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ABSTRACT

The implementation of a data definition facility
based on graph transformatlons is d1scussed The theory of graph~
grmmwrsalhms a precise characterlzatlon of these transformatlons,
facilitating proofs of correctness. The 1mp1ementat10n consLsts
of an extension to PL/I, and ut111zes the standard PL/I

pre—-processor.

KEY-WORDS

Data definition facility, graph grammars, extensible

"languages, PL/I, program correctness.

RESUMO
A implementaésé de uma facilidade de definigao de da
dos baseada em transformagoes de grafos & discutida. A teoria de

gramatlcas de grafos permlte uma caracterlzagao precisa dessas
transformagoes, facilitando provas de corregao. A implementagao
consiste em uma extensao a PL/I, e utiliza o pré-processador inte-

grante dessa linguagem

PALAVRAS CHAVE:

‘Facilidade de definiggo de dados, gramaticas de gra -

fos, linguagens extensiveis, PL/I, corregao de programas.
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1. INTRODUCTION

This paper discuSses an impleméntation of a Data Definition
Facility (DDF), dirécted by graph grammars. The efforts teo incorporate '
powerful devices for data aefinition into modern prcgramming  languages
(SIMULA 67, .LCOL 68, PASCAL, CLU) illustrate the present concern with

this probler.

E¢ -1y research on DDFs [1], as well as later work contributing

to certain e :tensible languages (ECL) went along the following lines [2]:
1. a numher of lata types are provided as primitives;

2. a mechanism is introduced, which can b' described as a set
of constructors, i.e. specialized func:ions receiving as
arguments various primitive (or previously so constructed)
data types, and returning a new data. tvpe as result,

- e . [ Iy
Cther approaches are proposed in Li] and yA}, and more recent

work can be found in [5] and [6].
Ir most cases the creation of new data types requires the
elaboration of routines and invélves the manipulation of generic  or

(preferably) restricted pointers.

0f special interest here is ‘the attempt towards a graph-theoreti-

cal formalization in ff . Although the some author has produced a procedural
implementation [8], he suggests that an implementatjon in terms ¢~ graph-

transformations would be advantageous.

Tte theory of graph transformations was made more preci-e through
the studies on graph grammars {QJ. In L}Q] a fully developed grap grammar
formalism fcr characterizing data structures has becn proposed. The preseﬁt
work is maipl§ based on the theoretical framework of the latter r~ference;

the complete research is reported in [1{].



2.

The DDF has been implemented as an extension to PL/I, using the
PL/I pre-processor and a number of run—-time routines. It has a high degree
of non-procedurality, relying on the visual intuition of graph transfor-
mations. Proofs of correctness use well-known graph grammar techniques, to

" be illustrated later.

PL/I pointers are employed but they are transparent to the user.
Since the only way to alter the structure of (an instance of) a data
structure is to invoke rules of the attached graph grammar, as defined
through the DDF, a strict discipline is imposed on the manipulation of

data structures.

2, THE DATA MODEL

As data model we shall use a class of graph grammar formally

defined in [12], as informally described in the sequel by way of examples.
If we have a data structure consisting of a character string

linked to a list with a variable number of binary data items, one possible

representation is the one indicated in figure 1.
ORFGRNORNG

Fig.1l: The graph of a data structure

where:

- the B node represents the character string;

-~ the C nodes represent the binary data items;

- the D node is a "trailer" of the list of binary data items;
- the Y edges link the nodes in a linear way.

Figure 2 shows a character string plus an empty list.



ey
Fig.2: A "minimal" configuration

. _
To add items to the list we can use the transformation ' represented

in figure 2.

t‘;.-§-> :i)) => _§_;) @'Y_@

Fig.3: A transformation rule

which can be expressed as follows: "a D node is transformed into a C leading
to a D thrcugh a Y edge, and the original 'context' of the left hand side
D is now passed to the new C node." The context of ‘a node is the set of

edges pointing into or from the node.

Thus, two consecutive applications of this rule to the data

structure of figure 2 would transform it into the configuration of figure 1.

Likewise, if we want to rebresent a binary tree with threads to
the successor nodes in postorder traversal [13J we can do it through the

] S kR
graph of figure 4 .

