‘llu—uhllh.s C[hlUI + h’ [\1!4 Q]

where ¢ is a constant independent of k.

2‘v}.«‘;verywhere':i.-n this text the letter (¢ will represeht.vCQhStantSf

;indepen&ents of " h.
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The above result is bisically derived from the S0~
called Strang's inequality (el :
Epte ) |

3y |lu-ug |l s € Cint | Jamvy |1, + sup

Vhe Vh woe v, Hwlly

where:
Eh(u,wh)——- ah(u,wh)-(f,wh)

2 2

‘ 3 u dwy 3 u  dwy 3bu
{4) Eh(u,wh)= {[ Awt (L~p)—71—= # (L) s e T W s '
AN
: 5K BDK BnK d&yan EE: e anK

9K represents in (4) the boundary of K; ny and 8y
its outer normal and tangent respectively.
The term Eh(u,wh) is also called the term of non-

conformity since it vanishies in the case of conforming elements.

The first part of the right side of {3) is usually
estimated by taking v,= YU o where Py U is the function of ¥V,

that interpolates u at the degrees of freedom of the mesh.

3 - CASE OF CURVED BOUNDARIES

1f we are to approximate a curved bhoundaxy T by the

boundary Th a polygon Qh H

then the vanishing values of a function v,€ Vh at known degrees
of freedom are no longer taken on T but on Fh.
At this point it is convenient to treat separately TWO

important cases of support conditions:



-7-

lEE Case: Clamped'plate

In thlS case we assert first of all that the shift of -

Vdnishlng values from [ to Ph does not cause any alteration in.
‘the estimate for the term |E (u,wh)l of Strang s 1nequa11ty alnemh‘
glven for the polygonal case...‘ ’ » .

| ‘ so, all we have to do for the clamped plate is : tc
examine the error 1nvolved in interpolatlng the function U with'
a ﬁunction rhu belonglng to. Vh' Thls lmplies now} a R differehtf.
31nterpclation since the values of ? related to degrees S oﬁ
ifreedom on’ Ph‘-are forced to vanish ‘whereas the correspondlng vahes
.of . u are not necessarily zero. This more restrictive interpolat
{ion however prov1des the same. estimates in- the discrete Hz(ﬂh) ]  f'
;norm as those obtalned for the polygonal case, as far as rates
fof convergence ‘are concerned The proof of this fact can be found in

;the-author s work [51 3,

+ The key to the problem is the estimate .
‘of'the difference of the values of u and its first normal

deriVatiVes-taken at Fh and T respectively: -

‘Morley'svelement o Fraeijslde Veubekefs element

‘n. : normal to ry

sh:tangett to_rh

3 Actually, these results are Stlll valid for the non--ﬁomogeneous
_case (du/on # 0) (51 for Morleyks element. This has 'alsot been

’ numerlcally vermfled during some tests recently periormed.‘
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The final convergence results are, for both elements :
3/2
(5) |lu=uy |1, < cthluly o+ 62 lull, o3

Now we give some numerical results.

In this case the exact solution u is independent of

U since it is also the solution of

Au=f£f

()

¢ = A,
u/T an/F 0

So we can solve the approximate problem (Ph) using
different values of Poisson's coeificient.

In our example we take a disk of unit radius uniformly

loaded.
- The exact solution for f = 64 is given by
2
u = (l-x;-x,)
The mesh we used defined by an integer positive parvameter
P is illustrated below for a quarter of the disk.
p =2 p = 3:

