lr

Series: Monografias em Ciéncia da Computagao
Ne¢ 4/79

MICROPROGRAMMING: PRINCIPLES AND DEVELOPMENTS

by

Ayola N. Akonteh

Departamento de Informatica

e e

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 226 — CEP-22453
" RIO DE JANEIRO — BRASIL

PUC/RJ - DEPARTAMENTO DE INFORMATICA

Series: Monografias em Ciéncia da Computagao
- Ne 4/79
Series BEditor: Daniel A. Menascé March,' 1879

MICROPROGRAMMING: PRINCIPLES AND DEVELOPMENTS*

by

ayola N. Akontehl

** This work has been sponsored infpartiby FINEP,

Abstract:

This is Part I of a series on Microprogramming. This part
analysis developments in microprogramming from Wilkes (1951) through
its commercial application by IBM (1964) to today. It recognizes
the software/hardware duality and shows microprogramming as a
tradeoff that offers an alternate and efficient level of program
implementation. The rest of the study analysis the basic miero~

instruction design, encoding, implementation and timing.

Key words:

Asynchronous polyphase, complementarity, duallty, micro-

programs, microsoftware, micre- operatlons, m1cro~1nstructlons.

Resumo: Este trabalho & a Parte I da série de monografias sobre
microprogramagao. Esta parte anallsa o desenvolvimento da micro-
programagao comegando com o trabalho de Wilkes (1951) passado atravcs
a comercializagao da IBM (1964) ate hoje. Este trabalho reconhece

a dualidade de software/hardware e mostra miCroprogramagiac COmO Ul
compromissso que oferece um nivel alternativo e eficiente para imple
mentatdo de programas. O resto do texto faz uma andlise dos proje~

F A ') , ~ . P -~ s 2
tos bdsicos de microinstrugoes, a implementagac e "giming” deles.

Palavras chave:

Multifase assincrona, complementar1dade, duglidade, micro-

programas, microsoftware, microoperagaoc, micro-instrugoes.

Table of Contents

PART I - PRINCIPLES AND DEVELOPMENT.....ccenvoaves

1.1 = Foundations of Microprogramming........

1.1.1 ~ Trends in Hardware Developments......

1-102 b
1.1.3 -
1.2 -

Trends in Software DevelopmentS......

L)

*

s ¢ 0@ w8

a8 2 G e

t e e w9

¢ » 0 Q0

Some Applications of Microprogramming......

Organization of a Microprogrammed Computer.

Logical Building BLlOCKE e evancsesooononvonnse

Random Logic Control......-

Microprogram Control..coccense

1.3 = Microinstruction Design...oco..

1-3«1 - Address Map‘pingoﬁ-o-nasmaautv

1.3.2 -
1.3.3 -
1.3.4 ~
1.3.5 =
1.3.6 ~

Microinstruction Format..ecos.

Horizontal Microinmgtructions.

@

*

Vertical Micreoinstruction.....

¥ 9w

°

”

L]

°

*

°*

.

°

o

e

o

8

* e 0 0

»a as e

@

w

s

® &% % Be AeE @

(3

Other Microinstruction encoding schemes.

Microinstruction Sequencing.cececvoccosss

e

1.4 - Factors in Microinmstruction implementation.

1.4.1 - Serial ImplementatioN.s.cesnsscovccossonan

1-432 b
1.4.3 -

l.4.4 -
1.4&5 -

Parallel ImplementatioR...cscecaroccassons

a
.
L
»
hd .
00 0 ~ R W LA W ke g

sewwae 3
soeoeell
cexncs 10
I ¥
D
oareaaid

IaQSﬁn}.B

Rc'.'ﬂl&
II';QO!I-S
ceenedl5

Monophase ~-POlyphase characterization of a micro-

inst‘ructio‘ns-'tcn-oneooloin'.nua."oa!s-losu

Monophase..ocoees

Polyphase. ,.vooen

CONCLUSIONS:coecaoancnansoseos

BIBLIOGRAPHY:

2 % ® ¢ ¥ VR G O g0 Y DS A

LR R S NN

285 f 00 8 P oo R e

CIE A U B R

®

°

-

a

-

®

" 6 0@ 0% 36 kAP B W

L)

*

L]

»

@

*

.