Fig.4: A binary tree with right threads

* To be called transformation rules, production rule$, or simply rules.
**% The positive integers enumerate the nodes; their use will be explained in
section 3. ' ’ ' o



where:

-~ the S node is a header;
- the B nodes are data items;

~ the A nodes are empty sub-trees.

A production rule that allows the inclusion of a new data item,

at the same time making provision for further growth is given in figure 5.

1
- ’
~$

N —N
®, =
]

N

.
Pahid

Fig. 5: A rule for expanding a tree

which transforms an empty sub—tree into a one node sub-tree (with two empty

sub-trees), and transfers the outgoing context of the original empty sub-tree
to the newlyvcreated right (empty) sub-tree, the incoming context being inherited
by B.
If applied to the graph of figure 4, this rule could generate one
of the graphs of figure 6 (among others).

(a) )

Fig.6: Two possible results of the application of a rule



5.

Consequently, it is 1mperat1ve that, for the application of a rule
not to be ambiguous, a "base' node be indicated;: this requlres a method for

‘1ocat1ng nodes.

The chosen method involves a sequence of edge names (edge 1abels)
~from one spec1a1 node to be called the root. This method has motlvated the
characterlzatlon of the class of graphs of interest, called rooted labelled

dlgraphs.

In a rooted labelled digraph all nodes are reachable from the
specified root, and in addition no two edges with the same label can leave °

any node.

Returnlng to the example, where the S node has been designated as
the root, the rule of figure 5 applied to the graph of figure 4 with the
sequence <X,L> yields configuration <a> of figure 6, whereas the

séqhehbe <X,R,L> yields configuration ' <b>.

'3, DESCRIPTION OF THE DDF/DDL

Each new. data type is described in the implemented DDF through a
éet of . transformatlon rules (a grammar) capable of generating the desired
Set of graphs,.also, another section of the DDF assoc1ates with the node
labels. a given- PL/T (pr1m1t1ve) type, or a prev1ously defined type, or
. still an "empty" type whenever the nodes with such labels have a purely
‘structural meaﬁing (the '# DUMMY type). The remaining section merely 1iéts"

‘the allowable edge labels.

Syntactically, a graph is "coded" by means of 4-tuples containing,

. for each node:

- its reference number, which is a positive integer uniquely

. . *
associated with -the node ;

* Noticevthat'node labels are not unique.



—~ its incoming context;

- its label;

- its outgoing context.

Thus, the graph of figure 4 would be represented by:

<1
<2
<3
<4
<5
<6

(W.6) S (X.2)>
(X.1,W.3) B (R.4)>
(L.2) A (W.2)>
(R.2,W.5) B (L.5,R.6)>
(L.4) A (W.4)>

(R.4) A (W.1)>

The node references of the instances of a data type are internally

created. Node references also appear in the coded rules as parameters, which

means that when a rule is applied a correspondence between these node refer-

ences and the (internally created) node references of the instance to be

transformed is established.

The grammar for the trees of our example consists of two rules: the

one in figure 5 and the rule in figure 7 below.

& = Q

L

A

Fig.7: The other rule in the right-threaded tree grammar

We are now in position to show an example of the # TYPE statement,

using the set of trees under discussion:



# TYPE ((BTREE: :
NODES: S # DUMMY,
” A #DUMMY,
‘B CHARACTER(12)VARYING;
EDGES: L,R,W,X;
RULES: 1 <1()S()> + <2(W.3)S(X.3)>
B <3(X.3)A(W.3)>e

2 <1($)A($)> + <2($1,W.3)B(L.3,R.4)>
<3(L.2)A(W.2)>
<4(R.2)A($1)>));

In order to declare variables of this new type we use the stateﬁéht
## DECLARE ((BINARY TREE BTREE));

which initializes the variable BINARY TREE WITH <i( )S( )>, where i is

some internally generated node reference.

The two statements — # TYPE and # DECLARE — are in fact the.
DDF The implementation also provides a Data Manipulation Languagem (DML),

con51st1ng of the statements to follow.

