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ABSTRACT:

The present paper discusses some. issues in’program
synthesis by relating the ‘idea of systematic program deriﬁatibn
with the concepts of data type and correctness of‘data represe@*_
tation. The notion of an incomplete definition of a déta'typeﬁ |
at a high level of abstraction is introduced. The ideas are
iliustrated through an example previously discussed in thev

literature by D. Gries.

KEY WORDS: Program synthesis, program derivation, program
specification, program schema, data types, correctness

‘of -data representations.

RESUMO:

O presente trabalho‘discute algumas sugestoes em sinte-
se de programas relacionando a idéia de derivagao sistematica -de
programas com o0s conceitos de.tipo de dados e correcao de repre-
sentagao de dados. A nogao de uma definigao incompleta de um . |
tipo de dados a um alto nivel de abstragao & introduzida. As ide .
ias sao ilustradas atraves de um exemplo previamente discutido na

literatura por D. Gries.

PALAVRAS CHAVE: Sintese de programas, derivagao de programas,

especificacao de programas, esquéma de programa,

tipos de dados, corregao de repreésentagao de da~-

dos.
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1. - INTRODUCTION -

The state of the art in the area of program verification, started
in the late 60's by Floyd [1], is now reaching a stage in which many of
the existing results about the analysis of programs are starting to be
transferred to practice through research on software engineering. Efforts
have now turned to the goal of providing a methodology for the syséematic‘
(possibly semi-automatic) synthesi§ of programs. In fact, manyvpeople are
presently working on the problem of deriving a program from a given pro -
gram specification. Our goal in the present work is tc¢ contribute to ‘a‘

better understanding of this process. .

Depending on the system of notation which is vsed to exﬁress the
program specification, the above problem can be seen either as deriving . a.
practical program from an inefficient one (vis a vis the current computer
architectures) or from a less operational program statement. It is‘possiblé
to include in the first category the works by Burstall and Darlington [2],
Bauer [3] and Arsac [4]. These authors have chosen to specity prdgram
through recursion equations. The recursive form being well adapted to manif |
pulations (transformations) allows for the establishment of a set of rules
to transform programs (specifications), written for maximal clarity, into
practical or adequately efficient programs. Most of these efforts are
being accompanied by the development of software systems for program deﬁel; :

opment,

The basic approach taken for the synthesis of the usual Algol~-style
form of a program, requires the use of non-procedural program specifications.
One handle to the problem solution éan be in this case the use of Dijkstfa's
ideas on coﬁstructive programming together with Hoare's rules for the veri-
fication of Algol-like programs. Dijkstra has recently been exploring the
idea of predicate transformers [5,6] and proposes a methddology for the
derivation of programs from their post-conditions and pre-conditions (speci-
fications). Manna, together with several collaborators e.g. [7], developéd
work on a spectrum ranging from the automatic synthesis of simple programs
specified by their input and output assertions to the design of an interac-
tive system in which the computer takes the more straightforward steps on

its own, while the human guides the machine in the more creative ones.
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Since programmers will not be inventing completely new programs
all the time, efforts are being madefto.provide programrwritiné vsystems‘:‘jﬂ
with the capability to learn from old programs, Gerhart [8,9] has been
working on the compilation of a handbook of program schemas which caﬁ be
abstracted from most current prdgramming applications and that can be

used for the synthesis of more complex programs.

In the‘above, we attempted to make a very brief suﬁmary ofbsomeu‘
~of the current ideas on program synthesis. While these efforts are taking.
place, an overwhelming majority of programmers spend their time writing
 programs in Algol~like languages with very little understanding about the
objects they are producing. A very important task to be undertaken at the
present, consists of explaining to these programmers some of the more

established ideés on the nature of the program synthesis process.

