Series: Monografias em Ci€ncia da Computacgao
8 G

N9 10/79

DON'T WRITE MORE AXIOMS THAN YOU HAVE TO:
A METHODOLOGY FOR THE COMPLETE AND CORRECT
SPECIFICATION OF ABSTRACT DATA TYPES;

WITH EXAMPLES

Paulo A. 8. Veloso

Tarcisio H. C. Pequeno

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE 8AO VICENTE, 226 — CEP-22453
RIO DE JANEIRO — BRASIL

Series; Monografias em Cilncia da Computagio

N¢ 10/79

Series Editor: Daniel A. Menascé May, 1979

DON'T WRITE MORE AXIOMS THAN YOU HAVE TO:
A METHODOLOGY FOR THE COMPLETE AND CORRECT
. .SPECIFICATION OF -ABSTRACT DATA TYPES;

WITH EXAMPLES*#*

Paulo A. S.:Veloso .-

Tarcisio H. C. Pequeno

* Research partly sponsored by FINEP and CNPq.

' This Pa§er is a’reviged ag&~ekpanded version of
“DoAnQQN;rité more Axiéﬁs thaﬁ?jéu ﬁa§é to“, giﬁgn at."
International Computing Symposium IQ?&,,ﬁankang,vCh?na,

" Dec. 1978.

ABSTRACT:

A data type can be formally apeeified by a set of correct
axioms that is'Sufficient to completely characterize it. This
paper presents a methodology that indicates wha& axioms_to write
and when to stop writing them. Some data types are specified to
illustrate the application of the method, which is based on . the

concept of canonical term algebra.

KEY WORDS:

Abstract data type, axiomatic specication, correctness.
proof, systematic specification, canonical terms, complete specifi

cation.

RESUMO:

Um tipo de dados pode:ser formalmente especificado por um
conjunto de axiomas que seja :suficiente para caracteriza-lo comple
tamente, Este trabalho apresenta uma metodologia que indica que a

xiomas escreveyr e ﬂuando-parar de escreve-los. Sao especificados

fi:3)

alguns tipos: de dados para ilustrar a aplicagac do método, gue

baseado no conceito de algebra de termos canonicos.

PALAVRAS CHAVES:

Tipos de dados abstratos, especificagao axiomatica, certi
ficagao de corregao, especificacao sistematica, termos canonicos ,

especificagao completa.

1&
2,

3@

CONTENTS

ENTRODUCTIONOOUIu-nqoqt-o-n.v-co-st'an«oso'n-'anno-s‘nl w-‘onouc.un-.-l

A PRELIMINARY EXAMPLE: NATURAL NUMBERS.””"““""“‘.""“'”"3.

A SIMPLE DATA T-rYPE: QUEUES"';'OGli-lqtollQ'.'.Oﬂi'!‘l;!ﬂn"?@'ﬂls
THE METHODOLOGYQ'.'!O"GOG.!t‘l.'ﬁll!e.'lbvlllaOQ;UOCIO'IClouvl.""Qll
AN ILLUSTRATIVE EXAMPLE: SETS OF NATURALS¢esseesserccescrasld

A MORE CONVINCING EXAMPLE:.TRAVERSABLE STACKescoesooassncsss1B

'

.CONCLUSIONS‘.’ﬁﬁi'n!'0"lﬁ'l.:\(!'ittiill'.l&c...“t'!"'tv!.‘;IOOCt'25

ACKHUWLEDGMENTS "‘O‘Q‘oCOQDuc;otlwhollvo'lv-on'otréc!o‘t.ot'econo2?

REFERENCES 'l{,.t'.atclec-t.‘ccnlulooo;\nioal.'-‘n.twlccnlslnnoo‘nco-¢0028

1. INTRODUCTION

Several methods have been propased for the specifi
cation of a data type by presentlng some of its basic propers
ties (axioms) in a representatlon 1ndependent manner [Liskov |
~and leles 1975]. Some difficulties in writing an axiomatic spe
cification are what axioms to write and when toistop writing
them, i.e., whether the axioms written are sufficient to define
the data type. Here we present a meﬁhodology that helps in both
difficulties by guiding in the discovery of the axioms and by’

indicating when they are sufficient.

Abstract data types been used a ﬁowerful programning
tool. Its use provides an elegant construction of the program by
factoring it in two parts: a program that maﬁipulates an abstract
data type and an implementation of the data type in terms of some
selected representation. The correctenass proof of the program
can also be factored into a proof of the ‘program that manipulates
the abstract data type and a préof of the correcteness of the
implementation of the data type. Both'proofs require a formal
specification of the data type [Guttag 192?]. |

) The methodology presented consists 6£ the choice of
a canonical form for the'data type and in the analysis of the ef-
fect ﬁf the application of each operation of the data type on

this cgnonical form. This analysis suggests #hat axioms are needed
and, once one has done it for all the operations, one can be sure

that no more axioms are necessary.

For abstract data types regarded as initi%l algebras,
using conditional equations as akioms, a formal justification of
the methodology can be provided, based on the concept of canonical
term algebra [Thatcher et al. 19761.

In the next sections two simplé introductory examples-—
natural numbers and queues - are specified as a motivation for the
method. The general methodology is described in section 4, which
also includes a brief\di9cussionuof its application and an outline
of its justification in terﬁs of c.t.a.'s (canonical term algebrés)g

Then, sections 5 and 6 illustrate the'methodology by applying it

to specify two data types: finite sets of'natural numbers and
a version. of traversable stack (where errors form a crucial part).
Flnally, we conclude with some remarks on the method and the

suggestion of c.t.a.'s as a complementary specification form, pre

cise yet lnﬁul tlve .

