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1- Introduction

: ‘The original motivation for the development of lambda
,balculus;'Was to give fundaments to ldgic. The reason for that
_nece551ty was an artempt to pre01sely define the concept ‘of
varlable substltutlon in the predicate calculus. All the ini-
‘tlal work was accomplished in the 1920-40 decades, by Church,
‘Schonf:nkel and others. Recently, after the works of =~ Dana
‘Scott [11 12,131 there has been a furthes development of - the
‘orlglnal 1deas, mainly because of efforts to obtain a mathemat1~
cal fondatlon for the programming langudge area, particulacy,
the,studywof its semantics. i '

" We can say that today, in that area (semantics of pro=.
‘Jygbémming:languagea), there exist two main lines: [57.
a) The compiler oriented view |
'b) The Interpreter oriented

The second type methods can be subdivided in

b.1) Operational or constructive methods
b.2) The denotational or mathematical methods
b.3) Propositional methods

The knowledge of lambda calculus is important in the
underSfanding of the operatlonal and denotational methods :
(b;i.and b.2). For the second one, that knowledge is fundamen-'
tdl. |

B Our aim in these notes is to give the basic concepts
of the 1ambda calculus, trying to explain and motivate through
some examples of applications in the programming language area.



zﬁmhéfiambﬁéicalculus

Let‘slconsider the algebraic expression
x-y
as deflnlng a functlon dependlng on one varlable‘ That function*
: f;’functlon f of the ‘'variable x or a function g of the va-
riable . 'One way to dlstlngulsh these two jinterpretations Cis
{to maﬁki 1n -some form, the symbol acting the role of a varlable
' : The lambda calculus introduces the specmal symbol-

El (theﬂgreek ljetter lambda) to do this marking, as a way of
ilnd 8 1ng the blndlng of an argument with the variable next to

Accordlng to that notatlon, the function f can be des-
cribed as | | e
f = A (x=Y)
The notation reinforces the role of X as the variable
‘to be substituted by every argument for the functlon AX . (x= y),ao

£(a) = Ax.(x-y)(a) = a-y
In the case of the functlon g, we have

g = Ay (x~y)
g(a) = Ay (x—y)(a) = x-a

U51ng these ideas, ‘we have a systematic way to construct,
‘,all the expre331ons in Wthh +the variable x occurs, a nota~
=% "for a_correspondlng functlon of x. This notation can _'beff
fextended toﬁfunctlons of two or more varlables, Ain whlch the pr-f

"ff;computatlon is 1mportant., : s
For example, let the £ollowing funétlcns h‘aﬁd k be_dé~m'
fined (in: "éeﬁven%i@ﬁal" n@fatmaﬁs by - R
h(x.y) ﬂ xwy
and v
k(y;x) s’x—y- '

‘In ouﬁ"lambda notat1on the function h is represented by
h = -AX. Ay. Cbe)



and k by.
kK = Ay.AX.(x-y)

The order of computation (i.e. of substitution of varia
bles by arguments) is indicated in each case by the order (from
left to right) in whlch appear «the variables adjoined to each
l)\! ‘ ‘

“So . : v -
| h(a) = Ax.Ay.(x-y)(a) = Ay.(a-y)

That . is, the result of applying h to the argument a ,.
is a new function of one variable, y. :

Using the same argument a for k gives

‘ k(a) = Ay.Ax.(x~y) (a) = Ax.(x-a)

we obtain a function depending on x.

The following function of three variables.

AX o AY AZ. (XByd2)
is different from the function

_ Ay hz.ax, (x*y+2z) ‘
That can be seen, applying both functions to the same
set of arguments, 2,4,3. | o
EERE AX. Ay Az (x%y+3) 243
means, substitute the first argument, 2, for x, the second, 4 ,
forzyg«and the third, 3, for z. So, the result is -
2*M+3 = 11
The application of the secoend function give
Ay.kz.kx.(xﬁyfz) 243
3#2+4 = 10

It is clear from the examples,the binding of each ar-
gument with the corresponding variable. |

‘ﬁ7  Inltlally, we introduce 1nfovmally (*) the morphology
of ﬁhe lambda caleulus.

(*)”The'formal treatment of this theory appears in the monograph;
A Rev1ew of the Church - Rosser Theorem for the A—a-e n Cal-
culus" by R.L. de Carvalho.