Gries [10] contributed to this purpose b; illustrating some
of Dijkstra's ideas while applying them to a reasonably typical programming,
example. Our attention was called to the fact that the current practice
of separating the algorithm and the data aspects of a program in the pro?vi‘
gram development process (program = algorithm + data structures [11] )
was not taken into consideration in Gries example. In fact, the synthesis
counterpart of Hoare's ideas on the correctness of data representations “ 
[12] can be found, in a formalized way, only in conjunction with Burstall?éif?
work on recursive programs [2]. Works by Liskov and Zilles [13], Dennis'
L14] and Wulf [15], have dealt with some of the advantages (mostly from.
the point of view of programming practice) of program development through o
the use of data abstractions. These works are very important for the dis- -

cussion of the synthesis of Algol-like programs.

In what follows we discuss an alternative solution to the example_ 
proposed by Gries in [10]. For explaining the synthesis ideas we use thef\f
.language of firxstorder predicate calculus which is adequate for a crltlcal
approach and dlscu331on of the problem. We leave out all céonsiderations
about efficiency to concentrate on the discussion of the viability of
integrating the notion of a data type specification with Hoare's or
Dijkistra's style of proof rules. Our intent 1is not to propose a methodoléﬁ:
gy for program derivation but rather to try to contribute to the under =

standing of the program derivation process.
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2, THE LINE-JUSTIFIER EXAMPLE: SYNTHESIS OF THE PROGRAM SCHEMA

As stated above, we will present our view about the understanding
of the program synthesis process as we discuss £he derivation of a program
for an example suggested by Gfies. The emphasis will be on the interaction
between the synthesis of a program schema and the synthesis of a data re~

presentation model for the program.

2.1. The Problem Statement

A line-justifier is the part of a text editor that inserts blanks
between the words in a line in a way which avoids "the existence of blanks
after the last word or before the first word in the line. We want to cons-
truct a line-justifier program according to the following specifications:
(i) It accepts as input a numbered left justified line having more than

one word in which there will be just one blank between words and

possibly several blanks after the last word.

(ii) It will produce as output a justified lime, that is, a line in which

the extra blanks to the right of the last word will have been distri-
- buted in the spaces between the words on the line. The difference

between the number of blanks in two arbitrary intervals will be  at
most one. When there is a difference, the number of blanks‘Between
words will be the same up to a given word in the line; and after this\
word the number of blanks between words will again be uniform, but
there will be either one more or one les ' than the previous number of
blanks. For aesthetic reasons the even lines will have more blanks at
the beginning of the line and the odd lines more blanks towards the

ends.

2.2. The Type Line

As indicated in the problem statement, the line-justifier program
will manipulate objects called lines. For that reason we stall define a da-
ta type line formed by the set of these abstract objects (zmbiguously also

called lines).
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The informal problem statement refers to restrictions associated -
with lines that are to be accepted by the program. It also refers to the
characteristics of the output lines ‘and dlstlngulshes between the treatment
“to be given to odd and even lines. These facts suggest the definition of

the following functions and predicates:

(i) A unary predicate is-initial (x) that determines if a lime x sa~ |

tisfies the input restrictions.

(ii) A binary predicate is-just (x,y) that determines if a line ¥ is;
the result of the justificetion of a line x.
{
(iii) A pair of unary operations for line Justlflcatlon. The first Wille
perform the justification by inserting a larger number of extra ’
blanks to the left of the line and the second by inserting a
1arger aumber of extra blanks to the right. They will be called

just-left (x) and Just—rlght (x) respectively.

(iv) A unary predicate even (x) that determines if the number associated -
with a line x is even.
The above operatlons define a first ordet language L = <is-ini-
tial, is—just, even, just-left, just-right> that we will use to talk
about lines. The informal program specification given in 2.1 requlres that

the above described operations satisfy the following self-explanatory axioms?
(1) is-initial (x) a even (x) + is-just (x, just—left x))
(2) is-initial (x) A — even (x) + is—just (x, just-right (x))

It is interesting to note that the allove axioms define a class of VT‘
data types. In fact, to be able to define the type completely, we would have_
to state some further properties about the operations and predicates whlch :
would capture the detalls of the justification method contained in  the
informal problem deflnltlon. We will see that in the present case we will-
be able to do that when we associate a partlcular representation to theff.'
type (an 1nterpretat10n of the spe01f1cat10n) The properties expressed L
through the given axioms are sufficient for the derivation of a program:v
schema which will, as a first approx1mat10n, solve a class of llne—justifi—‘

cation problems.:
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2.3. Program Schéema Derivation

