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ABSTRACT

Intrinsic characterizations by means of analogues of
regular expressions are given for six fapilies of regular languagesi
related to the prefix codes, namely their reversals and their
'closure under union, the right and left ideals and their comple—‘j“
ments: First, a characterization for the regular prefix codes
is obtained, which is then used to characterize the other famllies.

Characterizations»by finite automata are also presented.
KEY WORDS
Prefix code, regular expressioh, regular 1anguage,'fihiﬁq

~automaton, operations on languages, closure propertiess

RESUMO

‘ $30 obtidas caracterizagoes intrinsicas por andlogos.
’ de expressSes regulares para seis familias de linguagens regularei‘

}ntelacxonadas aos cod1gos de prefixos: suas tranSpostas e seu fe-~
1,cho sob uniao, os ideais- a direita e a esquerda e seus comple—:
‘mentos. Piimeiramente,_di*se uma caracterizagao para os cod1gog

dé prefixos regulares, a qual € usada para caracterizar as outras
;fémilias. Apresentam=~se tambem caracteriza§5es atraves de’autﬁﬁg,,

‘tos finitos.

PALAVRAS CHAVES

Codigo de prefixos, expressao regular, linguagem regu-
“lar , automato finito, operagoes sobre linguagens, propriedades

-de fechamento.
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1 = INTRODUGTION

_ The aim of this paper is to characterize some families
of regular sets related to the prefix codes both intrinsically
by analogues of regular expressions and by means of their finite
automata. The families eons;dered are the suffix codes, the
languages of the multmple—encry finite automata of [GILL=KOU 74]
and of the simultaneous=entry finite automata [VELOSO 75, 771,
,the right jdealsand their complements and the right powerabounded
'languagea ‘of [THIERRIN 761,

‘ ‘h One of the basic results in the theory of finite automaca
“and regular languases ié Kleene's intrinsic characterization ‘bﬁﬁf«
“the class of languages tecognized by finite automacn. which ve
_scate using the notation

-—..E.“‘”D 9({0})U€zi0gag?§

;tc mean that the family Reg of regular sets ovet % 18 the smallasn
jfamily of languages (over %) containing 9, A = {A} and {o} for :
iaach cel, and tlosad under the binary operationa of union, concatd
'fnation and binary star (A B - A B). This introduces the notion'if
k‘of regular expressions and allows the use of "induction on the ehape
' of regular expteasmons" both in proofs and in definiciona. ) s

v

‘ Other families of regular sets have been given uimilar g
characterizations. For inetance, the regular noncounting 1anguagaef
'have been shown to be exactly the star~free ones, i.e. ;

RNC = < 8, A, ({c])

o‘sZ‘U"’->

where = is the binary operation of set dlfference. (see, ey

[McNAUGHTON=PAPERT 711) . Also, [THIERRIN 73] characterized the -

regular left convex and strongly conveX languages over I as followa 
" 5
RLCV s < ¢’ '] ({A"o’})ﬁﬁz ; U_’ LI ] 2

*

and
' U, 0, 0 >

RStCv = < B, A, ({G})Geji
where AoB = A.BUAUB

* %
and " AoB = A oB.



A prefix code is a language containing no prbper prefix
of any of its words. These languages are important in this .
context partly because any regular set is a finite union of .
languages of the form P. Q with P and Q regular prefix codes (see;
e.g., CTHIERRIN 691). - ey

In the next section we characterize the familiés RPC fﬁ
and RSC of the regular prefix and suffix codes. Then these
results are used to characterize RRI and RLI, the regular r1ght and_

left 1deals, respectively, and their complements. RCP and RCS.
Flnally we obtain characterizations for URPC, the closure of RPC

under ‘union,

Here, all languages considered shall be ovet a fixed ;):

fihite alphabet 5. We assume some familiarity with the basic '

notlons of finite automata and regular 1anguages. In partlcula

:by an fa we mean a4 connected finite automaton M =< I, 8, £, 5§
with atate set S, tran51t10n function £318xI > S, in1tia1 staté
8, ¢S (from which all states are reachable) and accept1ng set

’FCS. As usual, the trans1tion function Ls extended -to f1 SXZ > S.

“and for ‘each state seS, we ‘define its accepted set A(s) &
{wez /f(s w)eF}. (For more details see, e.g. [GINZBURG 681.).

‘ In order to improve readablllty, the body of the paper
contalns only the statements of the results, their proofs belng

ou:l;ned in the appendxx at the end.