Dgfinition 2.1

Prlmltlve objects. The symbols x, T2 T EEEEE) SRRRPL PR

belonglng to a certain set of indentifiers. are prlmltl'
ve objects called variables.

-.De'finitidn 2.2

VA lambda expre331on is either an identifier denoting a
varlable, and is called a simple express1on

or
1f Y is a lambda expression and x is a varlable, then
(Ax. Y)
is a lambda expression. The variable appearlng immedi-~
ately after the *'A! symbol is called the bound varlable,
,and Y is called the body of the lambda expression.
or

fif X and Y are lambda expressions then (XY)
is a lambda expression called the composite of the ope-
irator X and the operand Y.

If dur‘set'of variables is

n, oco}

we can form by examplé, the following lambda expressions:

{xo’xl’f"" X

Xq is an identifier, denoting a variable, so,
it is a simple expression, and thence a

lambda expression.

(Axo.xo) in this case, the bound variable is X
 The body is the lambda expression X
(Axl.(xxo.xé)) Bound variable: x
Body : (Xx X )

1

CCAK o )(Axl‘xli) Here we have a composite, with the
lambda exprassion (Ax +X,) as ope-
rator and the lambda expre591on
(Axl.xl) as operand.



Definition 2.3

A lambda expression X is a sub expression of another
lambda expression Y if:

either X occurs as the body of Y

or X occurs as the operator of Y

or X occurs as the operand of Y

_ br X is a subexpression of a subexprescion of Y.
EXamEle:'if_Y  (Ay.(y(ax.x)))

(y(rx.x)) is a subexpression of Y (it is
its body)

(Ax.x) is a su»expressior of Y because it
is ¢ subexprescion of its body.

In the following definitions, the letters W,X,Y,2 repré
sent an arbitra:y lambda e. pressions.

Definition 2.4

An occurrence of a variable x in Y is lound in ¥ iff x

oceurs in a Z wh'ch is the :ody of Y, .nd ¥ has the

form ’x.Z or x occurs in a ¥ which is “he body of a

subexrression Ax.W of Y.

If the variable : is not bound, then we say that x is ﬁggg,

A variable x is ree in X ( .enoted xefX) when x occurs
free in X.

Example:
(Ax.(xx)) Both occurrences of x are bound

(x(Ax.(xy))) The first occurrence of x is free, the

second is bound

:(Az;((ky.(yx))(xx.(xy)))) z does not occur free or
bound., '

Pafinition 2.5

The substitution of each free occurrence of a variable
x in Y by 2 (denoted [Z/x1Y) is defined by the follo-
- wing rules.



i) [(2/x]x = Z if Y is the lambda expression X

ii) [2/xly y for ally # x '

$13)02/xIWX) = (CLZ/xIW)(LZ/xX))

iv) [Z/x1(Ax.W) = Ax.W | \

y),,EZ/xJ(Ay.W) (Xy.EZ/X]W) if y # x and, y éfZ or xé . W.
: (Az.[2/x3{z/yIW) if y#¥x and y ¢, Z

and xe W (z is a nev variable).

3

For example, if

Z = xz.(22)
tZ/xlx z xz.(22)
[2/xly =y
[Z/x(xy) = (([Z. x1x)(LZ/x]y))

11}

((rz (zz))y).

;CZ/xJCkx.(xy)) z AX. (xy)

ftZ/x]{Ay.(Ax(xy);) z (Ay.[Z. x1(Ax.(xy)" )
E (Ay.xxx.(xy)))

Definition 2.6 : a-rule
b‘jAVchange of the ~ound varia le in a lambda expression X,

of the form Ax.Y. is the re.lacement
X = Ax.Y = Ay.[y/x]Y if ¥ £f Y

‘The meaning of the a-rule, »r renaming rhle, is that the
,bounds varlables are irrelevants, that is, does not matter which
is the varlable used to i-:dicate correspondence with arguments.
For example, the meaning of the functions Ax.(x+2) and Ay.(y+2)
'1s the same,»applylng the argument 3, both give the same result,
,5. It we. apply a-rule to Ax.(x+2), with y as new bound variable,
we @hfain xy (y+2), i.e.

,Ax.(x#?) . Ay Ly /x3txe2) = Ay.(y+2)

iDeflnltlon 2;7 B-reductlon rule

A 1ambda expressmon X of the form ((Ax. Y)W) contracts
to 2 iff Z is the vesult of the replacement
X = ((Ax.YW) = [W/x]Y = Z
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The meaning of tte B-fule‘is the follcwing: (Ax.Y)
is a function aprlied to the argument W. The result
of the applicaticn of the function on W is obtained

substituting W for each free ocurrence of x in Y.