. Using the L-language deéfined above, the program specification can-

o

now be re-stated in the following manner:
A{is-initial (%)} P(x,y) {is-just (x,y)}

In the input-assertion (pre-condition) {is-initial (x)}, the va-
riable x is an input variable. In the output-assertion (post-condition)
{is-just (x,y)} the variable y is both a program variable and an output

variable. Our goal, at this point, is to derive the program P(x,y).

For an x, such that, is-initial (x) is true, the two axioms given

above can be re-stated as:

[even(x)v+ is—just(x,just—left(x))]

[-yeven(x) > is~just(x,just—right(x))]

The axioms so expressed suggest the use of the ifthenelse, with even (x)

as the predicate. Thus we get the following program:

{is-initial (x)}

P(x,y) = if even (x)
then S, (x,y)
else S, (x,y)

{is-just (x,y)}
The ifthemelse verification rule reads as follows [i6]:

{Q Ao ths, {r}, {Qa=1t} s, (R}

{Q} if t then S, else s, fi {R}

In this particular case, we have

]

is-initial (x);

even (x);

=
L}

is-just (x,y).



In program analysis, verification rules are applied by checking
the pre and post conditions of the antecedent of the rule to allow | the
‘statemént of the expression used as its consequent. When deriving a program
we must invert this process. The application of the rule consists now . of
using the expression proposed as the consequent to derive the pre and pest
conditions of. the program segments structured by the control mechanism de-
fined by the rule. Using the above rule for synthesis purposes, we éan state}
(i) {is-initial(x) A even (x)} S, (x,y) {is-just (x,y)} and

(ii) {is-initial(x) A-even (0} 5,(x,y) {is-just (x,y)}

By "modus ponens" of axiom 1 with the pre-condition of (i) above,

we have:
{is-just (x, jugtfleft (x)}
Analogously, for (ii) we can write:
{is-just (x, just-right (x))}
We are now ready to apply the assignmént rule [16], which reads
{Q (x, £} y:= £ {QGx,}
Its application will produce

y:= just-left(x) and

Sl(x,y)

Sz(x,y)' y:= just-right(x)

"

which implies the following program:

{is-initial (x)}
P(x,y) £ if even (x)

then y:= just-left (x)

else y:= just—right(x)
fi /
{is-just(x,y)}



This program schema can be’ encoded in the followiﬁg CLU-like [li[

notation:

line-justifier = procedure (x:line) returns (line)
y:line;
¢ is-initial(x) ¢
if line$even(x)
then y:= line$qut-1eft(x)
else y:=‘1iné$just;right(x)
fi
return (y);
¢ is-just(x,y) ¢
gggnline—justifier
The reason for encoding the program schema in CLU is that we shall
later make use of CLU's cluster mechanism for expressing data types. We must,
however, call the reader's attention to the fact that we are not bound to any v
particular programming language. A programmer, in the context of our work,can
choose to use any control or data structure, providing he is able to state

its axioms formally.

3. THE LINE-JUSTIFIER EXAMPLE: SYNTHESIS OF THE DATA REPRESENTATION

' So far we have abstracted some properties of any representation of
the object line. We are now going to associate a specific model (representa-

tion + operations) with the theory defined by the axioms in the language L.

By tlie problem definition, our program receives as input a line
expressed in a given representation and produces as output a 1iﬁe expressed
in the same repfesenﬁation. Therefore the line representation is an integral
part of the problem definition. We are going to solve the proposed problem
through the use of two different representations. The first one is a simple
representation that exactly matches  the specific problem, and the second is

a representation similar to that adopted in Gries' solution [10].

We are initially going to think of a line as a 6-tuple of natural

numbers, having the folldwing components:
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p - number of blanks in the leftmost intervals of the line.

q - number of blanks in thefrightmost intervals of the line.