2 - PREFIX AND SUFFIX CODES

A prefix code is a language containing no proper Prefixe%feh
v_L,"==LnL.Z+ and L" =L—LZ : :

The simplest prefix codes are the empty set § and the

singletons (which are the only ones over a one-letter alphabet){'

There are many alternative properties'characterizing _g;:
for instance, the distributivity of left concatenatlon over.
intersection: P.(AnB) = (P. A)n(P B),

Tt is easy to see that the class PC of prefix codes is
closed under subsets, intersection, concatenation and derivativeeg

but not under union, complementation or star.

The class RPC' of regular prefix codes can be characterizedii

in terms of fa's by the following 81mple property

h.gz.l) L ¢ RPC iff no final state of M is reachable from any other"°
flnal state, by a non~null word, for any L € Reg.

In order to generate RPC it would pe natural‘tok start with the"veimﬁfﬂv
o ple ptefix codes: P, {A} and {0}, for oOeL, and'clese-them’undf -

' 'some ‘operations. )

Since RPC is the image of Reg under R 1t seems natural to deflne :
 operations w on PC so that (awB)™ = A" & B", for each w e {u,,{ ;};dd
;tFor the caée of union, the operation prefix-union: AVB = (A BL- )U;dy
(B-AZ+) will satisfy this requirement, for PuQePC iff PuQ = PvQ
whenever P,QePC. However, there does not appear -to be any natural
- way ‘to define an operatlon to correspond to concatenation, for,‘*“
with A = {a, ab}, (A.A)" = {aa, aba} depends on A, rather than on.

T = {a} only. o ' B

) Another approach is suggested by the fact that one can iy
obtain all the finite prefix codes usmng concatenation and preflx-

union., .So, all we should need is an operatlon glVlng 1nf1n1te preflx,
codes. The definition of arrow: A4B = (A .B) is quite natural

closure being automatic as P*QEEE . 1ff P#Q’= P+Q.



To see that we actually get all of RPC, notice that the
minimal fa of a nonempty PeRPC has a single final state p, the
only state reachable from p being a "sink" q. Using this fact

one can show

(2.2) P = H(s ,P) v. vV G(s, ,t)[(P(t t) v V P(t.t').G(t',t»+u(g;9)]
' ° tes' £' #t YA

where 8' = 8 = {p,q}; and

(a) all H(s,t) and I'(s,t) are finite prefix codes}

(b) each G(s,t)eRPC'and has an fa with fewer states thagj

P, whenever B#t.
Thus, we have

(2.3) RPC = <9, A, ({o}) PV oy sy b2
_ gel
A suffix code is a 1anguage L containing no proper
suffixes of its words, if.e. LnE L = ¢, 8o, teversal eatab11shesr
a b1Jection between PC and the class SC of suffix codes, induclng
the operations A, + and +, where A + B = B.A, but we may. clearly

replace + by concatenation. 8o, calling LY = E L and L~ = Lf!xv5

1

(2.4) RSC = < B » A, (Hoh)y oy 3 A v o s ¥ >

where AAB = (A-IiB)U(B=L1A)
and  A4B = (B.a0)°

A characterization of RSC in terms of fa's is the

following

(2.5) For a nonempty ReReg, ReRSC iff

(a) the initial state s lies in no cycle, i.e. soéf(§§; )
© and ' » ' ‘
(b) A(t) is disjoint from R, whenever t#so.



3 - RIGHT AND LEFT IDEALS

‘ * E v :
If we define LP = L.2 " then the right ideals are the
languages of the form R = Gp, for some generating language G.-

Some simple properties of this operation P are:

(a) (aP)P = 4P

(b) (auB)? = aPym?

(c) (AnB)P < aPaBf

(d) (aB)P = as®

(e) (AN)P = AP = (a®)"
S6 the class RI of right idealsis closed under unlon, interseé;iqn'
and plus, and LeRL iff L = L, | B

PrOperty (d) suggests that we might face a dlfflculty
vsimilar to the one encountered in the case of RPC. However,
an —‘Lp and 1P - L“; 8o every prefix code generates a right 1dea1,
which has a unique generator in PC., Thus, we have a leectlon g
between RPC and RRI inducing the operatlons union, A¢B = (A .B )p
« A".B and A$B = (A"+B")P = (A™)'B on RRI. So

. * * '
(3.1) RRIL =<9, I, ({o}2) s v, ¢, $>
Clearly, RRI has a simple automaton-theoretic characte=

rization:

(3.2) For L € Reg
LeRRI iff only final states are reachable from final states,

in M.