2, A PRELIMINARY ?XAM?LE ¢ NATURAL NUMBERS

Suppose we want to spec1fy a data type in a representatlon—
independent manner. We are glven its operations and an 1nforma1 specxflcar
tion by means of a model. We are requ1red to deflua the type using only
its properties. ' o

~ Let us consider the data type natural numbers with equaliﬁy
(Example 3 bf'EGoguen et al. 1975]). It consists of two'sortéwggs_fof“

the natural numbers and bool for the boolean values true and false.

The operations are represented in the ADJ like dxagram below

0
true

The intended meanings of these operations are the usual ones, as

suggested by their mnemonical names. This is going to be our informal model.

&

It is clear that éach natural number can be represented as a
finite number of applications3ﬁmdybe zero) of succ to 0, i.e., by the
term ﬁESS?(Q)’ for some n. Notice that distinct terms represent. distinct
natural numbers. Thus these terms can be régarded,as ,représentatives fc:
nat, in a "canonical® way. o '
' . We are now able to give a more precise specxflcatlon of the

operations by describing thelr effects on these canonical terms. Namely

Succ[succ (0)1 = Succ(n.l)(O) (1)

1
~true if m=n

(2)

eglsucc™(0) ,suce™(0)] =
4 . ~false ifmé#n

We .are going to view axioms as rules to transform the lefthand

sides of the’ above def1n1t1ons 1nto ths raqu:red rlghthand sxdes.

In the flrst deflnltxon the 1efthand side is already in the

desired form, thus requlrlng no axioms.

The transformatxon of e _g(succ 0, succ (0)) into true or false,

accordlng to the deflnltlon (2), can be done in two steps, as follows.

1. Decrease the number of succ's in both arguments simmlianeously,:while
possible.

This would be achieved by the axiom
N1: 9_1<succ<i)';‘succ(j)) = _e_q(i,j)

The validity of this ax1om can be checked by replacxng the variables 1
and j by canonical terms and us1ng (1) and (2)
By applying N1 as far as we can we get one of the foilowing terms

9(0,0) ifm=n
eq(suec™™ (0),0) itm>a
2a©@0ucc ™™ () ifm<n

2. Reduce the term obtained above to true or false by dlrectly applying omne

‘of the follow1ng axioms

N2: eq(0,0) = true
N3! eq(succ(i),0) = false

N4: eq(0,suce(j)) = false

We can be sure that we do not need more axioms because we were able to
reduce any term to its canonical represéntaqive. Thus, N1 through N4

give a complete specification for the data type.

'3, A SIMPLE DATA TYPE : QUEUE

The precedlng ezample inyolyed a very 5xmpla data type of a ﬁwmawhat
mathematical nature. We shall now consider a simple data type more akin to
prugrammlng,namely queue of DjChﬁereﬁD 1s_somefa1ready specified sort of

.data to be stored in the Queue,'say, integers).

We may‘descrlbe a queue configuration as a’ linear array of elements

from D with two pointers front and rear. .

The syntactical specification of the operations is given as follows.

createQ : . *Q
rem : Q +Q
putd : Q x D> Q
getq : QP D

assuming
error D : + D

The intended effect of each operaﬁion can be informally described as

follows
~ createQ = creates an emply queue, with front = rear = 0;

- put ~ . adds a data d to the rear of the queue, which increases its

length by one;

- remQ removes the front element of the queue, thereby shortenlng its

1ength by one°

- gef reads the front element cf the queue without altering it, if
pQSSLbLe, otherw1se the result is errorD (a dlstlngulshed

element in’ D).,

The above descrxpt1on will be our informal- mudel. For simplicity
sake, we decided to ignore the possibility of. puttlng the error signal -

erroxD back intc the queue.

From the above description it is clear that a queue configuration
containing the data dl,dé,.q,,dn,vwith.dl-in=tha front and dn at the rear,
can be obtained.from the empty queue by successively introducing the data’

dl""’dn by means of putQ operations. So it can be represented as

putQ(. .. (putQ (putQ(ereateq, dl)’ dﬁ)"" dn), which we shall ahhreviated as

gth (d can d)t
We shall mclude the case n=0 by agreemg that pth = ereateQ .

Thus, any element of the sort Q can be umquely represented as a
term Eg_g_g_n(dl,...d) for some unique n20 and dl’ ...d € D. (Recall that we
are :.gnormg error p:opagatmn) So, we shall cons:.der th:.s as a canomcal
form for Q. '

We are now in position to give a precise specification of the

operations. We shall describe its effect on a canonical term, as follows

(ql) Eutgﬂgutgn(dl, .. ".dn)"d] = Eut;gnﬂ(dl, vee ’dn’d)

2 putg"Ma,,ed) i n> 0
(42) remQlputQ™ (d;,...,d)] = { ‘

createQ if n=20
' n d1 if n>0
(q3) getQlputQ (d;,...,d)1 = { -
' errorD if n =0

This specification was obtained by translating the preceding.
informal description. Notice that the case n=0 of (qZ)-says*ﬁgggﬁcreatéQ)
is .createQ ,.Some peopie would rather say that this resﬁlts in an error.
OQur informal description was végue about this point, thereby allowing
either choice. Incidentally, one of the advantages of specifying the opera-
tions by their effects on all the canonical terms is pinpointing possible
ambiguities.so common in informal verbal descriptions.

‘We shall now wfigé correct axioms that emable us to comvert the
lefthand side of each Specifiéation above into the corresponding righthand

side.