As we saw, 1n order to utilize the transformat1on mechanism it is
necessary’ to specify sequences of edge labels, which is dome as exempllfled

below:

#PATH(WAY = 'L' || 'R');

#H#PATH(W = 'X');

#PATH(P = ); /* EMPTY SEQUENCE */
# PATH(WAY =W || WAY);

the latter being equivalent given this sequence of statements to

* Node label S is the start symbol of the grammar, besides mark1ng in this
example the root node.



#PATH(WAY = 'X' || 'L || 'R");

*
Now, with the statement

# APPLY (# 1 : BINARY TREE (@ P);
. I

|
{

rule number

data variable

path variable

we can generate the configuration shown in the right-hand side of figure 7,

and then with
# APPLY (# 2 : BINARY TREE (a1 W);

the first "useful" (B-labelled) node can be added; other applications of
rule 2, with appropriate assignments to the path variables, will continue

this growth.+

When a (information bearing) node is created space is not
automatically allocated for the values to be assigned to it. This is domne

through a statement
# ALLOCATE (BINARY TREE @ W);

whereby a storage location is designated, taking into consideration the type

of the node associated with its label.

* Note that the statement does not contain the name of the data type; thus
the implementation ensures that only the rules of the associated grammar
will be applied to the declared variable.

+ Deletion rules could also be provided.



The actual placement of values in the allocated space is

accomplished by statements like

# ASSIGN(BINARY TREE @ W = X * Y);

!

some valid PL/I expression
and for retrieving a value one uses

# VALUE (VAR = BINARY TREE @ W);
some‘valid ?L/I '
variable

Other useful  statements will be reviewed briefly:
# FREE (BINARY TREE (@ W);
releases the allocated space.

# LAB(VAR CHAR = BINARY TREE @ W);
assigns to the character string variable to the right of the "="

of the indicated node.

# DISPLAY (BINARY TREE : GRAPH);
# DISPLAY(BTREE : GRAMMAR);

# DISPLAY (WAY : PATH);

# DISPLAY (GRAPHS) ;

the label

are examples of the special output features provided by the implementation,

which are particularly helpful for debugging; they cause the print-out,

respectively, of the data structure instance graph, grammar, path variable,

and all "active' data structure instance graphs of any type.

A more sophisticated and powerful version of the PATH statement is

provided:
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#PATH V(W - (@ BINARY TREE = J<1($)B($,L.2)><2(L.2)B($)>

1

sub-graph pattern to be searched

/1 = 'NAME' € 2 = 'M60' /.L);

required values I
(optional) |

edge label to restrict the search
(optional)

This pattern—directed search looks for a sub—graph matching the
pattern and assigns the path variable (W) the path leading to its root
node* as soon as one such sub-graph is found. One can also require that
certain nodes of the sub-graph have specified values. Finally, it may be
possible to avoid an exhaustive search by indicating that the root of the
matching sub—graph lies along a path consisting of edges of a given labe1+;
otherwise the search is performed in depth-first order |12} in the
lexicographic order of the edge labels, the same criterion being used inside

each (candidate) sub-graph.

* So these sub-graphs are actually rooted labelled sub-graphs; in fact the
sub-graph patterns on both sides of production rules are also similarly
constrained.

+ The latter feature could be made more general. We are limiting ourselves

to what is available in the current implementation.
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4. THE ARCHITECTURE OF THE SYSTEM

The described DDF/DDL was implemented (both under PL/I-F and PL/I-X)
as a PL/I extension, using the pre-processing features provides by this
‘language, so that all its "statements" are actually regarded as procedures.

(macros) by the pre-processor.

The execution of these procedures causes the extraction from the
program of the informations to be passed as arguments to a score of run-time
routines. More precisely, the pre-processor replaces the "statements" by calls

to the run-time routines.

So, in order to submit a program u81ng the DDF/DMF one needs to have

available:

- the body of the procedures, wrltten in the pre-processor language:'
(essentially an extended sub-set of PL/I); an appropriate 7INCLUDE

pre-processor statement will append this to the user's program,

-~ the run- tlme routlnes, to be link-edited; these would be in library

mode.

Combinations of these run—tlme routines are used to achleve the effect :
of the several "statements".. The same routine, for example, is shared by
# APPLY and PATH V for travers1ng a data structure instance graph and a paﬁtern;

while testing if a match occurs.