/ /‘\ 7~ /
-/ /A&\ \ / /// e "/
L/ . /g / "‘, %4 3\/ w/
R \ )X ! /Y A7 WA
/ \\ /.// .ﬁ/ [ P - ,\,— B
/ ~ \/ 8 /{/ - — ’"/8
—~ \ { VAT nﬁdl
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In the following table we giﬁe'the appréximatevvalues

of the displacement at the centre of the disk calculated for
different values of M. '
MORLEY FRAEIJS DE VEUBEKE

| 0.00 | 0.25 | 0.50 0.00 0.25 | 0.50

2 1.3483 | 1.5705|2.0075 | 0.9497 | 0.9541 |0.9644

4 |1.0950 | 1.1740 |1.2700 |o0.9851 | 0.9851 |0.9857

6 1,0434 | 1.0699 |1.1221 0.9931 | 0.9930 |0.9930

8 1.0251 | 1.0393 |1.0692 |0.9961 | 0.9960 |0.9959

conClu$ions can be drawn from  the

Some important

‘above results:

158

and the%totai number of elements (T.N;E;) of the

Taking'into account the number of degrees of freedom (N.D.F,{

Symmetriq

band matrix of the resulting linear System (which:we solved by

the'Cholesky method) given below:

p |N.D.F.=2p(2p-1)

MORLEY

2
’I‘.N.E-zsp (zp-l)

N.D.F.=p(7p~2)

FRAEIJS DE VEUBEKE

T.N.E.=Tp (Ip-2)

2 12

4 | s6
6 132
8 240

896
3,168 .

7,680

24

104

240
432

336
2,912
110,080

24,192
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Oone can see that Fraeijs de Veubekc's element is better

than Morley's ¢lement from the computational point of view.

ZEQ) The observed rate of convergence in terms of powers of h
in the LGXQ) - norm is 2 for both elements.!This is also
the case of polygonal plates.

39@) The approximate values calculated with p = 0 are more accurate

than those obtained with ¢ > 0. This fact is even noxe

remarkable for Morley's elenent.

We conjecture that the first two conclusions are guite
natural and can be easily explained by the theoretical treatement of

the problen. The third one however seems to be an interesting result.

Actually, if we examine more carefully ineqguality {3)

we find [51 :

, |E, (u,w) |
(6 |lumuy ||, == ing||v,-ul |+ == sup uhuh
1-u -u W
vRth stVh h!'h
The first term of the right side of inequality (6}

attains a minimum for W = 0 in the interval [0,1/2] and itsvalue
increases with incceasing W
The analysis of the second term is rore complex since

Eh(ujw ) given by (4) depends on Mo

173
Nevertheless we can write:
1 1 2 Au 3w
——— Lh(u v, )* — z { Yh - Au ~——] ds + E (u, h)
1-u 1-u heTh, 6nK BnK

JK

where Ei(u,wh) is an expression independent of (TR
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if we bound = the right'side.again we get :

' 1 ~3Au : Bw
L IE (u,w )Is =] z | [——w, " Au —87 as { + |L (u,w )]
1-u oﬁ O R | anK’ dng

hjoK

The right side of the above inequality also'attains a 
mlnimum for u = 0. |
In spite of thlS concluSLOn a word of caution is _ih
ordei:_‘ | “ | |
‘ | Since the above ptocedure was‘essenﬁialiyobased upon
bounds the r@sult should not be regarded as a deflnltive one. In
other words,‘one should not expect that for an arbltrary nesh theﬁ
results-with.u ; 0 will be more accurate than those. .calculated
wifh' 'u >0. ' |
| | Neverthelesa the above analysis can be very ' -ﬁséful,
smnce one can expect that, at least a551mptotlcally,u = 0 ohouid
'be the optimal value of p from an accuracy point‘ of ‘Qiew ;
Furthermo:evfor thisg value the blllnear form ah(uh’ﬁh)‘ becomés

obviously simpler.

ZEQ Case: Simply suppOrted plate

If the plate is simply shpported, the displacement -
function u is the solution of:

2
A u= £

® ) Y W= 0 .