.

e

.

LI

-caontié

-ow-uutolﬁ
ooou-cuale

loﬂ’v!oola
03.-.0..0.019

MICROFROGRAMMING

PART I : PRINCIPLES AND DEVELOPMENT

The evolution of prinéiplas of microprogramming follows
eimilar trends as found in higher level language programming.
These trendes include Miqr@inétructian cbdifieati&n, timing, - ete
~and their use in the development of micrgpragram contwols. Gene~
rally derivedvprinciﬁlas«differ mostly in the level and emviron-—
ment (ROMs,RAMs, etc., as opposed to main memory) of imﬁlementav
tion.

1.1 ~Foundations'of Micruprogramming.

Microprogramming as avconcept evolved from a necessity
to systemstize the intermal operations (registar'ftnwregister da
ta transfers, signal comtrol, ete.) of digital compugers. Such
a scheme iﬁevitably calls fo%'some tradeoffs including a depar-
ture fronm the traditional ad hoe hardw1xed logic control. Immedi
ate returns from mlcrnprogrammed con:ral include savzngsthrough
shorter and flexible systems deslgn formats that can be implemen
ted through emulation (e.g. IBM 360/series) and more in material
(less number of logic gates) that may further provide a higher
performance. The added flexibility which allows users to altexr the
structure of a machine through micra?rogramﬁiﬁg.into a system with
predefined features is;uot only reveolutionary but may in fact lead

to the realisation of a universal machine (see " parts 0 and ILI).

Before tracing the historical development of wmicroprogranm
ming it is relevant to explore at en gbstract level the philosophir
cal 1mp11cat10n Of the process. Mioroprogramming is not defined at.
this stage '31nce it would be both premature and lack the nucessarysbackground
lnformatxon necessary to apprec1ate such a definition. Therxe exist
a discernable, but 111 &eflned complemen&ar;nrbetween software and
hardware that suggest dd part gome duality in- .computation. This dua
lity may be different for 1nstance from the partlalefwaveg heat/mass§

light/dark, ete duality but can rightly be called software{hardwara

Software

7 4

Firmware .

Specialised

Hardware Machine

6 - w.....
L

Software .
Savings:

.
‘Rardware #

Turing Machine HardWaréSaviﬁgs?

Figure 1l.1. ,Conceptual frame of Software—Hardwéte &uality.‘

-3

duality. More formally this concept is stated below (see also
figure 1.1). '

Definitian 1: For every defined functional hardware processor
' %, there exist an equivalent software process

P?,'and for a defined functional software pro

cess By’ there is an equivalent hardware Processer ¥.

The kéy to unloeking the form and characteris -
ties of this dual ex1stence of cqmputatlonal methods seems to lie
in. lLstransfarmatlon agent (mxcropragramm1ng} whose chamacterla -
tics are reflectlve of both hardware and software.) Hence, it
seems 1mportant tor study micropragrammlmg in 11ght of software
and hardware in order to understand and optlmxze ‘them. The impli-
catlans of the process are frightening because of the great flex1
bility 1n restructuring both software and hardware thraugh “oins
tant rew1r1ng of a machine effectuated through mlcroprogramming.
The reallsatloa of this dream depends on the stata of semiconduc~

tor technology, which for the mom&nt poses no major problem.

1.1.1 - Trends in Hardware Developments.

’

The concept of a stored-program in 2 non-volatile Read-
only-Memory (ROM) was first proposed by Professor Maurice V, Wilkes
of the Mathematlcal Laboratory (University of Cambrldge) a2t Man~
chester 'University Compuuer Conference (1951). The (mlgxnal prope
sal ‘called for a systemlzatlon of program control then accomplxsﬁeé
through ad hoc randem logic gates. This aystematlzed control pro -
gram Wilkes called a'micromprogramme”fram which evolved the word
m;croprogrammlng. Details on the Wilkes madel as well as a formal
definition of mlcroprogrammlng are contalned in, Part 0 of this
study. : .