~As the righthand side of (gl) is already in canonical form, no

axiom is needed for this case.

So, let us consider (q2). The case n»0 tell us to delete the
leftmost data in the canonical term. By noticing that the strings

d1 d2°"dn an@ .cl’2 oes d.n are almos? iflenpicai, one is led to set d = d,Z""dn'

Then, by (ql)
putQ’ (@, dys +vs) = putd™ (purqlereated, d,),)

by using a natural extension of our convention. Now, we can rewrite the

specification for: n>0 as

remQ [putﬁ}nﬁl (putQ(createq, dl) s Q)] = pthnwl(createQ, d),

’ . . . J
A natural candidate axiom to achieve the above transformation 1s

remquutg (q,d) 1 = putq [remQ (q), di]

In order to check it for correctness we replace the variable q of sort Q by
the corresponding canonical term. The 1lhs becomes remQ [putQ (pth (dlya-a,d)N d:3
which by (q1) is remQ [putq (dl""’ ,d)],

whence by (q2), we get
1hs = Eutg“(dz;..,d ,d)
Now, the rhs beccmes, upon replacement, putQ [remQ (gth (d 5.“,&)) at.:

":whlch by {g2y is, as n2 0, then either. pu Q(createQ d), if naO or
put:Q (dz,...,d d), if n>0.

S0, we get from (ql)

,Eu't:g]f(d) if n=20

she = {E“FQB'<6323‘n‘ " ,dnd) if a >0

Notice that we have by the preceding computation

lhs = {createg " if n=0
BEEQF (dysevesd) if n >0

Thus,. lhs = yhs. if and only if n > 0 Sc the above candxdate axwm is correct

only lmder the condition q*” create(f. Thus, we are led to:the ‘modified version
Ql: g #createQ = remg [putq (q,d)1 = putq EremQ(};,), d1

the' correctness of wh:.ch has already been establlshed by the very argument

above (wluch led to J.ts formulatlcm)

Now, 1et us check whether this. axiom ermbles us to perform the

‘transformatlon required by (q2) in case n>0 .

Starting with remQ Epthn (dl,...,dn)j , Ve may rewrite it by (ql), as

reml) [putg (pthn‘l {dl,...dn_l)s ﬁn)]

Here if we call q.= Butgn“1 (dl,..;,d) our notational comumnication

n~1 o
{ndicates that ¢ ¥ cteateD in case n > 1. Then Ql is applicable, yielding

E Q[reﬂ (EWQ (dlscc’d)) d]
If n>2 we may apply again Ql, as above.

After (n~1) applicétions of Ql, we obtain

Eﬂfg("" pth(remQ(pthl(dl)),dz),..., dﬁ) (1)

Now, Q1 is no longer applicable, since’

Eutql(d) abbreviates putQ{createQ,.d D So we need an axiom specxfyxng the
effect of remQ on this term (which denotes a queue of lenght one), Since (q2)

glves CoL . o o
remQ [Eutg (dl)u3~z-~235917}.5 createQ,

a natural choice, clearly correct, is

Q2: remQ [putQ (create@, d) J= createqQ.

.

_An application of Q2 'to (I) gives

pth(..... pth(remQ [pth (dl)] od),..., d) =

Eth(..... pth(createQ, d), irervay @) =
pth 1(2""’dn)’

as desired.

We still have to consider the case n: = 0 of {(q2), which is already
in the form p£ an1equatiQn

Q3 remQ(createQ) = createQ

Now, for (q3), which specifies the effect of the read-out operatiom,
one might start by noticing its similarity with (g2), which removes the first

element, rather than reading it (both regardless of the others).

This obseryation suggests the Zollowing wversions of ‘Ql and Q2 for getQ
Q4: q # createQ-+ getQ Epth(q,éllrg”_QCQ) ’ a
Q5: getQ [pth(breateQ, dl] =a

eas:.ly checked to be correct.

To see that Q4 and Q3 do perform the transformatxon requlred by (q.i) when
n >0 , notice that getg [utg (dl""’d I =

= getQ Epth(p\itQ (dl,. ..,dn__l), dn)l (by notation)

= getqQ cputq““lcdl,...,an_ln Gy)

Repeating these transformatmns while getg applies to a queue of lenght
greater than 1, we arrive at getQ [Eutg (d 11 = '

= getQ [putQ (createD, dl)] {by notation)

= d, (by Q5)

For the case mn = 0, we have
6 : getQ(createQ) = erroxD

Now, we have checked that axioms Ql,...Q6 are correct with respect to
(ql),(qZ),(qS), and transform their 1hs's to the corresponding rhs's.

Thus, these axioms provmde a suffulent complete abstract speclflcatlon for

the data type queue of'D.

Once we have Ql,. ..Q6, we can try to improve the form ‘of the ax:.oms,
easily and safely. For mstance, Q1 does not have to be a conditional axiom,

as we may clearly replace it by .
QL' : remQ Epthfpth(q,d’), d)l =
= pth [remQ(putQ(q,d')), dl =

"and, similarly ng can be reélaced by
Q4': getQ [putQ(putQ (q,d'),d)1 =
= Eetg wcq;d')l ‘

Altemativély one might prefer to keep Ql and Q4 as thﬂy,are and replace Q2
and Q5 by ' :

Q2% q = createQ -+ remQEpu\tQ(q.d)] = Q'

10

and

Q3' 3, q = createQ -+ getQ [putQ (q=d)] = d

vhich form "balanced Pairs",in a way Wwith Q1 and Q4, respectively,

Finally, one might still prefer to merge these "balanced pairs” into

single axioms using conditional terms.. So, Ql' and Q2°' could be mergéd into

Ql.5 : remQ [putQ(q,d)] = if q=createQ then q else putQ [f‘emQ(_q}-,cri’]

Similarly Q4 and Q5' would be replaced by

Q4;5: getQ [putQ(q,d)] = if q=createQ then d

else getQ (q)

1

4. THE METHODOLOGY

The abéve method can be generalized to a methodology, which can
be used to give aﬁ axicmaﬁic spécification;fof a data type. 'Tﬁe syntax of
the data type is sﬁpposéd to be given by a set I of operations. Its semantics
is given (formally or informally) by some other method, for imstance,by
meansg of a model.