Definition 2.8 n-rule
If x €.Y, then X of the form (Ax.(¥x)), is replaced
by Y, that is (xx.(¥Yx)) =Y :

The meaning of t:e n-rule is that applying (Ax.(¥x))

or Y to some argument W, is obtained tie some result, i.e.
v ((Ax.(YX)IW) = YW

because x does not occur frz2e in Y.

j
‘Any expression of the form ((Ax.Y)X) is called a
B - redex and [X/x1Y is its contractum.

‘A expression of the form ( x.(Yx)) is called a n-redex
(if x does not cccur free in Y).

Definition 2{9

A lambda expression X is seid to be in normal form iff

X contains no sub—expressions that are redexes. If an
- expression W is obtained from X by a finite series of
applications of the a,8 and n rules, we say that X re-
duces to W (we denote an application of each rule by

§>, §> and ﬁ>). » o
If the expression W so obtained is in normal form, then
W is called a normal form of X.

Exam@les of application of the a-rulevare:
(Ax.(yx)) z> (Az.(yz))
COx. Oy (xpdyd)) &7 Ozl Oy (Czy)dyd)
Exampiaa éf application of the g~rule are:
_(kx. X)y > ¥
(x((ax. x)(Ax.(xy)))) 3> (x(kx.(xy)))

An example of application of the n-rule is:

(x. (Qy. (yy))x)) => (Ay.(yy))
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An examplé of reduction of a 1ambda expression to normal form is:

(x.((Ay.(yx))z)Iv 7 (Ay.(yv)z) §> zv

- 3
;zv 15 the normal form of the gi
Now, we show an exampl

ven lambda expression.
e of a lambda expressxon w1thout

;normal form
((Ax ((xx)y))(lx ((xx)y))) ES'
(((Ax ((xx)y)) (Ax. ((xx)y)))y) 5

((((Ax ((xx)y))(kx ((xx)y)))y)y)
-rules never ends.

] e‘tC.

so, the appllcatlon of reductlon by g
neral, there exists more than one way to ‘apply the:'

In ge
In the example

?éductzon rules in a lambda ‘expression.
((Ax (\y. (yx))z)v)

‘We ggn}app;y the B—rule in the following form

(Xx((ly(yx))z))v 3
both reductlons

ssions where some ways of appli-
and other

> (Ax (zx))v B> PAY

In this case, glves the same normal

|, These exists lambda expre
t ons cf reductions never ‘arrives to a normal form,

nates 1n a normal form, for example.

Sy Oz 23 COAx. (xx)) (Ax. (xx))))
whlch'ls of the general form

I1f we apply B rule, using W as argument in ¥, we obtain
,”that is, (Az.2), because there is not a free acuvrence of y in
z.2) is in normal form.

3 If we try to reduce the argument
we obtain a never ending sequence o

W, before its aPPlicé*
fQS}ng 3.pule, £ the

(O (0 O (x0)) e
(‘A)‘h(xx))(xxt(?‘x))) a’.nan ata.

The follcw;ng theorem says that if a lambda expre551on

liSVﬁéduCLble to a normal form,k
ermmnater ylelds that same normal form.

then every order of reductlon
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2 2 - Church - Rosser Theorem

If U => X and U => Y ( => means reductlon using o, B
andnn‘rules), then there exlsts a Z such that X =»> 72 and
Y =>::Z. ' ‘

/7\».
*a ¥

The previous concepts are the fundamental ones in the
theoryjof‘lambda'calculus." |
- ‘We will consider now some 1nterpretat10ne of special
lambda expre381ons, developed in the works of Curpy (4], thn,
Gross £3] and others,

2.3 = Integer number representatlon

The usual way of representlng non negative integers by
means. of lambda expre351ons is to associate with every number n

the oyeratar ny such that, applied to any parameter f and g it
iterates n t;mes the application of £ to g. That is

n fg g (FOECE...(£g).00)))
W
n times

thié“isfsetisfied by the lambda expreséion

(Ax(ky(x(x(x (xy)eodd))))
n tlmes

FQfJexampie
2 (xOy.(y)))
1 QxOylxy)))
2 (Ax(Ay(x(“”))))
) ﬁ@w, having the r&pwegant&timn of the p@aitiva inte=
fggers, tha fﬂllGWiﬁg“ﬁtep is to define some of the, elementary o=
fperations on numbers.- Let m, n be the representatlons of any

two numbers. The sum of these two numbers is obtalned g u31ng'
zthe lambda express;on

(((lx(Ay(kz(ht((xz) ((yz)t))))))m)n)
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For example, adding 2 plus 1, in this represehtation
1s obtalned by

.(((Xx(ly(lz(lt((Xz)((yz)t))))))2)1)
'((Ay(kz(lt((Zz)((yz)t)))))l)

V.