. Developments in microprogramming.iﬁ the 1950s and early
19609 was conflned te academxc lnterest.‘ Figure 1.2 shows. in a
very rough manner soma of these trends and. “the éegree of appareut
receptlon af the coneept. The upturn seems o have cone with - its
industrial appllcatlon by IBM when it announced the 360!Ser1es in

1964 as a family .of miéroprogrammed machiues».

Publications

t

404

30 /
- IBM 360/Series (1964) Minicomputers and RCA
" - : Spectra 70 (1966) /

‘ | .536? Qb%
20l % <%
T CACM National 4 s
Conference (1961) / 'a"“@ <
_ g &
: Y
4
10 £ 3 N ‘
Transistor(1956)
b _ - + e + g
1950 1960 o170 180k (e

Figure 1.2 Trends in Microprogramming

The: RCA announcement of the spectrai70 was perhaps a
greater s“rpilse because of the striking resemblance in its .(-
architecture and to the IBM 360/Series .. Since these early deV91f3P“‘ '
ments several manufacturer have prodﬁced mxcroprogrammed machines:

(e.g. HP2100, Byrroughs B1700, Digital Scientific Meta 4, ete).

1.1.2 = Trends in Softwayre Bavelapmeﬁts

s

Though software dﬁvelagments have lacked behind hardwarev
there now exist substantial effurt in developing microsocftware
(ﬁssemblers, translators, etc,) and in some cases higher micro-
programming languages {for example ELler)davalaped translators
(fot example MLTG } convert higher m1nroprugramm*ng ilanguages to
microinstructions (a sequence of Bits) that are interpretable by

a machine to effactuata an operation.

_ _ Some attempts have been made to ﬁeslgn higher level
mlcroprcgrammlng 1anguages (Schlaeppl) with yet very moderate .
SUCCeES The subjeet of mlcroprogrammxng langurages 15 treated in
Part II of this study. There exxat interesting davelopments in tha

|
ares of mxcropregrammlng,for a: reiatlvely short time, the field has
attractada 1ot of interest.

The period 1951~ 1959 seems ch&xactarlse& by research and
jack of implementation. - The flwst generation of. microprogramming
seem to be 1960 with the'comlng;ef the Read~Only-Memories (ROMs)
and the second ganaration by the comimng of Read«ﬁritewﬁemariea
{RAMs) 1n the 1970s together with dynamic programming capabilities.
The deve]opment of higher level micrupregrammxng programs signals
yet anorher dlstlnct phase Wthh can be denamxn&ted third generation
microprograms. The forth. generatlon shows a tendency to intergrate
hardware and- software through fxrmware.f 1f thla in fact ocurred,
£Lhe 1evel of £unct10n 1mplemantatzon would be optlmlzad and dependent’
cnly on the eff1c1ency afforded (2. g operating systems may be
@tutallyllmplememtad at the microlevel). A perhaps more interesting
conjecture is the possibility . of ﬁwitChlng levels of function '

impleﬁentation (say from higher level language to microprogramningl.
1.1.3 - Some Applications of Microprogramming

Several applicatlons of. mlcreprogrammxng exist and are
treated in detail in separate studies. wagvey, some of the
important areas of applications are summarised below. These

include:

¥MLTG - Hicraﬁragramming LanguagebTranslator Genersator (Sawai;fﬂ:al]a??}

1., Simulation and Emulaticn - very important integration
of software~hardware to effectuyate certain functions
or reproduce the instructioﬁ*set of other machines
(eogs speétra/?o emulation of the IBM 360/8exies) (see
_ ‘Part I1I of th1s study).

'2.‘81gna1 Proee891ng - Partlcularly useful in the area
" of sensor data procesalngs mllxtary operations, nuclear

monxtorlng, ‘ete; all of which may need real time

_execution,

i?, Macrodlagnoatxca ~ Packages for mxcradlagnastxcs are

“partlculary useful far field operatious in testlng
faults on machines. Such packages should be simple
“and be independent of any hardware to enable use by

-

o field. Englneers.