The methodology consists of the following steps..

1., Elect a canonical form, ie.;a set C of terms such that every element of =
the data type is uniquely represented in C and whenever oOtj...t, is in C

then so are ty,...,t . o being an operation in I.

2., Translate the given specification into a specification of the operations

in terms of the canonical form of 1.

3. For each operation oe X, write axioms to transform each term of the
form GepeeeC s vhere CraseesCy are' canonical representatives, into the

appropriate canonical representative given by 2.

In many cases we can perform 3 b& steps using the following
heuristics |
3.1) gevise a simpler transformation that”approximated‘the'desi:ed
transfarmation;l _
3.2) write'tandidate axioms" to perform the simpler transformation {which
oftén suggests some candidates);
3.3) check that these candidate axioms
#) are correct (by using the given specification or the one given
by 2), | | |
b) indeed perform the désired transformation.

This methodoiogy:cén be formally justified fdr data types that
can be regarded as (many-sorted) algebras in which every element is thé'
value of a variable~free term. A ﬁetailed proof would require some . ,
algebraic tools (cf. [Gritzer 1968, Goguen et al. 19771). Actually, steps
1 and 2 of the methodology guarantee that C is & canonical.term algebra
in the sense of [fhatcher et al. 1977, p. 11] and step 3 guarantees the
hypotheses of their theorem 5, uhenice"Cis isomorphic to the imitial

algebra in the category of all I-algebras satisfying those axioms.

12

A few remarks about the methodology are in order. Firstly, we
can treat the varlous sorts modularly. Seuondly, the uaefulness of the
methodology hxnges on the selectlon of a convenlent canonical form (in fact,

hls 18 the most creatlve part), even though theorem 4 of EThatcher et al.
19771 guarantees that there always exists some initial canonical term

algebra.

13

5.AN TLLUSTRATIVE EXAMPLE; SETS OF NATURALS:

To 111ustrate the method descrlbed let us consxder a data
type conslstmg of three sorts natural numbers, sets and boolean values
~with the following operations:

0 : = nat

sgcce @ npat -+ nat

eq : nat » nat -+ bool
{1} : nat + set
¢ t > set '

del : set x npat -+ set

|3 : set X set = set

has ¢ set x nat - bool

-\ : bool bool
true ¢ -+ bool
false : -+ bool

where nat, bool, suce, eq, 0, true and false are the same as before. U, del,
- stand for union, delete and not. { } géts a singleton from a mnatural
number (we will use {i}, instead -of.{ }(i)). del(s,i) gives s minus {i},
if i belongs to s, and gives s, otherwise has (s, i) verifies if i belongs to
s or .not. The other operatlons have the usual meanlngs. ')

* The ADJ-'type diagram below, [Goguen et al. 1976], represents
the data type.

f<

Succe

true

falsa -

14

To follow the method we begin by choosing canonical forms for

the szorts involvgd. An element b of the sort bool has an obvious form

that is
bom JEENE
© jfalse

For the sort nat we will use the form Succng - as before}.

Finally for an element s of sort set we will adopt the form

s = UCeu (U, {111, {150), (4 D)

where for all 1 ¢ k,j ¢ n if k> j then ik > ij. If n is zero then we

agreé that s is ¢.

For notational convenience we will write s as
" (¢dy ... 4

where dj = {ij} for 1 g3 € n.

Before. proceeding with the method one must convince qﬁeself&.that
there is a one-to-one correspondence between the expressions of the form
above and the finite sets of natural numbers, to be sure that it is in
fact ‘a canonical formy

Théfseqdﬁ&“§té§'df“ﬁhé method is to give a specification of
the operatiions in terms of the canonical forms. For. succ and eq this wae

done before so we will do it for the other operations.

{i} = Ul(e,{iD)

P edy.. 4,4

31 j+1..adn) if dj = {i} for some lgjsn

de1 (U (4dy..d),0) =
‘§3(¢d5...dﬁ1 otherwise

: ' . bn " N 1 = k
g(gm(¢dlnondm} "‘J_ (¢d1 llldn)) H (¢,e1...ek)’ '
where <ey ... e > is the merge without repetitions of <dj... d >

: ' Ty
.w:l.th _<d1 es di>o |
true if {i} = dj for some Igjsn

has (U7 (¢dy ... 4),1) = -
‘ false " otherwise.