There is a global storage area, managed by run-time routines, where -
several elements needed by the system are kept, such as tables for the »
representation of the graphs, the several directories (for grammars, path
variables, etc. and for their interrelationships) and so forth. The
appropriate declarations are lnserted in the user'program by the pre-processor

when it flnds the ##INIT statement .

* The user is allowed to specify several size information, which otherw1se
is determlned by default.
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The PL/I allocation mechanisms are used only for allocating and
freeing space for storing values corresponding to information nodes. Based

allocation is used, the pointer values being stored in the global area.

Several run~time checks and error messages are provided.

5. AN EXAMPLE

The example to be discussed involves two extended PL/I procedures

for manipulating a symbol tables, as a compiler would use.

The first one is uded for constructing the table. At each invocation
it receives a symbol to be installed and the number of the statement (in the
program being compiled) where this symbols occurs, in order to enable the

creation of a list of references to the symbols.

The second one prints the table in the alphabetic order of the

symbols, each symbol being followed by its list of references.

For the representation of the symbol table we use a data type which
combines the two data types used thus far as examples. The binary tree will
contain the symbols in alphabetic order (which in the tree corresponds to
postorder traversal); the list of references will be a linear list linked

to the node witrh the respective symbol.

As one would expect, the grammar will be, in a sense, the union of

the two grammars previously introduced, as shown in figure 8.
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Fig;S: Grammar for the symbol table

As an illustration of the proof methodology, we give an outline of

the proof that the above grammar generates exactly the intended set.

a. Only the valid configurations are generated.

This is shown by induction on the number of applications of the

rules (stage of the generation).

Basis: if only one rule is applied it must be rule 1, which creates

an empty tree.

Hypothesis: assume that after n applications only valid configurations

have been generated.

Induction step: only rules 2 and 3 are applicable.

rule 3 - this rule is applicable at Vtrailersﬁ (the
D nodes) and it simply adds one element

to the list;

rule 2 - this rule is applicable to empty sub-trees
(the A nodes), and it transforms one such
sub~tree into one B node leading to two

empty sub-trees; the placement of the
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thread caming from the left A node is
correct by construction, whereas for the
right A node the correctness is ensured
by the correctness (by hypothesis) of its
placement in the original empty sub—tree;
the rule also initiates a one element list

linked to the B node.

Note that rule 1 is applicable only once, because it requires that

the S node have no context.

b. All the valid configurations are generated

This is shown by induction = on the number of the nodes (size of the
configurations). The proof is divided into two parts. For the size of the
trees, we have:

Basis: the empty sub-tree is generated by applying rule 1;

Hzpothesis; assume that all trees with m B nodes can be generated;

Induction step: any tree with m*+l nodes can be obtained by applying

rule 2 to a tree with m B nodes, which is identical .

to the former except for the substitution of another
- B node* for an A node. In the desired tree with m+l

B nodes any B node with two attached A nodes can be

arbitrarily chosen to be the missing one.

As to the size of the list, any number k>1 of C nodes is acceptable;7

So, we have:

Basis: whenever a B node is created (by rule 2), a one element 1iS¢5

is attached to it (one C node);

* With two A nodes and a one node list,
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Hypothesis: assume that a givenbnode of type B has a list with k

C nodes;:

Induction step: a list with k+l C nodes can always be generated by

applying rule 3 at the D node of a list with k C

nodes.

The declarations and initializations in the main program and the

- two procedures are listed in the Appendix.

6. CONCLUSIONS AND FUTURE WORK

The proposed extension allows the definition of a broad class of
data types through sets of transformation rules. Thus, not onlyvthe’intended
sets are defined but also the permissible ways of changing the structures. are

specified.

Once one has proved that the grammar corresponds exactly to the
intended set, nor further proof of this fact is required throughout the
program, where all that can be done to affect the structures is to apply

rules of the associated grammar.

The notion of pointer is replaced by the notion of edge, which

conveys the essential idea of accessibility within prescribed configurations.

One drawback of our approach is that for some more compiex set .the
process of designing the grammar may require considerable skill, This may be
partialiy remedied by providing a library of commonly (and possibly non-
trivial) transformation. Future research could also try to develop a higher-

level notation.