4, Commumication systems Contvrol ~ Particularly useful
for telephone gswitching, telemetry decoding, data
f”rfwroutiﬁg, ‘ete. - Can abso be used to monltor real time

Uappllcatlons of process centrol.

FSQECantrol and Mornitoring of Camputer Syatéms -
'Thié‘islbna of the most ihportant applications of
m1croprogramm1ng and in fact the hasis of ite. evolution,
Gertaln architectural speciflcatlons (regxster sizes,.
1ntra reglstrar data transfers, CPU cycles, etc) can be
'1mp1amented through mlcropragrammlng. Sahedulers, ma~-
CTOs, despatchers, 1nterrupt handlers, etc can gsimilarly
be-;mplemented.‘ In recent davs great effort has gone
into optimizing compiiefs through microprogramming their

repetitive routines:

1.2.- Organization of a Microprcgﬁammed Computer

The microprogrammable computer organizatien
consist of four major functional units:
. Memory Unit

. Arlthmatlc and Logxc Unit.

.- Control Unit
.,IantXOutﬁut Unit

‘Some ‘analysts consider Input and Gutput as two separate units.

:Thls is not: important for thls study and does not distract from

fthe basic communication patterng realisable within dxfferent units
-of~the~computer through electrnnxc gignals. The orderly
1mplementat10n of instructions, datas flows, tlmlng, etec.. in &8
d1g1ta1 computer is the functxen of the computer control unit. The
control unlt may: 1tself bedirmmad(cqntrolled) through nanopregrams
.5 hardwxred control legic. In ccntralllng the operations of a
computer, the control unit axecutes mMLCTOPYOErans, contained in a
¢dontrol memory and each directed at rea1;51ng some predefined macro-
operation. Besides this, the‘asntroi unit attends tosevemﬂ,othar:xmtroL
'gs:iVi?ieéThe format of respon;é by the contrel unit can be

summarised as follows:

1. Determination of exact imnstruction to be executed.
2. Issue of control signals to open and close specific
gates within the com#uter system - thus allowing only

Cérfaiha operations and data flows.,

3. May ordar resulta to be restored in memoty or other
devices. - o
4. Issue an order for the mnext Fetch-Decode-Execute

N

Instruction.

" The above functions can be summarised in a general form

~as follow:
i) Fetech o R+ (M)
ii) Decodse

4ii) Ki‘* Ki+1 : change cgntrol

iv) 8, <« S, change of state of the system.

i+l

1.2.1 - Logical Building Blocks

“Some. of the funct1ona1 Ioglc gates for the above operatlans
include AND, OR, XOR, INVERT, etc' which can he used as buyilding

blocks to build other functions (P.g.'NOR‘NAND etc). Flip-~flops,
latches; trlggers, etc which can be set (by the control unit) at
each machine cvcle, are also &er;vahle from § ame basic blocks. A
control gate may contain ome or more input lines and has an output
only when the signal is on. ‘The follcwlng ezample is ui s control

: : b X.¥ %> 2 (output)

gate..

_Dataline X

Control ¥

 'Fig£fe'l;35 Bésiﬁ'ﬁdngxol (AND) gate.

Baslcally there exist two ways of 1mplement1ng‘control
in a digital computer - through traditional hardwxred Tandcm
logic or microprogramming. The following sections summarxses gome
of the attributes of each of the two.forms of control.

1.2.2 - Randﬁm‘ngic Control !

Raudbm'Logic control denmoctes the aduhoc_imblementatimn
of Computer Control using_hatdwirad logical gates.- Such
connections could form eithér sequential or combinational networks
that function like a finite state machine. . There axe several’
limitations to the use of random logic for control in digital

systems mobst of which are examined in Part 0 of thls study.