13

- {true} = false

and

-1 (false) = true

We proceed now by imagining the transformations necessary to
convert thé terms on the lefthand si&eSaccoidingto their definitiona'amd by
writingbsuitable axioms to do it. .This is already done for Succ and gg, 50
we will do it for the othar apexatxons. Let us begin thh union. The

transformatlon on

u(e” (¢¢1..¢d),Un(¢d'..,d)) IR s)

can be perfcrmed in four steps;

1. The symbﬁl "U" must appear at the beglnlng of tha term.vThe ﬁallcwxug

axiom cap move an internal. "U" to the begining
!
SL: U(sy,U(sy,d)) = g(g(sl;sz),db

Tu checkSl for correctnes& let us substitute canonlcal represen™

tatrves for sl and 8, om both 51des of 1. On the lefthand side we get
U(Um(¢d1...d),u W4, d'...d') a>)

By the defxm.tio‘n of {} we can substltute U(¢p,d) for d. By applya.ng the
def1n1t1on of union to U(U (¢, d',.,d) wU($d}) - and Lhen to the entire

term we get
‘ &

EJ: (.¢e1...ek)‘) |
where <eyr..e) > is the merge, without repetitions, of <d1,.;dmk,
<d’...d > and d..

The substltutlon into the rlghthand side yx&lda

U{U(Um(¢dl...d),U" dr..d), dy
We can again substitute U(¢ d) for d and apply the deflnxtxon of union
to U(Um(¢dl...d)0 (¢d’~..d Y} and then to the ent1re term to get the
same result as befcre. . ' .

The validity checks of the axioms-along this example can be done
in a SLmllar way and are left to the reader, ‘

Ihe applxcatxan n times of Sl to ﬁx) w111 produce

uy (g?<¢dl,.,dm)¢d peed! d‘) (B}

1l n

16

2. We need to eliminate the double occurrence of ¢ in (8). The following
~axiom csn do it
| 82: U(a,¢) = §
The, applxcatxﬁn of 82 to (B) will produce
Um+n{¢d1...d drar) "

3. In (§) the 51ngletons d and d’ may not be in the’ desued order so we must
be able to 1nterchange them., The followxng axiom allows us to do it

831 U(U(s,,dl),dg) = U(U(s,dz) 1)

4. Convenienc‘appllcat1ons of 83 can put the singletons of (¥) in the correct
order but some of them may appear twice because some di may be equal to
some di. To eliminate these repetitions we can apply

S4r U(U(s,d),d) = U(s',d)

ea

, 'The reader can compare the axioms 81 to S4 that we got here with
the axioms set—l through set~4 presented in [Goguen et al. 1976] to conclude
that Our axioms are one by one a blt weaker than theirs, but for S2, which
is set-1l, At a first glance it is surprising. the facit that the two systems
of axioms have the same power (which they do, as both are complete) This
"happens because our axioms are “more 1ndependent" so to apeak, than tbelrs.
The rFader is asked to try as an exerc1se to prove set-l through set—4
from St through S4.

- To dlscover the transformatlons on del(U (¢d1,..d) 1) to

conform the defxnltlon of del we will examine two cases:
1. There is a. j, l¢jn such that dj‘t {i}. Imn thls case we have to elimi-
nate dj' We can use $3 to hove*djvto the right and get
del(-g.rl((bdl L] 'dj"'kdj+1. 3 adndj) ,l) h’
Now dj can be eliminated by the‘following axiom
'$5: del(U(s,{i}),i) = del(s,i)
By applying 85 we get

del(u“ (dq...d; __ld cod ‘),i)

J+l
So we have reduced the flrst case to. the second one.

2, There is no dj such that {i} = dj.' In this case what we would like to do

is just to "erase" del and i of the expression. ' The following equation

17

does just that
’del(s,i) = §

But unfortunately it cannot be an axiom since it is not valid becaus«, 1t
obvmusly fails when i belongs to s. This difficulty can be overcome by -

using a condxtmnal axiom as in’ E’I‘hatcher et al. 1976]

56: has(s,i) = _false -+ gg_l_(s,':.)- =g

To get true or false from'-}jgg(gn(tpdl.f;.dﬁ),i) we ~ca;i apply one

of the following axioms, as the’ case may be

§7: has(U(s, {i}),1i) = true

$8: .eq(i,j) = false » has(U(s, {1}),3) = has(s,])
In the first case we are done. In the gsecond case we can reapply S8 until
ve reach the first ;c_a.'gej or has(¢,j) which ‘is'o'f course false

$91 has(4,3) = false

Finaliy'for - we have the obvious axioms:’

.Blk= . = true = false .

B2: = false = true .

We ﬁave written all the axioms that we need since we analysed

all thg Operatlons, except { }, but note that the value of {i} can be

obthlned d1rect1y from 52.

The attesmtive reader may have notxced some oversimplificatioms, or

slight maccumczes.'l‘hxs was done m tth ezample. for didactical purposes, In

the next example we :Lntend to present the detalls in amore careful and thorough

.

manneyx.

18

6 A MORE CONVINCING EXAMPLE; TRAVERSABLE STACK

A traversable stack is similar to ap ordinary pushdown stack but
it has the added ability that readout 15 not restricted to the topmost
9051t10n. A version of traversable stack has played a key role in a recent
controversy ahout the limitations of algebraic specification techniques {(cf.
[Majster 1977, 19781 , [Martin 19771, [Subralmanyan 19787

Our version of traversable stack of D where D is some already A
spec1f1ed sort, 8ay, 1ntegers, may be descrlbed 1nformally as follows. A
configuration of a traversable StaLk of D 13 a llnear array of elements of D
together with 2 pointers, one to the top posltlon t, and an inner one which
may point to any position ist. In genetal we requ:.re O<ist except for the

empty stack, whlqh,hasllrtso.

