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* ABSTRACT:

Data structures are deflned by means of relatlons, and the allowable'

:;operatlons on. them are expressed in terms of a few ;well structured" prlmltlve

°ioperat10ns.

Define-~se estruturas de dados por melo de reiagoes, e as opcragnes'
'wperm1351ve13 sobre aquelas 580 expresas em termos de umas ‘poucas operagaes
f}prlmltlvas ”bem~estruturadas"

. PALAVRAS—CHAVE

= "Eﬁtrutura de dados, relacdes.
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‘1, INTRODUCTION

To understand the essential aspects of what constitutes a partlcular
;class of data structures, we mupt abstlact these aspects from our 1ntu1t1ve
ldeas about 1t “This abstractlon must be unamblguOus, modelllng the semantlcs

fof the data structure in ‘the: most adequate form posslble. Because of reasons

?such as the posslblllty of establishing the correetness of the 1mp1ementat10n
'of a SpelelC data abstraction, and the need for precision in the communlca- &

1t10n medlum, these abstractions must be formallzed

In ‘this work, a relational model was chosen as the general base for -
carlon of data abstractlonsu Each oarttcular kind of data structu—»

'the speC1f:

re can be obtalned from the elements of the domalh of the model by: addlng somelf

restrlctlons These restrictions characterlze the static aspects of the datat"

;structure belng specified and they must be expressed in a prec1se form. ,'for

'examnle,;uslngaax1oms in a flrst order language with equality.

e Tye np@rauimns ol eaeh data QLructur@ give its dynamié aspéats. The
}bperatiens ‘are defined uslng a set of "well-structured" primitive Operatlans

‘mn the elements of the domain.

Iu chapter 2 the ba31c deflnltions are presented In chapter 3 the .
‘potential of the model 1s illustrated W1th examples of the characterlzatlon'

'of ‘some. wellwknown data structures.



2. BASIC CONCEPTS

' We will consider a finite famlly {D, }0< <n of objects such that
D n DJ = ¢ for i#j and D/ = {#}. The union of the objects of thls family

W111 be called the universe of data and will be denoted by D = 'U Di'
i=0

We w111 also. con51der a finite set L = {El, £yyoo C } of objects called

'~funct10n labels and Lt of temporary labels. La is to be a considered as a

o 11near1y ‘ordered set.

Let D and L be the sets defined above. We use T to deriote a rela-

F:tiqn T E;D x L, called a data relationship.

‘Definition 1.1. We define the follbwing functions:

u

- BE&? T D 1i=1,2

pry: T~ L
byE}'__i (< xi’XQ’xa >) = B.r..i_(-}-(-) = x‘i’ 1 = 1"2,3

pr, . = <pr;, pr;> » Ii, <3

S1,]
’Ti’jf = EEi,j (T) (the image of T under EEij)
T L=
i,] ¢
o, e, L, T o® T
: 1,’.] 1] 1,1 i,] L,]

where the operator . is the product of relations.
Lemma ‘1.1, There is an integer N such that

N,
T, . = T? . for some n<N
1,3 1y]

N is called the depth QE-Ti ..

5]



3.

_Proof: Tt is a consequence of D and L being finite. Then Tl . is finite
‘ because it 1s a subset of the finite sets DxD, DxL or LxD. Con51~

~ der that we have calculated T J, m>1; it is clear that, if in‘
i, .

L r t L, Y.D < >
]‘TlaJ there. are no two palrs 1,yl and xJ yJ with ¢ y J,vAv
““then Tm 1 = ﬂ When the previous condition does not.apply, then
‘ L, ] .
fthe Sequence T J 5 T2 J,... is perlodlc, i.e, there exists some
. ’ ,
‘]m such that Tm+1 = Tn j for m+l > n,
B N ’ )
. Definition 1.2. T, ., = y T. . where N is the depth of T, ..
IR 15 k:’l 1?.] 1,3

-ﬁefiﬁiﬁiﬂﬁ‘l.B, A data work space is a S5-tuple

D, = <D, Dy, by T, W

‘wheret
g a universe of data

o
)
1]

j{a set of labels

. Ve
&

"ig a data relatlonbhlp, T <D x D x L

is the subset of D deflned-by

D = {yed | ¥x(x:T==pr,(x# y)} “_{#}
i.e. D, is our available space for obtaining new "nodes", = -

% is the only object in D, which is called the root.
'.andksueh that

(i) For all x,y T
if 251,3(5)‘= 251’3(2) “then x =y i.e. the second component
of x is equal to the second component of y.
(ii) For all 'y ¢ ((Dfo),—:{*}), there is x ¢ Tl 9 such that
. . ' ' ]
25&(5) = {#} and REQCE) = {y}, i.e. for all.y,y it is rea-

chable from the root.