S5 : 3 u
» [pbu+ (1=p) =z} = 0
on T -
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For Morley's element the interpolation

the

ig no value of u

gz since in this case the norma

previously assigned.

to be "replaced"

error estimate of

1§E case remains valid. This is due to the fact that now there

at the boundary of the polygon

1 derivatives on ,Fh are not

For Fraeijs de veubeke's triangle nowever only this part

of the error estimate indicates a lowering from

rate of convergence in discrete

2
H (Qh) - norm.

1 to 1l/2 in the

This is essentially

pecause of the changes in values at the mid points of the edges of %.

Mlu(@)= 0

Pl N

Mh u(Mh)# 0

tThe f£inal result for this element 1is

l ‘u_rh u! ‘h

(51 =

e ctnt/2|Jully g+ B/ Tully 0l

In order to achieve final error estimates for both
elements however it is still necessarily to study the term:
B, (u,w.)
o I
wevp oy
since the following term of Eh(u,wh) cannot be bounded using the
same arguments as in [21 :
2
9 u Bwh
[Au-(l=p)— 11— dsy
T ash anh

I
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where 7, and s, represents the normal and the tangeﬁt' to T,
;espectively.‘ B : _ |
This‘teth vanishes'in~£he'polygonal-case for
J i | ‘ ‘é‘_ ‘. ST 1‘ _
[Au- (1=p) -g-;%-]/r—[ ubut (1- u)—-—-;]/r ': | if'b_ T L
"h  h _
We could try to bound thls term using _the fact that
;the value given above is not far from zero, combined with 51m11ar
;arguments to those used for clamped plates. It seems to us however,
ithat we would have to assume u € H ig) which is too much. to
;expect oﬁ the solution U . It is well known [4]' that we only
fhave u € H (Q) vfor f € L (Q) eiéﬁd-l suffidlently f"’ smooth -
?boundaries. : | :
| ‘In orcer to be able to obtain a realistic estimate we

ihave adapted for the present case an analysis due to STRANG [6]

'for the Neumann problem solved w;th conforming finlte elements

This conslsts basically o£ considering another dlscrete : problem
analogous to  (Fp) but thls tlme using a formulation whicql
correspoﬁdtho integrating over the true domaln @ instead - of §
thefaPP?Q*imate'°n9f ”th. i N : ;! -

Let us first prove the validity of discrete Poincaréd
inequalities for the spaces  V, .
_ Lemma 1: J  two constants (, and 02"independehts
of & ,suchithat:' | ' |

(7) ll !lo th Cl‘!vhllh' ¥ V € Vh

8 “V_h“i..h = cz”"’ﬂ;' h %‘(‘h,_él‘_:"h"



..]_4..
where

2
= (I | grad vhl dxldxz‘)l/2

Keth

IERI
K

proof: We first derive inequality ((7)

We have:
Hvnllo,e = 582 1oy o
gel (Qh) 19 0,9,

2
where (.,.) is the scalar product in L (Qh).

2 2 1
For every ¢ ¢ L (Qh), 7 we€H (Qh)nﬁo(ﬂh) such that

-Aw = g in Qh
w/. =0
T
Furthermore J C, C' and ¢C" such that

Thus we have:

| (v /0w |

Nvpllggs sug =
well (Qh) 2 ,Qh

L3}
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On the other hand

R , : QW‘ ‘ » av. . L
(v, rbw) = I [} — v, as, -| —8 was, + | Av
Kerh- 3K 9%k :aKanK_f. R

hwdxidle

1Usiqg.similar arQuments‘as‘in.in,p;f20,21]”‘we cah-Write:‘

‘ th 3nK -,

W ae f"-’ L2 . et 11
| ¢ AL Vh,deis‘CEh!wll,Qh+ hlwlzlggllvhllh

S L ’wtsK.l?’C‘ﬂhlwl'll,nh‘»""n“h

Ketplox K

“Thus we have:
l(_Vh,_Aw)l s C[,.hl»le,_szih * l‘le,vnhll-lvh’l ln

which proves inequality (7).
xnequali;y‘-(S) can be deriVéd in the following way:
‘We first have: | ‘ ’ '