' *
A left ideal 1is a language of the form L = I.G for
T *
some generating language G, i.e. L = I .L. Thus the left ideals are

the reversals of the right ideals, whence

*
(3.3) RLI =< ¢ , & , (Z. {6})062 s U3 2, £ >
where A7ZB = B. A(S
8

and AL£B = B. (A ) .



The regular left ideals are the languages of the
simultaneous - entry finite automata of [VELOSO 75,771, in view

of the following characterization

(3.4) For L € Reg

LeRLI iff L = [)A(s)
seS



4 - LANGUAGES CLOSED UNDER PREFIX AND SUFFIX

A 1anguagé,L is closedrunder prefix (resp. suffix) iff
whenever uwel then uel (resp.<wéL). Clearly, both classes CP
énd CS are closed under union, intersection, concatenation and
étarQ 0f course, we have bijections between CP and CS, which is
reversal, and between CP and RI (resp. CS and LI), namely comple=

mentation. Thus

(4.1) RCE = < 2,00, (9)062; 0 v, !>

where & = {o}.z = Au(E = {ob).z®
AVB = I" - (A".B) = Au(a"B) ;

* - -
ate = 2% - AM B .

Similarly

-e

(4.2) RCS = < I, B, (&),

oel no, A, 3>

where ¥ = %o} = A v.zi(z-{oD);
adB = ¥ - (3.5% = a4 v 3.2%;

¥ = =G %
AjB = L = B.(A7) .

.

Automaton-theoretic characterizations for these classes

‘are simple.

(4.3) For any LeReg

LERCP iff no final state is reachable from any non-final
state. '

and

,(4.4) For any LeReg

LeRCS iff L = {J A(s) ([GILL-KOU 741)
se€8 _ e

The characterizations (4.1) and (4.2) have some drawbacks:

the operations are somewhat involved and it would be nicer to



employ union rather than intersection.Perhaps these can be

alleviated b

pairs of prefix codes.

y a possible characterizationiof RCP by means of



5 = RIGHT POWER-BONDED LANGUAGES AND FINITE UNIONS OF PREFIX
CODES . ‘ B

A language L is right power-bounded iff there‘exists?w
n>0 such that whenever uvkeL with v#l then K<n. So,' thesevﬁ‘x
are special right noncounting languages [ SHYR-THIERRIN 751 + The
name finite union of prefix codes is gelf-explanatory., Clearly,
‘ both classes RPB and UPC are closed undetr subsets, union,

intersection, and concatenation} but not under complementat1on
‘or stat.

[THIERRIN 761 gives an algebraic proof that, for
‘_regular sats, both clagses coincide ( RRPB=URPC ) This also
follows from our automaton-theoretie characterxzations

(5.1) The following are equivalent for LeReg

(a) LeRRPB;
(b) no final state is reachable from itself}

(¢) the set of all words sending s  to t is in RPC, for:

‘each final state t;

(d) LeURRC.
.
Let us call UPPC the class of all unions of n>0
prefix codes. Then, it is clear that UlPC = PC., Also, using .
L and LT as defined in section 2, we can show : '
(5.2) For any n>0

Leu*pg igf L_eU

Thus, we can get our characterization

(5.3) RRPB = URPC =< @ , A, ({o})'Oez U, ., 22

where A?B = AW+B.



- 10 -

0f course, we can introduce the dual concept of left‘;iﬂ
power-bounded language and use reversal to show that the regular”
ones are exactly the finite unions of regular suffix codes , f‘

thereby obtalnlng their regular expression characterlzatlon si-
milarly to (5.3).



6 - CONCLUSION

The first six families of languages we have consideredj
are related by bijections as displayed below, where ' denotes rever

- . . *
sal and denotes complementation with respect to I .

PC < > sC
. A
o ™ v 8
) V)
RL < > LI
Y
1 ¢ v
B > €8

Our approach may be summarized as follows. Once we
have outr characterlzatlon for RPC, we view it as an algebra ,
then we use the bijections to induce operations on the’ other
-famllles, 80 as to make the bijections into ieomorphxsms of the

corresponding algebras.

The relation between PC and UPC is sllghtjy duﬁerent,

UPC is ‘connected to finite sequences of prefix codes.