It - index of the word after which the. number of blanks changes.
n - numbér of words -on a given line.

s -

number of extra blanks at the end of the line.

z — line number.

Note that the program being developed does not nandle the text

" itself. We, as Gries did, suppose that the text was pre-processed to pro-

duce a representation that contains‘only the aspects directly related to

the problem. In fact, Gries includes some extra information in his repre—

sentation, and we will do approximately the same in our second choice of

representation. | ' '
The domain of the type line, which we will also call line, will

be the following subset of me:
line = {<p,q,t,n,s,z> € N® t <nAnl Al p—q| <1aA pzlﬁ.qzl}

We will now define the operations on the type line in our model.

For thispurpose we will use the variables

x =<vn, q, t, n, s, 2> and

™
i

' 1 1 ' ' 1
<p', q'y, t', 0, 5, Z2°>

The proposed definitions are the following:

(i) is-initial (x) £ p=gq=1At=n;

15

(ii) even (x) z is even;

€ v s/ 1,
q + s/(n-1) ,
mod (s,(n-1)) + 1,

n, 0, 2>;

(iii) just-left (x)
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(iv) just-right (x) & < + s/(a-1),
q+s/(n-1) + 1,
0 - mod(s, (n-1))
‘n, o, 2>;
df

(v) is—just (x,x')

s' =0 A‘é + p(t—i) + q(n-t) = p‘(ﬁ'~1) +

q'(a'-t')An=n' A z=2'

3.1, Verification of the Representation

To verify the proposed data representation we need to prove first
that its functions and relations are well defined in the specified domain.
The relations ére'obvioqsly well defined since they ére expressed in term$:
of the operatidns and pre@icates defined over the naturals. We must theh'
start by proving the closure of the functions which alter objects of type

line.

~ The next step will be to prove that we have defined a quél
leder of the theory (types ) = proposed in section 2. In other words we

need to verify if the model satisfies axioms 1 and 2.
Although just—right and just-left are applied only once in the

present example, the closure of these operations will be checked to gua-

rantee that the output predicate is applicable.

3.2. Proof of the Closure Property

just-left (x) = x' =<p', q', t', n', s', 2>

(1) p' =p + s/(n-1) +1
Since n>l, n-1 is a natural different from O, therefore s/(n-1)
(integer division) is a natural. Since pe¢lN and N is closed under.

addition, p'€ I and p' > 1.
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(ii) We can analogously concludé:that q'e N and since q'= q + s(n-1)
we have p' =q' + 1l orp' -q' =1 and therefore |p’ - q'] <1.

We also have q' > 1. []
(iii) t' =mod (s,(n~1)) + 1
' Since mod (s,(n-1)) < .n-1 we have that t'-1 < n-1 or t'<n.

Since n' = n, then t' < n'. [

C(iv) Since n' =mn, s' =0, z' = z we trivially have that n', s', z' ¢ N

and n' >1. 0O

The closure of just-right can be verified through the same procedure.

3.3. Proof of the Satisfiability Property .

We will now prove that we do have a model that satisfies the given
theory. We will show that the model satisfies axiom 1 of section 2 and will

leave the proof of satisfiability of axiom 2 to the reader.

Since even (x) A is-initial (x), we can write:

z is even, p =1, q =1 and t = n.

N

just~left (x), that is,

Now, let x'

'=p+s/(n-1) +1 =1+3s/(n-1) +1
'=q+ s/(n-1) =1+ s/(n-1)
' =mod (s,(n-1)) + 1

n' =n, ' =0, z' =z

We must show that is-just (x,x') is true. Since we have that s'=0 we need

- only to verify that
s + p(t-1) + q(n-t) =p'(t'~-1) + q'(n’-t") ‘

Let us now replace in the right hand side of the above equality the values

of p', t', q', n':
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(2 + s/(n-1)) (mod(s,{(n~1)) + 1 - 1)_+ (L + s/(n-1)) (n-mod (s, (n~1))-1) =