Z> (lz(lt((Zz)((lz)t)))) R

= (Az(lt(((kx(ly(x(xy))))z)(((Ax(ky(xy)))z)t))))
i (lz(lt((ly(z(zy)))((ly(zy))t))))

é) (Az(lt((ky(z(zy)))(zt?))l_

5> (Az(At(z(z2(2t)))))

£ &AX(Ay(x(x(xy)))))viiﬁ

,The result is the representatlon of 3.

;The:product of twonumbers can be defined as

f;c { (Xx(ly(lz(x(yz)))))m)n)

.Now, applying the representatlon m of a number to a se=~
'nd“representation n, consists in elevating the latter to 'an
qual to the first, that is

~(m n) E'EP: |

j—“Representatlon of lqgical constants and loglcal operators.

The loglcal constants can be chosen to be two—argument
l 16J each of which selects one of its arguments depen=
ts value: 'true' or 'false' This choics is mctivated
'mlng language expressmona of the form: :

loglcal expre531on then Sl else '82,

*“d'ng ‘nvfhe logxcal value of the 1ngcal éxpﬁGSQiaﬁ; thé
5-will be selected, if 'true', or S,, if tfalse',
_@giaal sonstant 'true' muﬁ’c aa*& as a selector fop
element, Sy, in a list of two elements 8, and S,
select the second element 82

S0, the representatmon for 'true' 1s
(Ax(ly(x)))

and for ‘'false'

.
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(Ax(Ay(y)))
The logical operations and, or and not are represented
by the lambda expressions:

not = (Ax((x'false')'true'))
and = (Ax(Ay((xy)'false')))
§r _E (Ax(iy((x'true’)y)))
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3 Appllcatlons

The lambda calculus has been applied in different forms,
-by authors such as Bohm [2], Landin [6,7,8,9] Strachey [14, 15]
aand others in their efforts to explein the meanlng of the various
§aSpects of programmlng language constructs.

. In precent years, thanks to the work of Scott, a model
for the lambda calculus has been evolved, 80, in this way, new
and solld mathematical aparatus is available for the investiga~-
'tlon of programmlng language semantics.

: In this section we revise, in an informal manner ,
ﬁtwo works in this direction. We will examine the SECD machine
~of Landln [7,3] and a recent work by K.Abdali {11l.

.3.1. = The SECD Machine

; ' One of the points of view used to define the semantics
-of programming languages is the interpreter oriented view. In
. it, the meaning is given in terms of the transformations that
- are speclfled by the syrntactically vaiid programs in the lan-
guage. _Spec1f1¢ally, thare must be:

= a formal description of the universe of discourse
for the language. '

- = a set of rules that indicate the way in\ which the
' basic expressions in the language can be combined
‘and giving the outcome of each combiﬁation as a

function of its component terms.

One of the methods of the intenpreter oriented view
is the operational or constructive method.The operational me-
thod déflnes a language nging ‘

= The definition of an aba*ﬁmat "machine state" § that
containg the essential information about the progress
of the process represented for each program in the
‘language. ' o | :

- Specification of the effect of the constructs in the
language on the states, that is, the specification of
a transition function, from one state to another.
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In 194, Landin ieveloped the SECD maciine, as a method
to define the .eaning of the evaluatlon of "App.icative expressi
ons" [7]. Two years later [8], he >ublished a new version of
the machine, cailled the "Sharing Machine", used to define the
semantics‘of ALGOL-60, but this time using the Sharing Machine
as an interpreter for the "code" generated by a "compiler'" trang
lating frbm ALGOL-60 to aoplicative 2=xpressions of a more com- |
plex type. '

'The applicative a2xpressions (AE) have as abstract syn-
tax, the}syntax of the lambda expressions (AE), so:
as AE is
“either simple ard is an ideatifier |
or is a AE and has a bound variable which is an identifier

and & body whict is an AE.
or is a Compound ar i has an ojearator which is an AE  and