L}

It should be tremarked that all these intrinsic charac-‘
terizations are based upon a corresponding one for REC, Other._,f
¢haracterizations for RPC are possible and they may yield simplég‘

descriptions for some of these families.

Thus, we have characterized six families of regular
languages related to the prefix codes, both by means of their
fa's and intrinsically by analogues of regular expressions. The i
latter are not intended to be suited to algebraic manipulationg,_

as this was not the main purpose.

In order to get a better-perspéctive, let us considéfp
as regular expréssions over ¥ all terms constructed with thé"
constant symbols ¢ s & and g, for each 0ef and the binary ope--
ration symbols +, x, . Several famllles of regular sets con51st

exactly of the values of the regular expressions under d1vers9,37
interpretations, as displayed in the table of valuations below.
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APPENDIX: Proofs of the results

In this appendix we outline the proofs of our results.

(2.1) :
' Clear, for t=f(s ,u)eF and £(t,v)=v 1iff u,uvel. e
(¢} . :
QED
(2.2)
We associate with each pair of states s,teS' the follow1ng,

"three prefix codes

+ G(s,t), consisting of all non-null words taking s to t fd;;?‘i
the flrst tlme, i.es
G(s,t ) = {weZ /f(s,w) = t & W¥u,vel (w=uv > £(8, u)#t)},

© H(s, t), consisting of all words taking 8 to t without
repeat1ng states, i.e.

H(Bgt) “{G .e.O ex /f(BU v o o0 ) z t & Vi<j5k f(:s,o'losoai)‘#u‘f

1
* f(_ﬁ,dltiogj) & kGN},

= I'(s,t) comnsisting of all the letters taking s to t, i.e.
P(s,t)*{an/f(s,d)=t}.

Henca
\

(a) H(s,t) and [I'(s,t) are finite prefix codes, thus expféssiblg
with #, A, and {0}, for oecZ, wusing prefix-union and conca-
tenation. i

Furthermore, it is clear that
G(t,t) = I'(t,t) u t&;{ r(t,t").G(t',t).

Now, since all the languagues involved are pref1x codes,‘Qv
*
we may intenﬂmngg v with Vv and . with +. So, all ‘that

remains to show is

(b) For s#t, G(s,t) has an fa with fewer states than the minimal

one for P.

and

(e) P = H(s_,p) U [G(s_,t).C(E,0) " .H(t,p)]

tes'!



To see (b), transform the fa M for P into
M' = <%,5-{p}, g, s, {t}>, where for all ocel: g(t,o0)=q and for
r#t we put g(r,o) = f(r,o) if f(r,0)#q and otherwise g(r,0)=q.
Then, by induction on w, g(s,w)=t iff f£(s,w)=t and for any
proper prefix u of w £(s,u)#t. Thus, M' is a (|S|~1)=state fa
for G(s,t). .

As for (¢), consider a word WS0, es 0y € P with length
|wl=k>0 and, for each j=l, ., k, put sk=f(so,01...dj). Noting

that s, =p and for all j<k s.,eS', we have two cases

3

(i) Either for all i<j<k 8 sj" Then weH(so,p).

(ii) Or else, for some i<j<k sigsj' Then, let r be the maximum
among such j's and let jo<j1<..e<jm=r be all ‘the i's
sqch that s, =t, where t=s . Calling x=01...ojo and z=0r+1.}.qkﬁ
we have xeG(sO,t) and z ¢ H(t,p)., Now for i=0,1,.60, m*l;-sgtf
yi*‘lﬁdji"'l..'o’ji*l; 80 }'i_”_ € G(t,t)o Thus wax.yl...ym.z € »

eG(so,c).G(t,t)*.H(t,p).

As the other inclusion is clear this completes the proof

of claim (c) and of (2.2).
QED

(2.3) :

Let E denote the righthand side of (2.3). Fo:'each
PeRPC let n(P) be the number of states of its minimal'fa. We
proceed by induction on n(P). If n(P)=1, then P=feE. Now, let
. a(P)=m>1., Using (2.2), we have for s,tesS':  (a) H(s,t), F(s,t)
are in E; (b) if s#t then n[G(s,t)]l<m and thus, 'by

induction, G(s,t)eE.