¢

2 mod(s, (n-1)) + E'ET mod(s, (n-1)) + (n-1) + (n-1) -5_-?-1— - mod(s, (n-1)) - -

;f—_—-l- mod(s, (n-1)) = mod(s,(n-1)) + (nﬂ-l) + E%T (n-1) =

. . ) -
s - E:T.(n_l) + (n-1) + =T (n-1) = s +n -1

Replacing the values of p, q and t in the left side of the equaiiﬁyj

above, we get
s+ 1 (n1) +1 (nn) =s +n-1

It is.trivial to show through an analogous procedure that axiom 2

is satisfied.

In sectlon 2.2. we formalized through axioms (i) and (ii) some
aspects of the informal problem definition. These aspects were chosen - to be
those informally considered necessary for the derivation of a program schemai
that captures the general idea suggested by the informal problem definitipp,’
Therefore, axioms (i) and (ii) were not meant to define the type line com
pletely. As we moved to the representation level our model was intentionally
required to satisfy -some more axioms (not explicitly stated) which refer to

the additional program requirements contained in the problem definition.

Following our approach the complete type specification comprises’
both the so-called abstract and representation levels [17,18] and  each
cannot be used independently to derive a program to solve the problem
completely. We are sacrificing thé modularity principle looked for in
[17 18] where one expects to be able to use each different level of data ,
abstraction ds a base machine in which the problem can be completely solved '
Instead, our goal is to try to enhance the visibility of the problem solvlng_

aspects involved in the program construction process.



-12-

3.4. Derivation of the Cluster for the Data Representation

Having shown that we have a 1egitimaté model, we need now to pro-
duce a programmed version of the model. For that purpose we are going to.
use the cluster mechanism, as proposed in ﬂjl. The cluster will contain a
representation (global to the procedures in the cluster) whose invariant

"is to be a ligg'(defined above). The invariant has been verified in 3,:
and will remain valid if the operations in the cluster follow their respec-
tive definitions. For the var‘ous procedures implementing the operaticas
within the cluster, the post-condition is the definitior of the operation

and the pre-condition is the ‘nvariant line.

The derivation of the programs implementing the various operations
is a very simple exercise for the present example. All that needs to te
done is the successive application of the rules of "assignment and concate~
nation to the procedures' posthonditions. Since we have already deri- ed
in section 2 a program segment by using the assignment rule, we are going

to omit this straightforward discussion from the text.

The cluster program has, for the present case, the following form: -

line = cluster is even, just-left, just-right;

rep record (p:integer; q:integer; t:integer; n:integer; s:integer;

zZ:integer);

create
L:rep;
even = oper (xscvt) returns(boolean);

return(EVEN(z));

end even;
just-left = oper (x:cvt) returns (cvt);
L.q:= x.q + x.s/(x.0-1),
Lop:=L.q + 1;
£.t:= mod(x.s, (x.n-1)) +1
L.s:=0; L.a:= x.n; L.z2:=x.2;
return (£); ’

end just-left;
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just-right = oper (x:cvt) returns (evt);
2.p.= x.p + x.8/(x.n~ 1),
L.q:= .p + 13
L.t:= x.ﬁ-mod(x.s,(x;n—l));
L.s:= 0; L.n:= x.n; L.x:= X.z3
return (K);
end just-right;

end cluster;

We have then derived a program for the given specification, that 1s,

_a program that caputures what was stated by the original problem deflnltlon.‘

4,' CHANGE OF THE DATA REPRESENTATION

The derivation of the programmed data representation, as it was pro-
posed before, was extremely simple because we adopted a minimal (in some}
sense) configuration for the representation data space. It contained just fhe}
necessary elements for the satisfaction of the problem spécification,In Grlesi
example LlOJ some extra features were added to the representatlon. In fact,
he uses an array of indices that 1nd1cates where each word in the text beglns.‘
The reader who wants to compare the two solutions must pay attention to the
fact that the meanings of the naturals p and q in Gries' example are sllglgpy  1
different from ours, since in his example they stand for the number of blaﬁké%
to be inserted between the words. It ls interesting to show how our program

can be modified so that we can use a 31m113r model.