Another worthwhile effort would be to adapt the implementation to
a graphics environment, where graphs and graph transformation rules would be

represented directly.



APPENDIX

DECLARATIONS AND INITIALIZATIONS IN THE MAIN PROCEDURE.

# INIT
# TYPE ( (SIMBOL-TABLE: :
NODES: S #/DUMMY,
A A DUMMY,
D # DUMMY,
B CHAR(12)VAR,
C FIXED BIN;
EDGES: L,R,W,X,Y;
RULES:

1 <1()SO)>+<2(W.3)S(X.3)><3(X.2)A(W.2)> ¢
2 <1($)A($)>><2($1,W.3)B(L.3,K.4,Y.5)>
<3(L.2)AW.2)><4(R.2)A($1)>
<5(Y.2)C(Y.6)><6(Y.5)D()> €
3 <1($)D()><2($1)C(Y.3)><3(Y.2)DO)> ));3
# DECLARE(( TABLE SIMBOL-TABLE ));

# PATH (WAY=) ;

#H APPLY(#1 ::TABLE @ WAY);

16.



PROCEDURE THAT INSTALLS THE SYMBOL

INSTALA: PROCEDURE (SIMBOL, REFERENCE):

DCL
DCL
‘DCL
DCL
DCL

LABEL CHAR(6);

SIMBOL CHAR(12) VAR;

REFERENCE FIXED BIN; ,
ONE B BIT(1) INITIAL('1'B);
ALOC_SIMBOL CHAR(12)  VAR;

# PATH(PATH = 'X');
DO WHILE(ONE_B);

# LAB(LABEL = TABLE @ PATH);

IF LABEL = 'A'
THEN DO;

# APPLY(# 2 : TABLE @ PATH);

# ALLOCATE (TABLE @ PATH);

# ASSIGN(TABLE (@ PATH = SIMBOL);
# PATH(PATH = PATH || 'Y");

# ALLOCATE (TABLE @ PATH);
##ASSIGN(TABLE @ PATH = REFERENCE);
ONE B = '0'B;

END;

ELSE DO;

# VALUE (ALOC_SIMBOL=TABLE (@ PATH);
IF ALOC_STMBOL = STMBOL.
THEN DO;
# PATH(PATH=PATH|| (2)'Y');
DO WHILE (ONE B);
# LAB(LABEL=TABLE @ PATH);
IF LABEL - = 'D' ‘
THEN ONE B = '0'B;
ELSE # PATH(PATH=PATH|| 'Y');
END;
# APPLY (&3 : TABLE @ ‘PATH);
. # ALLOCATE (TABLE (@ PATH); ,
# ASSIGN(TARLE (@ PATH = REFERENCE);
“END;

17.



ELSE IF ALOC_SIMBOL > SIMBOL
THEN # PATH(PATH = PATH Iy
ELSE # PATH(PATH = PATH || 'R");
END; |
END;
END INSTALA;

PROCEDURE THAT PRINTS - OUT THE SYMBOL TABLE

PRINT: PROCEDURE;
© PUT PAGE LIST('SIMBOL TABLE');
DCL LABEL  CHAR(6);
DCL SIMBOL CHAR(12) VAR;
DCL REFERENCE FIXED BIN;

# PATH(PATH = 'X");
DO WHILE('1'B);
# LAB(LABEL = TABLE (@ PATH);
IF LABEL = 'A'
THEN DO;
4 PATH(PATH = PATH || 'W');
# LAB(LABEL = TABLE (@ PATH);
IF LABEL = 'S’ |
THEN RETURN;
4 VALUE (SIMBOL = TABLE (@ PATH);
PUT SKIP LIST('SIMBOL', SIMBOL);
#PATH(NEW = PATH);
LABEL ="}
DO WHILE(LABEL™= 'D');
4 PATH(NEW = NEW || 'Y");
4 LAB(LABEL = TABLE @ NEW);
IF LABEL = 'D'
THEN # PATH(PATH=PATH || 'R');
ELSE DO;



# VALUE (REFERENCE=TABLE (@ NEW);
PUT LIST(REFERENCE);
END;
END;
END;
ELSE # PATH(PATH = PATH || 'L');

END;

END PRINT;

19,
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