‘an operand whicl is an AL,

All the AEs have a "value". which is either a number ,
or a function, etc. More precisely. an AE X has a value
relative to some informa-ion which ; ives a value for each free
identifier in X. That b ck-ground :nformation will be called
the Environment relative to which tle evaluation is conducted,

~ The Environment is considered as a furction that assoéig
tes with each identifier a value.
_ The value of X relative "0 the environment E  will
be denoted: ‘
: : va. (E)(X)

" The machine use< the environment for assigning values
to identifiers. |

" Consider the expression (ix.(ax-b))c
for the machine to be ab.e to evaluate ax-b, +*he environment
must contain the values of a,b and x. The valus of x can only
be supplied at the moman: when the function is applied to an
argument. In the machine, the value of an expression guch as
(Ax.(ax=b)) is vepresented by the expression itself, together
with the environment including the values of a,b,-. This colle-
ction of information is called a closure.
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The closure is formed by:

a ¢ontrol part which is ¢ expressior list,
a found variable (an ider tifier), anc an
entironment pert which is a list of pairs

"icentifier-o! ject”.

The rachine works using a stack. In crder to evaliuate

‘an AE, ih a certain environment, the operand i: evaluated first
and its vdlue is loaded onto the st:ck. Then “he operator is
evaluated, anc a closure is loaded <n to the s.ack. The closure

is then applicd to its argument.

The c¢tructure o’ the "stat.' of the m.chine for evalua-

ting an AE is the follow.ng:

- A Ctack,S which is an objzct~list
EnvironmentE a lirt of pairs identifier-object
Cortrol,C an expression-Ilist

. Dump,D a st.te.

The $ECD initial state is:

the stack S with the null ‘ist ('()"),

the environment E with the null list,

the
the

sontrol C with the AE *o be evaluated,
dump D with an init.: . dump Do.
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To define the transition function of the machine we will use
the fOllowing predicates, functions, and selectors on lists

predlcates
null(arg) : test if arg is null
id(arg) : test if arg is an identifier
Aexp(arg) : teét if arg is a lambda expression
eq(algl,argz): test if arg; is equal to arg,
comp(arg) : test if arg is a compound

closure(arg) : test if arg is a closure

- funections:

apply(argl,argz) : apply the (primitive function deno=-
ted by) arg; to arg,.
_constclosure(argl,arg2,arga) ¢ construct a closure w1th
the arguments arg, ,arg,

| and arg,.

h(arg): obtain the head of arg

t(arg): obtain the tail of arg.

(arglzargz): append arg, to arg,

Seléctors:

envp(arg) : selects the environment part of a clasure.

rand(arg) : selects the operand part of arg

orator(arg): selects the operator part of arg

body(arg) : selects the body part of a lambda expression

bound(arg) : selects the bound variable of a lambda
expression.

The transition function is
frahsfofm (8,E;C4D) =
if null(e) then
(C{h(B8)): S'),E'ﬁﬂ' DY whare (S';E',C' D')=D

if idth(c)) then
((Cyal(E)(h(C))):8),E,t(C),D)

ii Aexp(h(C)) then |
(((Qonstclosure(body(h(C)),bcundv(h(c)),E):S),E,t(C),D)



-le

if eq(h(C), 'apply')and closure(h(S)) then
“” ‘('()7,((boundv(h(S)) h(t(s))): envp(hS)),body(hS)
‘ ‘ - (£(t(S)) ,E,t(C),D))

if eq(h(C)) 'apply') and—1closure(h(8))then
= ((apply(h(S) h(t(S))) t(S)) LE,t(C) D)

;if comp(h(C))then v
(S E (rand(h(C)) (rator(h(C)) ('apply :1(C)))),D)

The ending conditions are:

the result (if any) in S,

the environment with the null list,
the control with the null list,
‘and the dump with Do.

Now, we giVe an example of evaluation using the SECD’
‘machine, Let the’AE be . )
O O, (fx)))square)Z)

i In Flg 1 is presented the successive states of the SECD
machlne durlng the computation. We use the letter A to represent
th 3 'apply metasymbol, '()' is the null list.

