‘Séries\:' Monografias em Ciéncia da Computagdo

No 12/78
A PUZZLE
by

Jacques J. Arsac

Departamentd de Informética

Pontificia Universidade Catblica do Rio de Janeiro
Rua Marqués de Sdo Vicente, 225 — CEP-22453
' _Rio de Janeiro — Brasil

BEPARANE L LE ug.np‘\.
SETOR DY DOGUm EHCIDEY OFN
B INFORMAL

————x s

Series: Monografias em Ciéncia da Computacao

NO: 12/78

Series Editor: Michael F. Challis ~ June, 1978

3T

SUTAENTACAY) B W FORMACE &

CODIGO REG'STAY | paTa

:
i
¢

e o IR Ny bty L S e
EDEEFR .Y 05 NP TR i T 10 o

A PUZZLE

by

. ' %%
Jacques J. Arsac

% This work has been partially sponsored by FINEP and was
carried out while the author was visiting the Departmént;
in September 1977.

**Université de Paris.

For copies contact:

Rosane T.L.Castilho

Head, Setor de Documentagao e Infirmagao
Depto. de Informdtica - PUC/RJ

Rua Marques de S3o Vicente, 209 - Givea
22453 - Rio de Janeiro - RJ - Brasil

Contents

1 The GaMe..v.eeee.veeioeoeas. sonanens e i feees e

[N €S S N}

o W

6.1 -
6.2 -
6.3 -

6.4 -

6.5 -

RO L ENCES . v vt v isennenonsocnenne sonnsonnenn

COmMPleXity . useeeeereraeenersnannans

Stating'the problem.;......,g.
Finding a solution............
Computing a program.o.....,.}.
A posteriocr derivaticn........
An exercise.;..;..,......,,Q.;

iii

. .

The iterative SOLUtiON.....ewveseenen.

Concluding remarkS....eeeceeeeeeensns.

.

Recursive Solution............ see e sreesene e

Derivation of an iterative algorithm.

v s e s e 0 e e

® % 0 8000800

s e ee e s e

0 0 e a0 0 0

* a0 00 e 000

v e b o sos e e

LR B I R I R A)

o & 0 a o 0000

W 0 o 00

ABSTRACT:

The use of some programming techniques is illustrated
"by the development of é’program tc solve a prszle. 7The me
thod used coansists of getting ah iuitial solution (a recursi
ve one in the present case) and applying some transformationsv
to the prbgram to_imprbve the solution accordihg to a civen
goal; Program transformations seem to be a rajor way td redg

ce the role of invention in progremming.

KEY WORDS:

Procram proving, recursio. . program *ransformations ,

program correctness

RESUMO:

A utilizacgdo de algumas técnicas de ;

irogramacao é ilus
trada através do desenvolvimento ¢2 um programa para resolver
um quebra-cabeca. (método us: 40 consiste na obtencdo de
uma sblugao inicial, recursiva nesi - .caso, e na aplicagao de al
gumas transformagoes ac programa para melhorz: a solugdo de 'g
cordo com um objetivo dado. Achamcs que transformagbes de pro
gramas & uma técnica importante pnra reduzir a parte inventiva
da programacao.

PALAVRA CHAVE:

Prova de programas, recursividade, transformagoes de

programas, verificagao de programas.

A PUZZLE

Jacques J. Arsac

1. -~ The Game

‘The game is made of a set of identical pieces, numbered
from l. to n. Each piece may be put in two di ferent pos1tLons ’
say up and down. There are locks whlch prevent pieces from

being moved. Pieces are made in such a way that:

Setting piecevp_down locks piece p+1 .

Setting'pieee:p up unlocks piece p+l, but locks all the pieces
following p+1

Piece 1 is;neVerﬁiecﬁed.

Problem ON. A1l the pieces being in the stat: down, find a se-

quence of moves which s=ts them up

Problem OFF = All the pieces being in the st:i ‘e up, find a se-

quence of moves which sets them dowa

The state of" p1ece p will be reprebented by s(p).
move(p) is the actlon changlng the state of riece p (assumlng

that it is not locked)

2 - Recursive Solution

The piece p may be moved if it is 1otvlocked§ this
will be so if and only if the plece (p 1) is ﬁp (otherwise, it
locks the piece p) and all the pieces before p-1 are down (if

one of them is up, it locks a set of pieces including p to 'mn)

Therefore, the only piece (other than piece 1) which
can be moved, is the one following the first piece which is up.
Let us assume that we have been able .to solve

ON (p) OFF(p) ¥p[l < p < n-1]

In order to perform ON(n), we have to move n, and thus rcacl a

state where:

s(l: n-2) = down and s(n—l)'=‘gg ‘

We can do .so by-first setting all piéces from 1 to n-1 up:
ON(n-1)
‘then putting alllpiecés from 1 to n=2 down:
OFF(n-2)

So we have:!

ON(ﬁ—l); 0FF(n~2);\move(n);‘ ON(n-2)
move (1) ' ON(0) = void

it

ON(n)
ON(1)

(ON(0) is just a void action).