Let A be the set of all arrays of naturals and b a variable ranging

over its domain. We need now to re-state the domain line.
Let us now call line, the following.set

iine = {<p,q,t,n,$,z,b> e IN® x Alt<nan>1n l‘p—ql_f 1A [b] =n ,\b;'-j-f
i A(l<ic<t)~ bi+l‘> b, + P A (t‘f i<n) =~ B > b, + q}
We shall now define the operations of the new model. The operations

is-initial and even will have the same definitions as befdre. The operations

just-left and just-right will now be defined as follows:
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just—ieft (<x,b>) = <§',b'§ ~ and
just-right (<y,b>) = <y',b'>
where x' and y' are to be computed as in the previous definitions of just-

left and just—right and b', for both definitions, will have the following

meaning:

for 1 < i< t' , bi b'.i. + (p'-p) (i-1)

o
[

it

for t'< i < b, + ('-p) (t'-1) + (¢'-a) (i-t')

A
=]
»

bl
i

Finally, given x = <p,q,t,n,s,z,b> and x' = <p',q',t',n’,s',z',b'$,i

we can define the operation is-just

3

i

is-just(x,x") s' = Oas+p (t-1) + q(n-t) = p'(t'~1) + ¢'(n'-t') An=nAz=z'A

(1gig<e') » bi = bi + (p'-1) (1i-1) A

(t'<i<n) ->bi b, + (p'-1) (t'-1) + (¢'-1) (i-t')

4.1. Proof of the Closure Property

Having defined thé new model, it is necessary to verify the closure
of the above operations and the fact that line, as defined above, is a model
of the theory used for the program definition. We will restrict ourselves to -
showing the closure of one of the operations (just-left) with respect to the
part of the predicate which was added to the first definition (section 3).

The verification of the other aspects are trivial and we leave them to the

reader.

(1) b | =.|b| and therefore, since n' = n and n = lhl, we have that
n' = lb'L_E]

(ii) bl =b, + (p'-1) (1-1) =b, =1.01

(iii) For 1<i<t', bi+ =b,.,* (p'-1) (i+1~1) =b,

o1y 3 .
1 i+ a1t (p'~-1)i since

. ' L 1
bi+1 > bi + p, then bi+1 > bi +p+ (p .1)1 | (a)
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We have that H

]

b =b, + ('-1) (i-1) = b, + '-Di - (p'-1)

i

I

bi +p' = bi + (p'~1)i - (p'-1) + p', then

(p'-1i + 1 | (b)

o
+
o
]
o
+

Since p > 1 we have b. +p+ (p'-1)i > bi + (p'-1)i+l,  thus

from (a)
bi+1‘> bi +p'. 0 -
(iv) For i = t;, b£,+1 = bt’+1 +.(P'41)(t'+1-1) + kq'*l)(t';l-t')
= bt'+1 + (p'-1)t" + (q:—l)
Pris >vbt'+q > Py 2 Pt @t (DE 4 (g'-1)
=b.y +q+ (P’*I)t; +tq' -1 {c)
L. =b.+ (p'-Dt' - (p'-1)
bé,+ q' = by + (p'-Dt' - (p'-1) + q'
= bt' + (p'—l)t' -p'+ 14+ q (d)
Since g, p' > 1 and q-1 > 1-p', then (¢)>(d) and therefore
bl b+ 4D | |
(v) - For t'< i< n,

bivg =Py ¥ @ -D(E'-1) + (q'-1) (i+1-t")

by * B'-D(E'-1) + (q'-1)(i-t') + (¢'~1)

b! > bi_f q+ (p'-1)(t"-1) + (q'~1)(i-t') + q' -1 {e)
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b =b. + (p'-1)(t'-1) + (q’—l)}(i—t')
bi + q" =b, + (p'-—l)(t'—l)}+ (q'-l)(.‘i*i') +q' (£)
We will call (g) on (h) the iight hand sides of (e) and (f), respectively.