Definition 1.4: Let D = <D,D.,L,T,*> be a data work space. Then we_de“
 fine the relatlonal data space, associated with D tc be

the data work space <D—Df,¢,L,I,K>’



Example 1.1.
=> X T !
D ={ ’a1’az’as’au’as’as’a7’aa’ae’310’;11}
‘p.={a ,a ,a }
R SR T R §1

= {L,1}

=
!

{(*: al:z)’ (*, az’n): (alsa3s£)s {alsau,n)a

(az,au,ﬂ), (az,as,n), (agaasaﬂ)s (auaasaﬂ)!

“H-‘_v
i

(au,a7,’z,),v (assé—“?’ﬂ)a Qas yaes’:{v)’ '(a",,aegﬂ)}

Using a 1abe11ed digraph reprasehtaéion,,twe data work space is




pr2>(I) :

3
-
]

-3
R

Lo = L<PEagy
1,2 1,2 =1

{(*’al)’ (*aaz), (alaaa): (alsaa,.)s (agsaq)’ (32:35)’.

(a3,ae)s (aqaas)a (aqsa'])’ (3«5537)5 (aegaa)’ (3-7;38)}

vﬂ

{(*,a ), (* 5a,), (%, a ), (a;,a5), (al,a by

‘ o (a i, ), (a,,a ), (a sa, )s (a,,a ), (a ,a 3}

71,2

T,2 = Ti,z"T:,z = {(*,aﬁ),‘(*,a7), (a)534), (az’?a)l
Ty, =Ty e Ty,2 = {(*’aa)}}
T =0

2;Tﬁén;fphef depth' N, for this example is equal to 4.

J;Définition*l;S; Let D = <D—Df, @ L, T, * bé a relatlonal dida space.
eat We deflne the set of trlples‘ ' o

T = P—-1 2 (Tzﬂ(Dax 1), £ L,

i. e.‘Tz is the set of triples’ such that the flrbt and seamnﬁ"

’components of each trlple are relatéd by the. label L 1n T,

G ﬂ‘ o n+1 no “:

'\é} T L ({a} % D) 0 ?2 G a e D

e 'a 2 is the sat of eriples such that the. Pixsn CRpOnenE
is a, and the second cOmpOﬂent is reldﬁed to d by a’ path formad

S by a sequence of n labels L.

N

- Le 2, T ' ‘ = for n<
_Lgmma ;‘2 There is an }nteger.Na’such that Ta,ﬂ Ta,ﬂ for n Na or.i
' : +
z‘:‘ TNal'—g
“a,k

gﬁoofé- it is similar to the proof of Lemma 1.1.



Definition 1.6. Let O be a sequence of labels. We define TO by:

1

»clf 8] 2 then TG = Tl'

LN n = | = i
o'% then T =T i} =Tor « T

L]

if ©

for the sequéndé X of length zero we derfine TX = {< %, %3},

‘Deflnltlon 1.7. Let 0 be. a sequence of labels. A‘sequence of labels"o1 is

an 1n1t1a1 sub-sequence of o, dLnoted 0,0 iff

‘g = f.

5T s1lia ree by 97 Ly Lyzseees ij such that
*"ii= Bopoly, = Agpeeer b T Lo and  mok.

;Deflnltlon 1.8. T, 0 ({#*} x D) n T

Qi & T* 0’13 the set of couples such that the first component is the root ¥,

fand the second component is related to % by the label path ©.

cPacty Ty o is.a singleton,;because of the first condition on data work spaces.