The operatlons are

- createS, which creates an empty stack with both poxnters set to 0;

- pushS, which pushes an element of D jon top of ‘a stack, increasing both
poxnters by one; , ; ,

- downs, “the effect of whlch is to move the Lnner p01nter one step toward
the bottom by decrementlng i by one, if p0351b1e, otherw;se it g;ves
errorS,

- gggg, which removes: the- top: elément, decreasxng hoth poxntera by one, it
possible; otherwise it gives errorB;

- returns, whlch resets the inner pointer to the top;

- readS, to read out the content of the cell poxnted by the pointer i, if

“possible; otherwise giving errprD_ (a distinguished element in D);

- errorS, the error condition of stack.

The syntactical specification of the typé-is’then

creates

errerl
ol LT

19

. A configuration containing the elements.al,;..,am of D, in this
order, can be obtained from the empty stack createS via a sequence of m
pushS's. This gives both pointers at m. If the immer pointer is to - have
value i, with O<igm, we must thenm apply n = m-i downs o
' Thus, any conflguramon can be represented, in aumque way, as
(8) errors, or '
(b) create§, or

(c) doqu(... downS(pushS(e,. pushs(creates al),...,a o)

whlch e abbxevlate as downS™ pusbS (al,...,a)}, for some 0<n<m, thh

all &i S frcm D but different from errorD,.

Thie should be glear from the above informal description,_whiéh,
suggested it.

We now descrlbu the effect of each operatlon on the cananlcal

representatlves .

a) We generally assume that errors propagate thhout botherlng to say it
explxcxtly 1n the informal description. So
(al) ngm‘(errors,a} = error$
(a2) pushS(t,errorl)) = error$

(aS)IdowﬁS(errorS) = error$

f(aé)'pqps(errorS) = errors

(a5) returnS(errorS) = errorS‘

(a6) readS(errorS) = errorD

b) The effect of»each operation on createS is, as suggestea by the informal
' descrlptlon, as. follows :
(b0) pushS(createS, a) = pushs (a)
-%hl) downS(createS) = errord

(b2) popS(createS) = error$

{(b3) returnS{createS) = createS
(b4) readS{createS) = errofD

c)_The informal descrxptlun suggests the folluw1ng specification of the

effects of the operations on a nontrivial. term downS gus (al,,..,a)(

with Ogn<m-

(c) pushs[downs pushs (al,...,a),a] = downéngus m l(a ".,am,a)

(c2) downS[downS™ pushs (al,...,a)=
{ downS“ L

pﬁshs (al,...,a) 1f n+1-<m :

- errors . if n+l=m

20

{c3) pops[downs push@ (a yeeesd)=

dmmng (%fu.m 1)1fn<m1
createS v jig ' n® m~1;w 0

'L"errdrs S ‘ if n*=m~l > 0

(c&)" returnS[downs™ pushS (al,..,,a Yl = gus (al,...,a)
(cS) reads[downs push§ (al,.,.,a)] = a

m=n .

- In order to describe the tramnsformations on canonical terms
specified before, we let a be a variable of sort D and t be a variable
of sort S.

A) error$
The specificatibns (al) through (a6) are already in the required
form, thus giving 6 axioms '

(Al),...,(A6) ! error propagation, corresponding to (8l),...,{a6).

B) create$
Similarly, (bl) through (bé) have the required form and we need

no axiom for (b0), thus we have 4 axioms

(Bl),...,(B4)effect on empty stack, corresponding to (bl),,..,{ba}.

C) downsngushsm(al,...,am) with Ogn<m

(1) Effect of pushS
The specification (cl) requlres the mest receat pushs to be
moved 1n31da, over the downS s, if any. This suggests an equation to the

effect that pushS and dOWna commute, g.g. Eus §[downS (t) sa] =down$[gus S(t,a)l.

Let us check it. , ‘
Replacing t by error$ or a by errorD, we elearlyvget errorS on both sides.
The same holds if the value of t is createS. Now, let t denote-
S ! fn : g s .
downsS EushSm(al,.,.,am) with Osn<mga The rlghthand side gives, by
(cl) and (c2)

. i . . \ e
downS(pushSEdoWnSnpushS?(ai,...,am),a}] wxdown8?+1pushsm 1(31,...,an,a)

whereas the lefthand side giveS'thé'same result, by‘kcz),(cl) and (al),
only if n+l<m, i.e., if the downS causes no error. We are thus led to

reformulate the above axiom as-a.conditional one

Cl: downS(t) # errorS - pushS[downS(t)QQ] = dowqgﬁgﬁshS(t,a)]

~

21

~ We have just checked that this axiom is wvalid. It remains to
check that is strong enough to perform the transformation required by (cl).

But, this is clear as we can apply C1 n times to get

1

puéhs[downsnpushsm(a seesd),a) ® downS(pushStdowﬁS“~ pushsm(a sraesd)eal) =
1 T 1 T

m ., ™ dawnsnpushs[pushsm(al,;.9am);a]
. th
since at the 1~ step we heve the term

downslpu5hs[down3nn1pushsm(al,.a.,am),a3

to which (C1) is still applicable. if i<a.
(2) Bffect of downS -

The specification (c2) requires no transformation when n+l <m,

otherwise a transformation into errorS is called for. So, let us. assume

ntl = m and try to transform downS[downSnpushSn+l(a1,s..,an,an*l)] into exror§.

t
1

By comparing' {(c2) and (c3) we see that downS produces an error exactly when

popS gives errorS or createS. This Suggests the axiom

C2: popS(t) = errorS V popS(t) = createS + downS(t) = error$

which'rgduces our problem to the effect of popS.