1.2.3 - Microprogram Control

An alternate design and implementation of control in

digital systems.is through micrqprogramming.*

. Micro-operations steps in. each. time interval are repre-
Sentabla'by a control word characterlsed by 1's and o° 5. " These
control words cam be pragrammed to initiate operatlons in varmaus
components of a system in & ‘defined way. &ny control unit w1th
{ts micro—operations steps stored in. mEMOYY is call&d a micro—
prngr&mmed control unlt. A sequence. of control words {(micro-

instructions) 1s called a mxcroprugram. Hence the definition of

% Defined in Part 0 of this study.

microprogramming. This concept has only become .practical with
advances in memory technmology which gave birth to the read-oanly
memories (ROM) used in storing micro~operation steps in digital
systemé.‘ '

Dynanmic microprogramming is an associated concept which
allows certain desired’miqroprégrams to be loaded onto control
memory from either & comsole or auxiliary memory. Writable control
'Memorias'(WCM) are used in dynamic microprogremming thus giving it
a writable (modifieatian}capahility though in practice it is used
only for reading. ‘Through dynamic microprogramming various types
of microprograms can be brought into memory to effectuate different
functions{e.g. Fortran, Algol, Basic, etc. to compile othér'

programs) at. appropriate intervals.

1.3 - Microinstruction Design

A microinétrﬁétion (control word), contained in a control
memory, is made of a series of bigs each of which denotes a
specific control signal . Each control word is subdivided into s
group of bits (fields) each of which field provides a distinct
.and separate.function; In general,‘bité of a control word may

provide one or more of the following functions:

.

1. Micro-operations* for control unit itself with

: specification of the next microinstruction address
format;

2. Micro-operations for the registers and wemory ¢f‘the
system (micro-operations may be divided into fields);

3. Address field for branch microiastructions

4. Other special fields that may contain data for transfer

to a specified destination (addresses).

% A micro—operation is an eiéméntary oparatibh, realisable in a
ciock pulse, on information stored in one or more registers
with results replacing previous information of the registers or
‘stored in other registers. Examples of micro-~operations include

(shift, clear, count, load, etc.).

1.3.1 - Address Mapping

Associated with

each macroxnstructkon is an umcondlmxunai

 branch to a ROM address to execute a subroutine associated with

its opcode. The address of the first microinstruction of the

routine is a function of the

address register (points to

opcode bits and the Slze of the ROM .

spec1f1c control words 1n the control

'memory) - The process by ‘which the ROM agdresses are determ:ned

»for each mlcrulnstructlun assoclated w:Lh a g

is: called mapping.

Figuresl.5 ~ 1.7

iven machine 1nstruct10n

show a graphical representa-

tion of this process which in summary words is

uniconditional

Macroinstruction

(Assembly Language Branch

Implementation)

> ROM Routine

1.3.2"~ Microinstyuetion Format

>'Microinatructioﬁ~'
(Addyess obtained through mapping) tion

> Micro~opera~

In general microinstruction formats vary a lot -~ the

following though only illustrative is general enough to contain most

of the fields normally considered in the design of a-

0

8

10

microins truction

12 19

T
Micro~operation
(9 Bits)

Condition Field
{2 Bits)

Branch field
(2 Bits)

Address field
(7 Bits)

-Figure 1. 4 General Format of a microimstruction

v

The act1v1t1es asssc1ated with each of these fields are

summarised in figure 1. 4,

eneodlng of microinstructions,

There exist several other forms of

two of the most common forms of

whlch are Berizontal and vertical mlcr01nstructions encodings

Machine Instruction

Address Registers

Microinstruction
Address

e Joem

Macro-operation operand Address 11
X ¥ X X |Yy ¥ Y'Y Y ¥ Y ¥ ¥
0 | 6
1 ¥ X X x.1 - 'Figure 1.5
AND TO 0 ROM Address Mapping
0 X X X X 0 0

“The mapping process can be summarised as shdwn'in figure 1l.&

belows.

fRead Machine

‘Maéro-operation (OPCODE)"

Micro-operations %2

JInstruction
e - Determine routine
Map into RQM Address Reg Address)
wr-Return . Determine Microinstruction
;. -UnconditionaTl
.t
| Micro-operations
" Execute micro~operations
Figure 1.6 Summary of the mapping process.
Macroinstruction. {May be in ésseﬁblj Language)
Microroutine ‘
Micro=-instruction - Mz Myeveneoonmnmas

éBv-oo-u.ql-'--oc

Figure 1.7 - Instruction Mépping Flowchart

~19~

1.3.3 -~ Horizontal Microinstructions

In'general this form of encoding controls several hardware
resources and thus is of a greater length than a vertxeal micro~
ingtructions. Horizontal microinstructions normally represent

micro-operations that are executed concurrently.