:kDefinitioﬁ 1.9, Let D = <D-Df,¢,L,T,*> be a relational data space. We define

o o the set Sd 5f useful sequentés of’labels(useful.pathS)‘from )
_the root to d ¢ (D-Dg ) by ‘ . s
sde foer, . lpr, (= {a} and

: *90 'E"“z *,0 _

b

.le' (0, <o =pr, (T, ;) # {db}

Example 2.0:




1727172

={L4,8,, L,4,8,, £,£, 8,8, £,0,0,8;, L L, 0,0,, £,2,8,0,}
An example of a path that is not a usefdl path is £2£1£1£u£5£1'

'Deflnltlon 1,10, Let D = <D~Df,¢ L,T, *> be a relatlonal data space. S is

defined by
s o= oshuny o
5 , ng-Df v .

jﬁéfinifidn 1.11. Let D be a univérse of data and L a set of labels. We

define the initial relational data space over D and L by

Din = ,<{*}, D - b{*}a L‘s ¢’ *>

idenote By Ty the family of all relational data spaces defined over D

,éaimxmmvm PREDICATES

of relational data spdces is to be aonsxde?éd asb

The famlly TD L
dvnamlu entity. Inxt;ally we have only D ’ aﬁd we will form a new xela* ,

it‘onal data space to be 1ncorporated 1n T by the use of certain prlmltlve

peratlons, to be defined. Before wé do thls, we will introduce certain prew
d datea, or conditions over the usaful paths of 4 relational data spaye .
<D, Df, L, T, *>, '

” :a)f§§g (0, T) means that the é1éﬁént d €D, reachable via the us&fu1
. péth 0o from the root * of ﬁhe relational data spiace is not the
beginning of any path. ‘
- Formally:

end (0 , T) iff pr, (T, 0)-5.251(T)
. = ) ,




8.

b) alt (0,,0,, T) means that the element of D, reachable by the

path 0,, is reachable by the path 0,.

- alt (0,,0,, T) iff pr (T*’01) =pr {T*’cz)

c) confi (0,,0,, T) means that 0, and ¢, are useful paths from the
root, sharing at least the last label.
’ t
: Formally:

- conflk (OI’UZ’T) i1ff 2_12.2('].1*50_1) = P—-{:—Z(T*,dz) agd

i 1 o g w10
Lo, = 0, % and 0, = 622

and EEQ(T*’O{) = EEQ(T*,GQ)Y

~d) byp (0,,0,,T) means that the element of D, reachable by the path
0,,05, can be found from the point reachable by o, following a

path distinct from 0O,.

byp (0;,0,, T) iff there is a path ¢5; such that 0, # 0, and

no subpath of 0, is the same as a subpath of ¢, ‘and



The definition of alt (OI,GZ,T) does not exclude the possibi-

lity thato, and o

2 share at least the last ldbel, that is for the same

0, and 0,, confl (0,,0,,T) could be true.

2.2. PRIMITIVE OPERATIONS

Now let us define the primitive opeératioms of our system.

a) ins.: S xS x L x TD >P D x'DxlL)

1 s L
defined by:

TUr, (T, 5 )% pry(T, o) x (£} i
ins; (0,,0,,&,T) pr, (T, o) ¢ pr; (T))

sV TTTTT

{ T otherwise

Intuitively, this operation can be represented by:



10.

6' ) e ,‘ 5‘/ : ——0

aﬁoting;that the condition ensures that there will be no two edges‘with;ﬁﬁévl

samejiabel leaving any node.
Example 2.1.
L . With T as follows, we will create a new link botween "ﬁodeé“ a5 *

T = {<*;.a1,£> s <HFyoa g, T, <a say,d> 5 <a 58, ,1> <a,58,,4%;

<aé’a’5‘§r} iéauaag §r>}a

g, = r.r

L.r.r

T, = 23152 (T n'(DZ x {£})) = {<*’a1>v"<31;ag>,<a2,au>}‘
ERR (@ 0 @2 x {x}) = {<*,a,> , <aj,a,>,<az,a5” ; <au,a6>}

r



Thus.

ins; (07,05,%,T) =T U (pr, (T

(D"2

T o= Tﬁ, e, a.> , falga6>} = {<* ,as>}

T, = (&} xD) a1 = {<t,a)

*502

pr, (T) = {*,a,,a,)

= {a,}
[Yo51 5

-133;2 (ch

B3y (T*,UII) S;E-El(TQ,)

%

,.0.1) * B

that is, we obtain the "structure"

T;.:b1= ({#} x D) n T01 = {<*,a.§}

(T ) = {h

*’0‘

11.