(3) Effect of popS

The similarity between (¢3) and (¢2) suggeéts

C3

0

popsldownsS(t)] = downS[popS(t)],

the validity of which can be checked as before. We thus can get, by n

a@ﬁlicaﬁionsvof c3

pops[ddwnsnpushsm(al,...,am}] = downsnpoES:pushsm(al,,.,,am)

To get from here to the terms specified by (C3), it is natural to use
EogS[gushS(t,a)wa‘t, which is easily checked to be valid provided that.

a ¢ errorD. So we add

C4: a # errorD - popS[pushS(t,a)] =1t ..
An application of C4, now 1eads to

. n m~1 ‘ : :
popS[downSnpushSm(a ’am~l’am)] = downS push$ (al,...,am_l) .

1" v‘e

22

wh:.ch is what we want if n<m«1 ox if rmn«lao (for then we get credteS),
In case nmm'-\l > 0 we haye’ dckwns Eushs {a ,..,,a),
which should reduce to errorS. As wn>0, it will, according to €2, depending

on popS downsnﬂl pushs (al,..,,,a R wtuch is by (n~1) applications of €3,

downs™ ! popS push§™ (al, sread } =,

n~1
downs pops pqu_S puShS (8.1, TR ’an"'l) Y

. . o1 . n-1
So, le‘ brings us to examine down$ push§ (al,. cr3d _1).

Continuing this imductively, we are led to downSl pushsl(al).

Since, by C4, popS gushsl (al) = createS, we get altogether
n n o .

downS"~ pushS (al,...,an) = errorS, as desired.

(4) Effect of returnS e
: In order to make the returnS .cancel all the downS's it is
natural to use returnS[downS(t)] = retums(t), which is easxly seen to be

correct under the prov1so downS(t) ¢ errorS. So, we add

(H downS(t) ¢ error$S - returnS[downS(t)]\ = returnS(t)
Successive applications of C5 lead to

:cew*zt:umns[dmmnsnpuz?,hsm(a1 sans ,am)] = returnS puahsm(al seon ,am)

frpm whete we obtain the desired result by means of n 'applica;tiona of

C6: returnS[pushS(t,a)J = push$ returns(t)

A

the correct:ness of which being easy to be ascertalneds and one "f B3.

(5) Effect of reads

".The specification (cS) does not depend on am__h_*l,...,am.,

which could have been popped - .Indeed

readSLdowns™ pushS (al,...,a ¥l =) m_n‘ =

= readS[push$ (al,...,a)] = readS[popS pushs (al, ..,a)1 (by <3)

This suggests the axiom

C7: readS[downS(t)] = teadSEpogS(t)]

23

which is easily checked to be valid. We thus have

readsl downs™ push§ (q seeerd)] =
= readS[pops downs lpushs (al,...,a Y1 (by €7)
= readS[downS" 1popS puahs (a seeesd Y] (by C3 repeatedly)

= readS[downS"™ 1pushS (a seersd)] (by C&)

Ce Ve B eSEBIPOELEERLERCROTSE

= reads[pus (al,...,a “n)] (by repeating the above gycle)

to obtain a . from here it seems natural to use readS[pushS(t,a)] = a,
which of course is mot valid if t contains down8’s. This can be overcome
by using 1nstead readS(returnSfpushsS(t,2)]) = a, which is correct unless t

happens to be errorS. We are thus led to

C8: t # errorS - readS(returnS[pushS(t,a)]) = a

which is valid and may be applied to the above term after the introduction -
of & return by means of C6 (m-n) times, after B3.

We now have a sufficientlyzccmplete specification for our data

type. Notice that we have not tried to write strong axioms, quite on the

contrary. Aiso, we did not worry about indepen&ence: some axioms may be
obtainable from others(in fact, this is the case in the current example).
We think it is a good policy first to concentrate on writing a correct
ébmplete specificationi only afterwards should one try to improvevin‘some
other aspects,,és indeﬁendepge for instance.

In this case one might‘no;ice that

returnS(errorS) = returnS[push§(errorS,errorb)] (by Al or A2)
7 : : .
= pushS[returnS(error§), errorD] = error$ (by C6 and A2) .

Thus A5 could be removed if one wished to reduce the number of axioms.

.

As another example, one might obserye that, in reducing .

downSQ pushs” (a ,...,a), with n30, tO’errOrS in»(zl'and (3), what was

actually used was the reduction of - Eogs ‘pushs (a 1eeerd,) to createS éo

C2 might be replaced by the simpler version

C2': popS(t) = createS -+ downS (t) = errorS

24

Noti_.ce that Ebgsn gu‘shsn(a-l,.. .,am), with n>m, still reduces to

popsn‘m(éréateS) = errorS by A4, and similarly with downS instead of pop$,

by Aﬂ.

25

7..CONCLUSEONS

We have described and illustrated a_m&th@dolagy to write a
eorrect and cémplete'axiomaticAspeciﬁicatiun for a given data type. The
method may be summarized as follows. First, elect.a set C of {(canomical)
representatxves. Second, use .them to spealfy the operations. Thlrn, wrlte
correct axloms to guarantee that C is "eclosed' under the operatmons "(in the
sense that the result is transformable into C). It is apparent that the
method does require some insight but we think it prevxdes good guxdellnes
together with hints. Its main advantage appears to be that it shows when
to stop writing axioms. .