1.3.4 - Vertical Microinstruction'

This type ofencudlng is s1mllar to the c1a381ca1 machlne
instruction with an opcode, an operand, and’ one or more flelds.
It is usually mich shorter than & horizontal’ mlcroxnstructlou
{(varies from 12 to 24 bits). ‘

1.3.5 - Other Microinstruction enbodin&‘schemes

Encoding patterns effect the length of the mxcroxnstructlon(
- The most elementary case is where a 1 in a bit posxt1cn represents

an executable mlcro—cperatlons (szmllar to- Wllkes model where the
presence of a bit represented. the opening: of a particular gate).

Two otheraxnterestlng ‘Tevels of encod1ng exlst.

In a single level (or dlrect) encodlng, micro~operations
that 8 single hardware regource can perform are encoded in a single
field e.g. an ALU that can perform 8 d1fferent arlthmetic and
-logxc operatlons is encoded 1n 3: bzt (23=8). This is shown in

the figure 2.8

i3

ALU Pield A I/0 Field B
(3 Bits) (2 Bits)

1 out of 8 « | Decode A P
1 gut of 4 | Decoge B P;:

Figure 2.8 Single Level Encoding

In a two level encoding mutually exclusive micgooperations
maybe combined to form single level encoded fields. Such a :
process called bit steering allows any combination of fields to
be decoded together by 5h1ft1ng the bit format. In such a case
the bit lnterpretatlon is 11nked to the machxne state €. g. Input/
Cutput. Encodlng may reduce mlcroxnstructxon size con31derab1e
though at the expence of addltlonal hardware (e.g. gates, latches,
decodxng nets, ete). . Excesslve encodlng may also’ obfuscate machine

operationsg.

1.3.6 - Microinéttuétion'Sequéncin&

At least two 3equenc1ng technlques exist’ for systematlcaily
executlng mlcr01nstructxons (control words). One of th1s uses a

microprogram counter. (MPC) and the other a 'llnked llst' concept.

.In the M?C approach, the address of a subsequent)
instruction is 1 greater than the current except under coudltlonai
executicn; Condltlonal micro- operatlons may result from the
following: ')

&) Structure of the microinstructions

b) From the state of hardware.

=14~

The associated conditional addresses can be obtained as
follows: ’

1) Micro-operation. may contain a conditional address
~portion that is moved into the MPC register.

2) General purpose register that calculates "the new,

addresses.

!

3) Some special memory location ~ Some machines use a
hardware stack to save coﬁtrol addréSses"
Such a process .would follow ‘the traditional push and
Jpcp‘prucedures initiated by interrupts or conditional

‘brahching;

In the 'linked list' approach, the address of the instruction
is stored .in the present miecroinstructions thus forming a chained
list of addresses. Two;implementhtions exist for this addressing
format.
a) Include several addfesses associated with ‘certain
conditions in the mxcro~1nstruct10n. '
b) Sp861&1 blts that could be set or encoded 1n one way

for spec1f1c condlt1ons (e g. & bits would glve 16

possible conditions).

5

i

1.4 - Factors in Microinstruction implementation

A known characterlstxc of mlcroxnstructlon 1mp1ementat10n
is the t1me delays in its executlon sequence. There exist at
1aast two types of 1mplementatlon - 1) serlal and 2) parallel. They
both indicate the degree of overlap in the execution phases of a
current microinstruction and the fetch~detcode phase of the next;

Note that fetchlng next 1nstruct10n involves the followlng
a) update of the mxcroprogram counter, MPC + MPC+1;

b) Selecting instruction pointed ‘to in ROM by MPC is
ROM(MPC) 3 ' ' '

¢) Reading this microinstruction into the microinstruction,

m]5=

regigt@r MIR, MIR + ROM{MPC)E

) Decoding the executlng mlcremaperatlams associated

with mlcT01nstxuct10n.