=T {<a.5,a6,_52,>‘} :



b) insp: S X Dex L x T > P(D x D x L)

£ D,L 12.

defined by _ s
Ty (pr, (T, o) x 1a} x {2) if
L]

iEéQ (01, d? 2,T) = I (?*’01) Z— 251 (TZ)

T otherwise

“ Intuitive représentatiéﬁ!.

v  The condition is the same as for ins, . The difference between
'the two operators is that, in insz,'the destination node belongs ﬁo~ _D£
befpre‘the operation tékes place. ' '

iExenggvz.Z; We will insert a new node, b, to the "right" of node aé,v,
T = {&*, 325£> , <k ,aa,f> v <azgau, rst

pg = {p}

[

TQ . <, a;> <az’ab>}

i

{<*,a?_>} o<, a,> 5 <a,, a§+.>}

= <, a,>)
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and
T =T
*,0, 01
pr; (T ) = {#, a,}
123 (T*;63= ta}
because pr, (T*,Ogi_ pry (T_) then
ins2 (01,b, r, T) =T U (pré (T yx {b} x {r})
RPN T *,01
=Ty {<aq, b, r>}
i.e.
L s
: r
.

¢) del: S xL x T + P(D x' D x L)

D,L
defined .by:

(1o ey, Oxpry(n, ) ox (2D if

‘ end (ze(f, T)

le»(Olz L, T) = or:exists o, s.t. if alt (Gllacz,T)
»‘bthen it is.not thé case that

- confl (0,4,0,, T)
or'kzg‘(Gl R I, )

T - otherwise .

\.
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Intultlvely del is applicable in the following cases, where O
is the node reachable from * through 01, and B the node reachable from *

through 0,%(from o through £):
1. if there are no edges running from B;

2. if B is also reachable from * thfough some dzand g, does not gb through

a;
3. if between o and B there is some path other than £.

The operation can be represented as follows:

Tk
¥

o} : (o] .

i In case 1, B may become an element of Df, which happenS‘if”ﬁhere;
“{s no alternative path to it, and thus del is the inverse of in52 , ether=

wise del is the inverse of ins, .

v ‘ 1f there are edges running from B, the operation would be
dangerous, because it might unwittingly cause other nodes to become untrea-
chable from.* which in turn could violate the requirement that when a node
is unreachable from * then there is no edge running from or into the node
‘(the node becomes an element of Df). However this unwantéd situation will-
not arise if there is some alternative way to reach B from * not involving
the edge 2% belng deleted; cases 2 and 3 where this happens are shown below,

the rlghtmosL picture show1ng a violation of case 2:
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‘Example 2.3.
' We will delete the edge r from a, to a, in the following struc~
turet ' ' : '

T = {<kya, 8> <%, a , r>, <a ,a,i8> , <a;,a,, r> ,<a;,d;,1> 4

1 2

<ag, ag, &> ,<a,, a,, r>}

|3

i<l

{<x, a,>}

B

%C*y\aT?}L

_431(01,1?,1' T) T- (2'1:'2_(':['*,01) X,"EE'Z(T*,O'II)X {I‘})

#

T - {<as,a;, r>}
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3. Examgles

We will now present some exanmles, showing the application of the
model in the description of data stluctures To do this, we must restrict
the relational data space SO that it dbeys certakn spec1chcharacterlstics;

these are given using a first order 1%nguage (at metallngulstlc,level),' to
describe them in a precise form: The operations on the data structures-,ére
Tdeflned using the three primitive operations delL iggland ins,. The applica

‘tion of these operations is illustrated by some Examples.
3,1.‘Chaiﬂs

These are relational data spaces with the additional characteriza~

  tions‘be1ow:
~ Axioms
(1) ¥x Wy (xeTAyeT > prq (x) = pry (¥))
Tntuitively: there is bnly one edge label, which, by theway,
implies that a chain cannot "bramch'; if the single edge
label is specified, say %, we have:
(i') ¥x (x € T > prs (x) = %)
(i) 3y (zeT »¥x xeTrpry @ # pr, (O
Intituitivelyt it does mnot form & cycle.
Qperations
1) ‘insertion at the end of a chain; the primitive operationinsz.