: o : :2, i ; FR : _
DR \lgrad vhl dx,dx,= I [=| Avv dx,dxg+| = Vhdaﬁl‘

: 2
Tl 47 -
;"‘h.  ;;h KeTy g KETh K~ ;BKanK

'Using once more the same arguments as in [2, p. 21] we,have:'

T «og N ‘ Z, o -
. vh.dsKs_‘C Kg‘rh[hlyhil'“f h l"hl_z,,K]""thZ.K :

. iKETh SK anK
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which gives:

ey g vl vl e * Rl IVRlly n ¥ SIPRTSTIEAIN

The above inequality and (7) yields (8) for sufficiently

small 4~ D

Let us now define the following sets:
- G.= {K/Kety, and 0K has a common edge with r.}

- 1f KeGp, than K* is the region limited by the boundary [ and

the edges of K -not belonging to T

h

B
r
I1h
- R = K% - K
- * == 4
G*y U (KuRy)
Riﬁ'hh
S L
-5, = Q - Qh
Now we define the space V;- as identiwaol to Ve

except that we extend to X* each polynomial defined over the

corresponding K.
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Let
* . C 4 .
o llp =0 ¢ vl o+ 1 lvgl *31/? ¥ v eVE
| KeG 2,k gregr 2,K B
h .
be the norm over VZ '
¥ = I .-+ : vy
ah(uhrvh).—v> - aK(uh(Vh) ? 2‘ j aK*(uh¢Vhy
KeG, - o Kk eG* :

h L L i h.

be a Vz —"elliptiq'bilinear form over Vh* X VZ-,.ahd“'

(£,v )% = [ fvpdxydx

be a continuous linear form over - = V} .

' Suppose now that we have‘to solve problem

Find uﬁe Vl'f1
T (P¥) ' such that
*:. - = o * ' ,
apluf,vy) = (£,vp)* # vy e Vp

which has a unique solution.

. For problem'(Eg) we could analogously derive:

. . | :* | .i . IL*(u,w )‘
.[lu* - u |l <c [ inf |lu - v ||, + sup et B
h Sy h''h
| viEvE we VE Hwpl R

where:

*(ia-w. )= a* (u,\ - w ) *
Eh(u,wh) ah(U,wh) (f’wh)



~18-

however, all the terms of

with this new approach,
as those of Eh(u,wh) for

an be vounded in the same way

ik
Eh(u’wh) c
the polygonal case except for the integral:

3 4 3wy,
[pbu+ (1-¥) — J— dsh
. an on
Ih h h

ot

whose analogue along [ vanishes, since is the solution of (P..).
o

So we can write:

2 . *
| B (aw) | = cthluly o +B FIPRIIENEN

Thus we have:

2
(9) lug - ully ¢ Cthjuly g * P luly gl

since the interpolation error can still be estimated in the same
way as hefore.

The only problenlleft is to estimate:

iy £
uh\\h or

ey, = 1%
*
Hu- ully = Heg wlin * egl T
4 FOY terms representing integrals élong I this is not so ohbvious:
art of it

In order tO shorten our text however we prefer to omit this P
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In order to do this let us first consider the expréssibni
S e R DR R
ah(?h'eh)7— a (uﬁ —_u,eh)+ ah(u,eh)-aﬁ(u,eh)—Ea(u,eh)+(f,eh)vf(f,eh)_»

So we have:

(10) llehllh ~\CE!1u* - ullhllehllh + IAh(u. h)l + lh*(u e >l]

~ where:
R e L Ry R
Ay (uiey) = ay(urep)af(uep) (£ rey) ~(frey)

The;te:mgabbve is_actuallyfa,sum of integrals over R, s K €5GﬁF‘

2

1/2, :

|Ah(u eh)l < C max[l[fll 0,,0, lluH2 ][area(sh)1 ; [Iwmm-l
: o ‘ Sh Bxl ,
+2|— | — | " l hl ]dx dax,}

axlax2 ‘ SXz .
~ Here we use a lemma given py L6, p.‘199j:‘
If p is a polynomial, then:  :