3 Pollowmng the conventions of the original work the head.
of,fhe,stack will be at the right side, and the head of the
control at tha left side. :
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In the initial state, the AL is 1n the control list,
w1th the head to the left. To create a new state, the head of
~ the control is tested, and happens to be a compund, w1th_opera-
tor B o ' . |
((Af(Ax(£fx)))sq)
v;and operand 2 |

_ ‘ So the new control llst is obtained by appendlng the
voperand of . the head of control, 2, to the operator, that 1;,
itthe AE above, to the metasymbol "apply", to the tail of the v
1“prev1ous control C, which in this case, is the empty list. The
rest of the components ‘of the state remain the same.
Another p01nt of interest is the change from state 5
-'toLSfategs. In state 5, the head of the control list is a lam-
_bda'expressiona So, a new state is created with,'a new steck,
'.where the closure ' '
LAxCEx) ,£,( )1
was appended to the previous stack S. The closure is formed by
' Xx(fx), the body of the head of the previous control C.

ff;ﬂ the bound varlable of the head of the prev;ous
| x control C.
and ‘f(1) the empty list, thatis, the previous environ-

iThe env1ronment and the dump remain the same , the con-
~trol llst is ' now the- tall of the previous control llst, ie.,
"apply"f tapply', ().
' 'Certain well formed expressions of the lambda calculus
are not computed completely by the SECD machine [10], For exam-
ple, lf the following compound is submifted as input:

((lx(ky(x(xy))))(Ax(ky(x(xy)))))

: That is, the representatlon of (2 2), (it must give 2 ),
the maehane goes through the following states. :



-19-

*z ®ean8tg

oq ') () 3
YCAEOMOMO)) ) (¢ 9% CC(Ax)X)AY) J=x)| [(L ()% (({AxxYA)
. , B R : u-xuﬁwaﬁnhxvxvu_
(ea“ O OO (CEx)x)AY) CCEC Y EXS(((AX)X)AY) I=X) )
oq v o () [C )X (LARIXIAYDT
: L XA X) A ]
oa v Aﬁﬁh»xvnwm~ux<v ﬁ ) mﬁ E} xnmﬁﬁmxwxvm«vu‘
°q v Aﬁﬁhmxvxvm&vxav (LAY RYXYY ¢y )
oa AAAAAmxvxua&vx«vmnﬁﬂmxuxvm&vxavuw” auy._ ,....“a._u‘_M,. )
a o} a s
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The machlne arrlves to a final state, but w1thout the
result in the stack.‘a ' ' :

hls 51tuatlon 1s obv1ated by modlfylng the SECD mach1ne-
by addhng,two new cgmponents
0: an output symbol strlng

Ne cou‘ter o

The output symbol strlngvls bu11t~uP by concatenatlon'7‘
'putation, the unlque name counter generates new bound
. Thus ms obtamned the so ealled modmfled SECD,

aanstructs cf programming languages and the A lambda
'he correspondence is obtalned using functicnal »inwj”

aﬁvi'aﬁman% 6f E i.e., thé values &t the QOéﬁt of exeuu}
of ﬁha n declau&d aﬁd autive variables of the pragu&m;;
~dénate the section of the program following § and
ng all the way to the puogram end. This P is called the
_gram remaxnder" of 8. The two parts of the program, ~ one




-21=-

consisting of F alone, and the other composed of S and F together
~may be interpreted3as two functions ¢ and ¢' respectively, of

the arguments vl,;.;,vn:

| éggig veres Vs eees Vp
S - — " .Statementl, |
‘ ' ' Statementz,
. ¢ ¢!

L]

Statementn

end
Fig.3.

The effect of interposing S in the program is to trans-
form ¢ 1nto ¢'. o ls taken as the representatmon of S where the
'functlon operator o is given by

(1) (c(¢))(v ,...,v ) = ¢! (vl,...,v )

whlch accompllshes ‘the transformatlon. ‘The equation (1) may be
wrltten as a reductlon in Jambda calculus, ‘
(11) ad vl...v z=> ¢' vl...vr

If the r1ght~hand-51de of (11) in can be expressed 1n
terms of ¢, Vi coes AATIN and p0531b1y uome constants, then (i )
can be taken as the deflnltlcn of 0 as a functlon of formal ar-:
‘guments ¢, Vis ey Vo ' ’ '

n v
The domalns of the arguments Vl’ veey V. are the va= .

lues of the correspondlng program varlables, thendomaln of ¢
conslsts of the program remainder consmdered as a function. '
'_ v - If a statement S is modelled by the lambda expression
o then the executlon of S is 51mu1ated by the reductlon of the
lambda expressmon N