Since q > 1, (g) > (h) and

] R | T
Pivr > * -0

4.2. Derivation of the Cluster for the New Representation

We have now to encode the new representation as a cluster of pro-
cedures. As menfioned before, the procedures which implement the operations
can be derived from the definitions of the operations. We shall illustrate
this procedure b deriving the operation just-left. This way we have the
opportunity of using for the first time in this paper the proof rule for

an iteration (ev:n though a simple one).

Input variables: <P,d,t,n,8,2,b> = x
Program variables: <p',q',t',n',s',z',b'> = y
Pre-condition: T

Post-condition: (a) p' = p+§/(n—1) + 1A q' = c+ts/(n-1) A
t' = mod(s, (n-1))+1, n'=n, s'=0, z'=z A

(b) For I<i<t?’, bi = bi + (p'-1)(i~1) A

(¢) For t'<i<n, bi =b, + (p'-1)(t'-1) + (q'-1)(i-t")

-

We shall call Q the predicate that expresses the post-condition and will

split it into three components, such that
Qx,y} = (a) A (b) A (c)

To the predicates (a), (b) and (c) correspond three program segments, which

can be expressed in the following form:
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) 5, G (@} 5,9 {@aw)) s3(5Y)  {(a)a(b)a(e)}
Wg shali_derive the pfogram segment §,:
{(a)} s2(§,§)'{<a).A for lgict', bi = b, + (p'-1) (i-1)}

The predicate (b) suggests the utilization of an iterative control structure

with the following form
{(@} for ki=1 tot'dos {(a) A (b)}

The proof rule for the for statement can.be expressed as follows

[16]:

{akp) AP ([a..k-1D} s (2(fa.a]))

{T} for ki=a to b do S {r([a..b])}
In the present case P = (b), hence through the application of the rule we get
@A Qxt)y A 0) [a.k-1] 5 () [2..1]}

If we now apply the assignment rule, we can state

S = bk f bk + (p'+1)(i-1)

The program segment ‘8, will then have the following form

{(a)} for k:=1 to t' do
| by = b+ (p'+1) (i-1)

k
{(a A (b)}

The segment S; can be obtained in a similar manner. The derivation
of S, will be the result of the successive application of the assignment rule,
leadlng to a result wh1ch is identical to the one produced for the first data
representation (tuple of naturals). The expre551on of the cluster. follows

directly from what was said and is left as an exercise to the reader.
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5. CONCLUSIONS

We have discussed the synthesis process of an Algol-like program by
dealing separately with the algorithm and data aspects of the program. ;‘Eorﬂ
the establishment of this separation we have used the concept of a clustéy
which is instrumental in providing a programming mechanism for the;encddihg
of the data representation. The same effect could .be obtained by mechanisms

such as classes [12] and forms [20].

In deriving a' program statement we have proceeded through three
distinct phases: derlvatlon of a program schema from a formalized versionm. of
the problem definition; derivation of the problem “data type ultimately in
terms of formally well known and more primitive types (maturals and arrays
in the given example), derivation of a programmed version of the data type
definition (synthesis of the cluster). We not only defined the problem data
type but also checked its correctness. The checking procedure d1ffer§:sl;ght1Yi
from Hoare's |}2] since we do not start from a completely defined ty?e ahd,a’:
completely defined representation énd try to define a mapping functiqn-

. connecting them. Instead, we express the model constructively in terms pfi .
the representation and then verify if it is in fact a model of the theory<‘&

(an incompletely defined type). Some authors have been working on algebraic .f
| approaches to the correctness of data representations (e.g. [ﬁi]). Pequéno : )
and Veloso [?2] also are presently working on a formalization of some of Fhe?'

ideas presented in this paper.

We are presently trying to expand and formalize the concepts:
presented above through a simple example in search of a better understan
ding of the program derivation process. We are also investigating the idea
of dealing with the problem of program transformations (in Gerhart's sense
lp]) viewing these transformations along the two axes dealt with in this

paper: algorithm and data.
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