.  ~  ’ P e op ' area(R ) j 'Bé’g 0

A1) |- |+ P *Jaxjdx, < C o) rl—| +

‘ Ry ax, 99X, . o are»a‘ (K) s a,xi‘

.+|——~| + p jdx,dxz_
3)&2

where theconstant c only depends on the aegree of P

Setting in (11) p successxvely equal to,
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adding up the resulting inequalities and using Sobolev's inclusion

theorem:

o

Elull:}l,w,ﬂd C{!u[l4'9 we get:

; - . 1/2
|8, (a,ep) s ¢ maxt][£]1, , o llull, gltarea(s,)] /

2 2 2
area(R ) 1/2 de 2 0 e 2 3 e, 2 Je 2
pax [——~——~5 1 { = [|——%]+'2|—~mwh | +]~—7h| + imwh[ +
KeG,  area(K) Kety | 9% X, 0%, 39X, 8%,
’8eh 2 2 1/2
+ |3+ [e, | lax,ax)
8X2

2
Theé sum in the right side can be bounded by C[Iehl[h by Lenma

Q
o

Furthermore
a‘xh‘a(ﬂ(,) 1/2 1/2
max [ w;u.;<¢4tg4w.ww)wtvm£t~—:] < Ch
area (R)
Kert h
and

[area(sh)]l/2 < Ch

Going back to (10) and using (9) we get:

2 : 2 3/2 _ .
eIl = C{[hlul:}l52 + h Iu|4'Q + h max(llf[Iolw’Q,][u|]4ﬁﬁjllehH

1* . y
which finally gives:
3/2

(12)  |eyll, = C[h[u|3,Q + h max(]lf[]olmgg,l[u||4£?]
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Inequality (12) al&ows us to assert that the non-
conrormity term of Strang' s 1nequality does not brlng about any'
loss in rate of convergence for curved smmply supported 8 plates
" compared to‘the polygonal case,v ' ' '

An important consequence of this_fact islthe'follOWingﬁ{
If the curved boundary is: simply ‘approximated by &

"polyqon, then Morley s element provxdes results of the same degree

tof accuracy as if the plate were actually a polygon.'

. For Fraeijs de Veuboke s triangle however, wé can only
vexpect comparable results 1f we approximate the "boundary of curved
fslmply suppOrted plates u31ng parabolas arcs 1nterpolating ' three

p01nts of F.;

- The following numerical examples illuStrate the above
’statements. We: take again.a c1rcular plate of unit radlus,unlfoxmly
loaded, w1th p= 0.5. The meah we have used is the same as  for

- the clamped plate.

The exact solution for £ = 64 is:

2
u = (l-x;- x2 (11/3 xl X )
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Its value at the centre of the plate is 3.66667

whose approximations are given at the table below:

MORLEY

o Approximate Absolute N.D.,F.= |T.N.E.=
value error 4p?% 4p? (4p+1)

21 4.74175 . 1.075 16 144

4| 3.95342 0.287 64 1,088

6 | 3.79477 0.128 144 3,600

8 | 3.73766 0.071 256 8,448

FRAEIJS DE VEUBEKE
B Approximate Absolute N.D.F.= T.N.E.=
value error Tp? 7p? (Tp+1)
2| 3.10562 0.561 28 420
4 ] 3.44341 0.223 112 3,248
6 | 3.54654 0.120 : 252 | 10,836
8 | 3.58824 0.078 448 | 25,536

it can be easily seen that for equivalent absolute

errors the amount of calculation performed with Morley's
element is rather smaller. Furthermore the observed rate of
convergence:for this element is 2 whereas it is reduced to

3/2 for Fraeijs de Veubeke's triangle.
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