U (thlo : 6Vﬁ

in wh: sh the symbels vl.uv denete the 1mbaa agalsulus pvepvre-

sentations of the values of the corresponding variables immedia}
tely prior to the execution of S, and ¢ denotes the representa~.
tion of the program remainder of S.
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So, the key step in modelling a programming language is
to define a suitable equation of the form (ii) for each construct
in it. | | o o
| By example, the following is the representation rule
‘for the a351gnment statement |

{vi:= g}g,ln the env1ronment (vl, A ) =
(A¢(Av (“'(Xvn("'(¢vl)"7Vi~l){8})%+l)'"Vn))"‘)))

using a shorter ‘notation
CE APAVy AV ehVg vy 1{e v, *1"'Vn

So,_the;translatlon of the following program

begin integer X,V

l.- N X:= 2
2.~ yiz X+19;
‘begin integer z,y;
3.~ : yi= x-5
end
end

to lambda calculus notation is:
L= Ap.AXAy .92y

2.- A AxAy.¢x(+xlg)

3.- A¢Azxylkxxy° 0z (-x5)xy°

here, n, with n 1nteger, denotes the lambda caléulus repr:senta-
tion of that integer. A prefixed expression like (+x 19) deno-
tes the lambda calculus representation of that expre551on The
1ndlces are used to denote different variables using the same
identifier. J ,

- The representation rule of the compound stafemenk is;

{mﬂ%ﬂsL,O?,iSIEQﬁ @mi} = }t‘t! {9 }({w}}(s'a({tﬁ ]QJ)...«))
wheré ﬁﬁ@ Si ave statements.

The following are two examples of compound statement
vepresentations.
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1) be 1n_ _
x:1=2; S, = MAXAY.¢ 2y
yi=Xx+3; Sy E XPAXAY - 9x(+x3)
X:i=y+X Sy E X@Axxy.¢(+yx)y
end -

{begin xi:?;y;;x+3;x;=y+x end} = x¢;sl(sé(sg¢))

ii) begin
yizh; | 51 Z AGAXAY .6 X5
x:2y+2 S5 2 ApAxAy.¢ (+y2)y
end -
\{ngin y:=5; X:izy+2 ggg} 2 Ao, Si(Sé¢)

: U51ng both previous examples we can show another inte~
resting p01nt in the model, i.e. the dermvatlon of equ1valence
of program . v ' '
The equlvalence of the compound statements (i) and
'(11) is derlved by showing that the lambda expressions of (i)
and (11) reduce to the same normal form. (Thls normal form re
lpresents the"smmplest"' vers1on)

' . Applylng the lambda calculus reductlon rules: to the re

fpresentatlon of (i) we obtain :

A¢.X¢Axxy.¢ Zy (SZ(SS¢))
APAxAY . (8,(5,0)) 2y
APAXAYAGAXAY . x(4X g)(53¢) 2y
A¢Axkykxxy(83¢)x(+x 3) 2y
APAXAYAY < (S,¢) 2(+2 3)y
APAXAyAy .(S,¢) 2 Sy
ApAxAy.(S,4) 25
APARAYAPAXAY . (+yx)yd 2 5
ABAXAYARAY .0 (4yxX)y 2 6
ApAEAYAY .G Cty 20y &
APAXAY G (45 2) 5
AAXAY 0 75

‘o
v

v

i oo T
v

H:0u
v

‘v’

Bt OO T ToN
v

applying the rules of reduction to the representatioﬁ of (ii)
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A4A0AXAY ¢ X5 (s} ¢)

i A¢Axxy (534) x5 -

‘e ‘A¢Axlyx¢lxly ¢(+y2)y ¢ x5

'éé A¢AxAyAxAy ¢(+y 2) yx 5

;ﬁs ;A¢Axxyxy ¢(+y 2)y 5

‘gg’ }¢Axky ¢(+5 2) 5

S AAxAY.6 T 5

B¢ yth compound etetementevhave the same "meaning", and a

"min ?e§9fequiveient compound statement is

end

The examples glven before, are for the simplest state~
3}hms work, Abdali presents in additlon, reductlon ru-
v”ocks, cond1t10na1 statements, 1nput-output, programs ,

! h; Jumps and procedures.

As was ohserved the potential of the model . in studylng
ropertles of programs is very 1nterest1ng - convergence )
ctness, and equlvalence and in performlng useful program
.rmatlons -~ such as program 51mp11f1cat10n, and optlmlza-
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