Therefore RPC ¢ E, the other inclusion being clear. QED'

(2.4)
Follows from (2.3), as reversal establishes an isomorphism

between the algebra of (2.3) and that of (2.4) with < in 1lieu

of concatenation. QEDi‘.
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($>) Pick ﬁeR = A(So)‘ Given te¢S, we have ueZ* such that
t=f(so,u). Now, to see (a), it suffices to notice that if s -f(t
‘forJSbmé ve2+, then both w, uvwe A(so); As for (b), if. vaA(t)
n. A(s ) . then uveA(s ), go u=A and t=s0.' o
7(<=) If v,tnreA(s) then, with t=f£(s_ ,u), we have veA(s ) n A(t), o
eo by (b), t=s _, whence by (a) u=Ai. NG
QED.

~

(3.1)

ﬁf For any P,Q ¢ PC we have

;fff(a) (v ® = (2-q.2%) 1% (a-.gh).z* = 2P U Q%5
®) (rf = 2P s 2PT0P = PP ¢ 0
?(¢)‘(P+Q)p-- ()™ = (2°T)1gP = Pp$q

:hhg. the assignment P b pP gives a b13ect1ve homomorphlsm of

yg.algébra of (2.3) onto that of (3.1). .

Clear, since L t= f(so,u)eF and f(t,v)eF 1iff u, uyeL} :”f

- 'QEDi
(3.3) |
A Reversal establishes an isomorphism between the algebras\
fof (3 1) and (3.3). . ‘Y’> : QEﬁT
o

Since every state s€S is of the: form s= f(s sU) w1th
o ”® . 8
‘uel - and, for any st s veA(s)JfflnmA(so), we have LYG L iff forj
. % - :
all uel uA(so)c A(so) iff for all seS A(SO)SA(S) '

qep



(4.1) ,
Similarly to (3.1), for any A,B ¢ RRI
(a) AuB = AnB
(b) A¢B =131 = A".B = AVB
tr—— *® To®
(c¢) A$B =L = (A ) B = A!B

Thus, complementation gives an isomorphism between the algebras of
(3.1) and (4.1).
# . - :
So, it remains to check that & = A".B = Aua".B ., By means of the
distributivity property of A“, we get
- ey T - a. s -
(i)  (Aua".B)u A".B = AvA".(BuB) = Aua"P = Aua ;
* .
(i1) A".B e a"™.z" = A, so A".BnA = 9 3
(iii) A".Bna".B = A".(BnB) = A".0.
QED
(4.2)
Reversal gives an isomorphism between the algebras of

(4.1) and (4.2). ‘
QED

(4.3) | |
Similax to (3.2).
QED

(4.4) \ .
' Similar to (3.4), see [GILL-KOU 74 or VELOSO 771].
v qED

(5.1)
. *
(a=>b) If teF and f£(t,v)=t with v€2+, then for some uel -

t=f(so,u) and uvkeL for all k=20-
(b=>c) 1If f(so,v)= t = f(so,vw) then f(t,w)=t.
(c=>d) Clear.

(d=>a) To show RPC < RRPB. We use a "pumping lemma" argument on

the fa M for PeRPC.



. ' * , ' &l E
Given u, vel , call t =f(s ,uvk), for k=0,1,2,... . Now,'ifv

has n states and uvkeP with k>n then for some 0<i<jsk,

t, = t.3 8o v=X. QED -
i j :
(5.2) | S
Firse, motice that L = 1" v L with 1'¢ BC. So
(a) 1if L e U PC %pc  then LeU(n+1)PC
Now, to see the converse it suffices to show

(b) If L ¢ U "p¢ then there exist w LIRS ext

Buch that WO’IW‘OW’]."...V’ Wowliit‘w €L

For nel, it is cleére As for nsl, if L ¢ UnPC’ then by

(a) L: & U(n 1) 8o by induction we have Vi wlwz,.h.,5¢

w w2 bveow e Lﬂ; but then, for aome uelL .and Vez* N W1=uv?

and u, uvaw, WiWas saey WiWy s W are all in L. “’ﬁf@
‘ QED

(5.3) _ : R
. Call ¢ the righthand side of (5.3) and let F be the*
falgebta obtalned by replacing prefix~unmon by set“theoret1ca1 -
union in the righthand side of (2.3). Then, the proof of (2. 3),f
fpamely ‘claim (c¢), shows RPC ¢ F, s0o RPC ¢ G. Now, by 1nduct10n'?
‘using (5.2), we have URPC ¢ G. The other inclusion is clear, fﬁi

“since for all A,BeG  A?B ¢ REC. E
o QED -



¥
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