_ The justification of the method is based on results of
[Goguen et al. 19761 and [Thatcher et al. 1976] on canonical term algebras.
These results were derived to prove the correctness of a given specifica~
tion. BHere we use these tools to obtain a speclflcatlon. '

The first step of the method ‘the electlon of a.canonical form,
is the most crltlcal one, requiring soﬁe good insight into .the data type.
For, the selectzon of a nice form will make the remaining steps smooth s
whereas an unlucky one can make them cumbersome an& ebscure. Of course,
the known existence of some initial c.t.a. is no great help here. This
difficulty can be alleviated by supplying a canonical form together with
the given data type. This demand is in accordance with the suggestion that
"a very high level (set theoretic) operational model should accompany the’
equational descriptioi of the data type, as an aid to the intuitive under-
standing of the type" [M. Levy 1977, p. 128]. 1Im this connection we would

like to add that a canonical term algebra consisting of a camonical form

together with the operations specified on the representatives can be a
very good aid to understanding the data type. It has the advantage of
being a formal specification without any variables ranging over the
type bEIR% specified, besides giving a good idea about how the type
operates., ' _ A

The third step of the method may also require some ingenuity.
But the very outlook of the transformation to be performed gives good hints
on how to proceed, either by decomposlng it iato slmpler transformations or
by suggesting the candidate axioms.. Here two features should be stressed.
First, a failure in a corrvectness check genera11§ suggests some minor:

modifications on the candidate to make it into an axiom. Also, if ome tries

28

to take care to put into the axiams~jusn what is required for the transfor—
mations one gets a complete system with individually weak axioms. This
contrasts with the axiom systems usually found in the literature.

‘ We have been trying this methed on several exsmples. and find it
very helpful. Also, it helped us andetectxngp mistakes in published

specifications of well-known examples.

27

ACKNOWLEDGEMENTS

The authors are grateful to D. Kapur,'from MIT, for
pointing out some errors in an earlier version of this paper and
to M.A., Ardis, from the University of Maryland, for supplyiné
some recent literature. . . |

28

REFERENCES :

R.L. de Carvalho, A.L, Furtado and A. Pereda B. - A relationmal
model towards the synthesis of data strucuresj Tech.. Rept. ,
Depto. de Infqrmitica-PUC/RJ , 09 17, Nov. 1977,

J.A. Goguen, J.W. Thatcher and E.G. Wagner .- An 1n1t1a1 algabra
approsch to the specification, correctness and 1mplamentat10n
of abstract data types; IBM Res. Répt. RC6487, Yarktown Heights,
NY, Oct. 1976.

J.A. Goguen, J.W. Thatcher,E.G.Wagner and J.B., Wright- Abstract
data types as initial algebras and the correctness of data repre
sentations; Proc. Conf. on Computer Graphics, Pattern Recognition

and Data Structures, May 1975, p. 89-93.

G.Grltzer - Universal algebra; D. van Nostrand, Princeton, NJ, 1968,

J.V. Guttag - Abstfact data type§ and the development of data structyu
res; Comm of the ACM, vol. 20 (n96), Junme 1977, p. 306~404. \

J.V. Guttag and J.J., Horning - The algebraic specification of abstract

data types; Acta Informatica, vol. 10, 1978, p.27-52.

N. Hiifinger - Lgtfer to the editor: SIGPLAN NOTICES:,vel. 13 (NQ1) ,
‘Jan. 1978, p. 1li-12.

D.W. Jones ~ A note on some limits of the algebraic specification
method; SIGPLAN Notices, vol. 13(n%4), Apr. 1978, p.64~-67,

M.R. Levy ~ Some remarks on abstract data types' SIGPLAN Notices _,
vol. 12 (n® 7) July 1977, p. 126-128, '

T.A. Linden - Specifying data types by restrictions; Software

Engineering Notes, vol. 3, (NQ4), Apr. 1978, p. 7-13.

B.H. Liskov and S.N, Zilles ~ Specification techniques for data

abstractions;‘IEEE Trans. on Software:Engin, vol. SE-1(N?1) ,5
Mar. 1975, p.7-19. |

29

¢.J. P, Lucena and T:H.C,Pequeno ~A view of the program derivation
process based on incompletely defined data types: a case study}
Tech. Rept., Depto. Informatica, PUC/RJ, N¢ 25, Dec. 1977.

M.E.Majster. Limits of the "algebraic" specificatiou of abstract
data types; SIGPLAN Notices, vol. 12(n® 10), Oct. 1977, p.37-42.

M.E.Majéter. Letter to the editor; STGPLAN Notices,-voi, 13(n?i);
Jan. 1978, p. 8-10. o

J.J. Martin. Critique of Mila E. Majster's paper "Limits of the

"algebraic" specification of abstract data types™; SIGPLAN Notices,
vol. 12(N® 12), Dec. 1877, p. 28-29 . !

T.H.C.Pequeno and P.A.S. Veloso - Do not write more axiomé than

you have to; Proc. International Computing Symp. 1978, veol. 1,

Academia Sinica, Taipei, China, Dec. 1978, p. 487-498.

J.R. Shoenfield - Mathematical,logic: Addison Wesley, Réading R
Mass, 1969, ' ' '

P.A. Subrahmanyan - On a finite axiomatization of the data t&fe Lj
SIGPLAN Notices, vol. 13 (N® 4), Apr. 1978, p.80-84.

J.W. Thatcher, E.G.Wagner and J.B. Wright - Spgcification of abif”
tract data types;uSing conditional axioms (Extended abstract) ;
IBM Res. Rept. RC6214, Yorktown Heights, NY, Sept. 1976. '

~J.W. Thatcher, E.G. Wagner and J.B. Wright -~ Data type specification:

parametrization and the power of specification techmiques;

SIGACT 10th, Annual Symp. Theory of Computing, San-Diégo,1CaIif7;
May 1978. ' '

P,A.S;Vgloso - Tréversable'stack_with fewer errors; SIGLAN Notices
yol. 14 (N92), Fev. 1979, p. 55-59.