Signals and data propagation delays depéndu on the

complexity of the hardware.

1.4.1 - Serial Impleﬁehtation

This is a very sxmple 1mp1ementat10n where the fetch pbase
'begtnaat the execution phase nf the present microinstruction., The
j&dvaa@aga of the abnve reallzarlon is that no' sxmultaneuus fetch
and execute exxat and hence no hardware complications are likely

to arise’ in’ either reading or execution.of microinstruction.

1.4.2 - Parallel Implementation

In this form of implamenﬁaiion, the fetch phage .of the
next instructid® to be executed ié done in parallél with the
execution cf the current 1natruction.“ The advantage of this type
wof scheme is the saving in time. However, condxtmonal branchxng
may cause delays in, determlnlng the addxess of the next mlcrnw

instruction. Iun. such a case a serxal para]lel approach may be goad.

4

Microinstruction } F D E
L e
j+1 - : ¥ D B Serial
PRRUURS SRR S
E . IS SV
>%
A
" Microimstruction
T R —— _ .
bl T | F o B Parallel
. ; . v :
j+2 » F D E
W«Q.._—m.wl
>t

-16~

'y
Microinstruction e 3 ' _Se#ial - Parallel
' j ¥ D E (Conditional Branch)
'j+1 -~ F D tE‘ |
j+2 F D E

>t

Figure 2. ‘Characteristics of Berial=Parallel

’Iﬁplementation

1.4.3 - Monophasé - Polyphase characterization of a microinstruction

-

The monophsse - polyphase ‘characteristics of m1cro—
instruction refers to the number of distinct phases requlred to

execute a glven microinstruction.

1.4{6”— quggﬁase'

In a monophase operatlon a whole mlcroxnstructlon is

effectﬁd by a (31ngle) 51mu1taneous issue of control signals. This

‘vtype of operatzon is useful for szmple operatzons such as simple

data transfers which may 1nvolve only the openlng of gates. The

definite advantage here is simplicity of realization.
“ . ~o
s . .

Cloek Cyle L Z 3 4. 3 6
Micro- + 1 2 3 4 . s 6

Instruction ' > £

1.4.5 - Po1gghase

?olyphase 1mplementat10n is characterised by several
dlstlnct phases with the poss1b111ty of 1ssu1ng control signals

at each phase.. There exlst two .types cf polyphase 1mp1ementat10n{

|
a) Synchronous Polyphase.»

Mlcro1nstruct10ns are executed in a sxngle

major clock cycle (which may contain several minor

b)

_ye

cycles). The execution time for microinstructions

is the same.
Asynchronous Polyphése:

The number of phases required to execute a
microinstruction is a function of the complexity of
the instruction. It has the advantage of possible
parallel fetch but needs complex<timing. Polyphase

implementation is characterized by sequential logic.

18-
Conclusions:

Microprogramming as an alternate level of program implementation
offers promise for more efficient control of digital systems in the
future. Moreover, it offers the best tradeoff for the software-
hardware'complemenéarity problem which will bhe an important design

and economic consideration in future digital systems design.

Bibliography:

AKORTEH, A.N.
BOULAYE, &.G.
CHU, Y.
HU;SON, S.
KATZAR, H.

ROSIN, R.F.

WILKES, M.V.

-1

Trends in Emulation Technology Monograph
Dept. of Computer Science, PUC~-RJ; 1879 |

Microprogramming
The MacMillan Press Ltda, NY (USA) 1975.

Computer Organisation and Microprogramming
Prentice~Hall, Englewocod Cliff, NJ; 1972

Microprogramming: Principles and Practices
Prentice Hall, Bnglewood Cliff, NJ; 1970,

Microprogramming Primer
McGraw~-Hill, NY, NY; 1977.

Contemporary Concepts of Microprogramming...
Computer Surreys, Vol.l, No.4 pp 197-212
December 1969. ‘

Growth of interest inm Microprogramming
Computer Surveys Vol.l, No 3 pp 139-145
September 1969,