Similarly:

OFF(n-2); move(n); ON(n;Z); OFF(n-1)
move (1) OFF(0) |

]

OFF(n)
OFF (1)

it

void

]

3 - GComplexity

Let £f(p) be the number of moves needed to perform
ON(p), and g(p) for OFF(p). From the recursive definition, we

have the following recursive relations between f and g:

f(n)
£(1)

f(n-1) + g(n-2) + 1 +'f(n—2)
1 £(0) =0

g(n)
g(l)

g(n-2) + 1 + £(n-2) + g(n-1)
1 g(0) =0 |

From this, we,eaéily derive that f(p) = g(p) ¥p, then that

f(n) = £f(n-1) + 2f(n-2) + 1

giving £f(n) + f£(n-1) + 1 2(f(n-1) + £(n=-2) + 1)

f(n) + f(n-1) = ec*2"-1
Consideriﬁg initial values f(l), £(2):

n

f(n) + f(n-1) = 2"-1
. ' n+l . . L
and finally f(n) = 2 + 3 (integer quotient)
4 - Derivation of an iterative algcrithm

Several methods have been proposed for the transfor-
mation of recursive procedures into ' iterative ones. Most of them
are based on catalogues giving recursive schemes with the associ
ated iterative schemes. Burstall and Darlington (BD1l) consider
recursive functions, while Irlik (IR1) considers parameterless
procedgres acting on glecbal variables. Those catalogues are too
restricted to allow handling of a recursive schema as complicated
as the one in procédurea ON and OFF, where we have two mutually

recursive pre¢zedures.,

We ‘have considered the use of program equations (ARIL)
for transformations of recursion into iteraticn. This technique

may be used here, but needs some preliminary transformations.

As for Irlik's technique, procedures must be made
parameterless, acting on global variables. A stack may be needed.
In the present example, it is not necessary: we have assertions
allowing redefinition of the parameterin after.each ball. Let

us change n into p - Assertions are written between symbols{}

ON (p)
{s(l:p) = 0 1}

oN(p-1) 1s(l:p-1) = 1; s(p) = O}; _
OFF(p-2) {s(l:p-2) 0; s(p-1) = 1; s(p) = 0};
move(p) {s(l:p-2) 0; s(p-1l:p) = 1},
. ON (p-2) | ‘
{s(l:p) =11}

Let us define the first piece up:

fu : s(fu) = 1 and fu = 1 or s(l: fu-1) =0
‘and similarly the first piece downt |
£d: s(fd) = 0 and f£fd = 1 or s(l: fd-1) =1
For a game of n pieces, fu = n+l if s(l:n) = 0
' fd = n+l if s(l:n) =

With these definitons, the parameterless procedures ON and
acting on the global variable p are defined by:

ON

IFP < 2 THEN IF p = 1 THEN meve(1l) ELSE '7__]-;

ELSE p := p-13; ONj; p = fdj p =+ p—-2; OF7;

IF p <2 THEN IF p = 1 THEN move(l) ELSE FI:

ELSE p := p-2; OFF; p = fu + 1; move(p); p
ON; p ¢t= £d; p := p-1; OFF FI

OFF

:= p-2

Notice i that in both procedures, OFF is followed by the same

sequence:’

p ‘= fu + 1l; move(p); p = p—2; ON

while ON is followed by
p:= fd; p := p-2; OFF

in ON, and

s BEPARIANL.. . i 7

S

p := f£d; p :='p-1; OFF
in OFF
Those cases must be distinguis hed, which is possible
by proving the very simple theorem:
The final value of p after ON is mod (pi,2) where Py is the

value of p when entering ON.

This is simply derived from the recursive definition:
ON(p) ends with ON(p-2), and so ends as ON(mod(p,2)).

(mod(p,2) is 0 if p is even, 1 otherwise).

Complete derivationlof an iterative pfogram is a
relatively long pfocess. it_has.been made using an interactive
system for program manipulation, that we have implemented at the
Pontificia Universidade Catolica do Rio de Janeiro. The result
is simple enough, and so we had to find a direct way to state

it.

5 - The iterative solution

Let us consider the ON problem. At the beginning ’
s(l:n) = 0, and only the first piece may be moved. The first

operation is move(l).

N On the second operation, we can move either piece 1,
or piece 2. But moving piece 1 undoes what has been done on
the first step, and so is of no use. The only possible second
move is '

move (fu+l) = move(2)

On the third operation, we cannot move fu+l = 2, be-

cause it would give a cycle with step 2. So we move the piece(l).

Iterating the process, we see that the solution is
made up of an alternative‘sequenCe of moves of piece 1 and of

another piece.