(ii) deletion at the end of a chain; the primitive operation del.

(iii) internal insertion of node X:

ins (0,x,T) = del (O, %0,ins; (o%,%0,%,in8,
L :
(6,558, del (o,%, 1nSy (x,cz,m,T)))))



| ,17;
Where 0 is the path to the node that will be before the node. to‘
be inserted, and %, is an aux111ary label. ' v
Intuitively: an aux111éry edge 20 is created first, 11nk1ng _*
to the’ node (call it B) follow1ng the one reached by - U(call it
a) now the £ edge from o to $ can be safely deleted because v‘B
(and the nodes follow1ng it) are reachable though %o then o is
connected to x- (Irom Df the node to be inserted) and this nodai$

in turnvl;nked_to B; finally the Lo edge is dlscarded,

(1v) 1nterna1 delet1on

(0 T) = del (A Eo,lns (U 2052 del
(U 2,del (02 2 1ns (A, 022 ,205,T)))))

o where o is the patch to the mode ptevious to the node to bc
deleted; %9 1s an aux111ary label.

Intultlvely. a stxategy very 31m113r to the one abave is used;'

ins h.(z,b,f) = del (A, Qo,ins (A8,%6,%, insz 2,b,4%,
del (&, R ,1ns (A,00, ZO,T)))))

'LQE step: lns (A 22 JLosT)
' = {<k, 4>}

Ti,gg = {<%,a,>}

then 1na (A28 ﬂo,T) =T VU { <*,a5,0>) =

this:procedure thevchain

e '"—"'~~~...
P
e




‘22-(1 step: del (SL,Z,T')
. =T ~ {<a1,32’ﬂ,>} = T"

3 step: inms, (25b,2,T")
C= T U {<ay,b, 4>} = 1"

s K - PP
B g,

e .

4B geep: ine, (2,2,,2,T™)

= T" U {<b,ar, >} = 1"™

51:2 step: del (}\,Q/d-: Tlnu)

=T . {<*,az,910>} = pnm

18.
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“Example 3.1.2.
We will delete the node -az in the chain T given by

o= {<*,a1,0> , €a1,22,8> , <83,83,8>,<ag,ay,L> }

O—teg—tegteg—teg
dely () = del ko, fnay (0,20, (el (L, del (2,8, ins)

AS5088, %0, TN

jlﬁﬁ-'step: ins, (AR08, %0 sT)

= 4 {<*,a3,20>}v= T

40

ww»m g

- L
G gyt amy By

' Zﬂi step: del (QQQQ,T')‘

- T ﬂk{<az,a3,z>} = TH

%o

e by

@j (f;@ g K, % g

33151- step: del (z,’ 2,T")

= T -~ {<al,az,2>} =.T™

2o

_// s .
Fleg @ oo
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4;';—11-' Step: inSl (24,?/0 "Q/’T'") »

= 1"u{kar,a 8} = 1™

5—— step. del (K %o,T"")
= Tm ‘,_ {<*’a3 2/0>} = prm

AL {<*;a1,2> ,_<a1,as,2> ’ <a3334:2>}

O s

x,In fact, 0perat10ns (111) and (iv) are sufficient;
p aleo work for insertion and de~‘

tbat"‘

;¢onv1nce himself that ins h and del

: fletlon, respectlvely, at the end of a chaln. The maid point is

"“the prerequlslte conditions for apply&ngthe primitive operators
rder to manlpulate the aux111ary edge will fall, and thus the corres "

in.. -

pondlng steps Wlll not be execu;ed.

53}2}7Trée8"
These are relatlonal data- spaces w1th the addltlonal character12a~

t ons below.iv

éﬁm
" (1) ¥x ¥y ((x’ e‘ TAYE T) > pry &) ’é (1))

ééé;%ﬁié;s

| "'}(5_‘)  Insertion of a mew node x

ins (0,%x,%,T) = insz(d,x,Q,T)

(ii)queletion of an edge %, from a node accessed by ©

the reader ‘Should ;f>.