Using the notations for regular expressions, the game is:

-6_

(move (1) move(fu+l))f

As we noticed earlier, ON(p) ends as'ON(mod(p,))
"and so with move(l) if n is odd, giving for ON(p) an expected

solution -

ON(p) = (move(l) (move(fu+l))*(even(p)] odd (p) move(l)))
(last move is move (fu+l) for p éven, move (1) for p odd)

There is no other possibility.»Thus the problem is not
that of finding an iterative solution, but of proving that this
Sequence produces the wanted result. It can be done by induction., We
assume that ON(p) is solved by this sequence for p < n-1. Simi-
larly, using the fact that OFF (p) starts with OFF(p-Z); and so
with OFF (mod(p,2)), we assume

OFF (p) = (even(p)) odd (p) move(l) (move (fu+1)move (1))

for p < n-1.

We just have to put these results into ON(n) and OFF(n). We do
that for ON(n,:

ON(n) = ON(n-1); OFF(n-2); move(n); ON(n-2)

= (move (1) move(fu+l))*(even(n—l) | odd(nvi)move(l))
T . *
(even(n-2) , | odd(n-2) move(l)) (move (fu+l) move (1)) move (n)

(move (1) move(fu+l))* (even(n-2) | odd(n-2) move(l)).

For even(n), the sequence:

(even(n-1) | o8d(n-1) move(l)) (even (n-2) | 0dd(n-2) move(l))
is: _ (move (1)) () = move(l)

‘For odd(n), it is:

() (move(l)) ‘= move(l)

even (n-2) = even(n) and so

ON(n) = (move(l) move(fu+l))*move(l) (move (fu+1) move(l))*

' move (n) (move(l) move (fu+l) *) (even (1) | odd(n) move(1))

This is very easily rearranged into: ‘
ON(n) = (move(l) move(fu+l))*(move(l) move(fu+1))*
move (1) move(n) (move (1) move(fu+l))*(even(n)[

odd(n) move(l))

= (move (1) move(fu+l)).*(evé.n(n) | odd(n) move(l))

This proves the result.

Thus we have the following iterative programs, vali¢ for

n 2z 1:

ON(n) = DO move(l); IF £d > n THEN EXIT FI ;
move (fu+1) ; IF £d> n THEN EXIT FI ; OD

OFF (n) = IF odd(n) THEN move(l) FI;

ngﬁmove(fu+l), move(l)

IR ful> n THEN EXIT FI OD

6 - Concluding remarks
s ' ,;a»,u.u,cw«
This is an interesting" programmlng example. It illus-
trates some points Wthh in‘our opinion, are very general and

important..

6.1 - Stating.theu
a preciseﬁdefinit&efﬁ - E
faced with the:neéd: tés ¥ %, rulesvof ‘the game from its

physical implemeﬁtaa
done while:

- data,typeSghaﬁé,ﬁotﬁbﬁé‘mﬂ..mw,"ﬂ e8cETBed {n an abstract
way (even if not“Véfyxfo X

- wanted results and 1n1t1al states are not well defined.

6.2 - Finding a Solution:

The néxt difficulty is to exghibit one solution, re
gardless of any possible quality other than.vélidity. Compa -
ring the iterative solutibn and our Starting_récursiVe proce
dures, these ones appear as very inefficient, botl. for execu
tion time and memory requiremént (if implemented as such in a
language whose compiler uses a stack for recursion).

Morever -, the recursivé forms may be considered as obvious
and easily readable, but they do not give any indication on a

possible strategy.

6.3 - Computing a program:

Using program transforms to replace a recursive system
of procedures by iterative procedures is reaily "making computa
tion" on the program. It‘needsftechniQues, not imagination. It
is a very strong indication that there is in computations on
pfograms a major way to limit thebrole of\ihventién in»program—
ming, leading to real programming techniques. Computer-assisted
prdgramminglremoves the tédious rart of the job, and also redu-
ces the need for imagination to direct the computation. Computa =~
tion costs nqthing, and can be tried in a lo£ of directions.

6.4 - A posterior derivation

‘The result computation is a strategy:'we did not disco
ver the iterative solution because We-are»very clevey we just
computed it. But where a result is so simple, a simple way to
reach it must be found. Knowing the result, it is not at all as
difficult as inventing it for the first time. ‘

It is our absolute conjecture that program transformation
and computer-assisted programming will:play a rapidly increasing
role. But it implies drastic change in téachinglprdgramming.

Here is certainly the more crucial issue.

6.5 - An exercise

The reader is kindly requested to consider, and solve,

the folloWing problem.

An iﬁteger n>1 being given, generate a permutation of
the sequence of integers from 0 to 2™-1 in such an order that
two consective integers in the sequence differ by only one bit

(in binary notatlon)
Good luck'!
REFERENCES ;

ARl ARSAC Jacques J.
' Construction de Programmes Structurés - Paris - DUNOD 1977

BD1 BURSTALL R.M. DARLINGTON. A System which automatlcally
1mproves programs Acta Informatica Vol. 6 1976 p. 41-60

IRl IRLIK J. Translating some recursive procedures into
iterative schemes-znd Internatlonal Symposium on
v programmlng DUNOD PARIS 1977