21,

: JT if end (0,T)
delt (o, {ﬁ} T) = ‘ otherwise
~ |del (0,4, del, (OR,I,T) (*)
(S C

Letting sup select the largest element of a set, we can wxitef

'"q"e (08,1, T) del . (o%,{sup (L)} BNCIRAE {ﬁup (L)} T))

Where L is a set of cardlnallty greater than one, LeLy _
‘In the case of blnary trees, thus having only two 1abels, we would

-

;have_

el ©OR,1,1) =del, (Oh,21, del, (91,22,T)

TNote that in (*) we have as second argument L (set of active labels),]
whlch 18 a 11nearly ordered flnlte set (Whlch means tbat we 51mp1y have recur~;j

slon on a flnlte set).

‘.LWevWill insert the node b at the %3 edge of node ag of the tﬁeéiv Lot

o= <% 430> , <kjan,Ra> , <% a3, 03>, <a1;au,l;> P <§;,ggggg*

<as,asRa>}

an

ins (%3%2,b,23,T) = ins, (%3%2,b,%5,T)

T V {<ag,b,23>}



‘ &,
Example 3.2.2. <E)

We will delete the label %3, from the node a3 to node ag in the
tree: ‘
ST o= {<*sal ,Q'l> ’ <*’aa2,2’2> s <*aa3’l3> 5 <81,84 32’2> , <as ’a5»32'1> s -

<as 386 ,2'3> 9 <a(£,3-7 ,QJZ>}

La = {21,%2,%3} witch the order 21>82>%3

dely, (s,{4s],1) = del (ashs el (aks,La,T)

—‘g-?»}‘—tr (iaﬂ,s,Lﬂ,T)i = d,e‘.}.tr (L3ly, {sup La)l, deltr’l(ﬂrgﬁa,

La - {sup (La)},T)
del r (L3%3,La - {sup (La)},T) = del,, (ats, ke, 25, 1)
st (@23 {02, 08),T) = del (233, {2}, del, . (23%3,{23}, T

del, (23%3,{23},T) = del (%33, L3, del . (23%3%s,La,T))

=T



deltr (23%3,{R2,83},T) = deltr (2333;{22},T)
developing del . (R3%3,{22},T) we arrive at

del (33,102,831, 1) = del . (2323,%2,T)

T - (<3-6’a].1 )212>) = T1

[

del  (Raks,{22,2:},T)
del . (Rsfs,La - {sup (La)},T) = T'
del =~ (23%s,La,T) = del = (%323,{8:1},T")

"

= T

f

del  (Rs,{23},T)

--.-...-t T

del (%3,%s,T")

#

T ) w1
T" =~ {<az,a¢,23>}
- T”V

TN o= <Ay, 01>, <*,a3,R3> , <*,a2,%> , <ai,ay,L2> , <dg,as,lir}

it

"+ 3,2.1. Binary Trees

In addition to the axiom for general trees, we have

A "

9x ¥y ¥z (eTayeTazel + pro (x) = pry (1) v pry &) = prg (@) v

e

v pry () = pry (=)



P

“‘JWéhdéfine a general framework based on the‘relational properties “of
lements of our unlverse of data, as a first step in the modelllng of -
'efént klnds of data structures. In the description of each data structurei>
‘resented a set of ax1oms glven 1n a, flrst order 1anguage. These ax1oms" R
racterlze the statlc aspects of the structure, i.e., the scructural attri-
;of the elements of that partlcular domaln. In each: descrlptxon we also’
lned certamn allowable operatlons over this domaln. These operations: des -

ibe the dynamlc aspects of ‘each type of data structure.

Uslng the termlnology of Liskov and. Zliles, our model uses a- "f1xed

?anvof“_rlples. (e

Aé”for all speclflcatlon technlque, the maln dlfflculty 1n descrmblng;
ata~abstractlon is- the requirement of preclslon in the characterlzat1on,‘~?
‘,;’the ch01ce of ax1oms. In addltlon, the definition of the operatlons over
partlcular type of data abstraction must "be such that - the results of these

eratlons obey the spec1f1cat10ns of character17at10n, (1.e. the ax10ms)

‘other words, the operations must be safe, " closed with respect to the ax1oms. j
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