ON THE DESIGN OF A RELIABLE STORAGE COMPONENT

FOR DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

by

Daniel ‘A. Menasce
and

Oscar E, Landes

430

PontifIcia Universidade Catolica do Rio de Janeiro

Technical Report DB 038002 -~ March 1980

Departamento de Informatica

Pontificia Universidade Catolica do Rio de Janeiro

Rua Marqués de Sao Vicente, 225 - CEP 22453

Rio de Janeiro — Brasil

On the Design of a Réliable Storage Component

for ‘Distributed'Databaseﬂ-Ménégément.Systems

‘Daniel A. Menascéa
and

Oscar E. Landes

Departamento de Informatica
Pontificia Universidade Catdlica do Rio de Janeiro

Rio de Janeiro, Brazil

Limited Distribution Notice -

- This report has been submitted for publication elsewhere
and will probably be copyrighted if accepted for publication. It
‘has been issued as a Technical Report for early dissemination of
~its contents., As - a courtesy to the intended publisher, its
distribution prior to publication should be limited to peer
~communications and specific requests. '

"Meénasce and Landes 1

.1, Introduction -

Robustness ‘to fallures must be kept in mind'when desio—

r-'-‘

_nlny any large software system.»‘ih
:the context of database manaeemeot system design. Several_lm- :
fportant contrlbutlons to the .area- of’cresh.recOQerf inldatae
lbase_ menagement systems appeared‘iﬁ; the 11terature .iofthe_

ﬁpast few years - [1 2 3 4 and 14]» Of these, the nost relevant;
tto‘theowork'reported hereaare “the worPs of Lampson and Stur;

\gisr[I];tGrayr[Z]:and_ Lorle [3] Verhofstaad in [5] contalnsi

a nice survey of crash recovery.technlques;

‘Integrating'rseveral _1ndependent1y proposed 'ideasvvandt‘
crash recovery teehnlques 1nto the de31pn of 'a robust storaﬂe
comoonent of a dlstrlbuted database management system (DDBMS)‘
_proved to be a non. tr1v1a1 task. The storage comoonent is the
portlon of the DBMS responSIble for alntalnlng the mappln?
of phy51ca1 records 1nto secondarv storage. and for: the trans-v
fer of 1nformat10n between secondary storqge and main nemoryt
‘Lorle in: [3] presents the deSLgnvtofva storage comoonent of_a
vcentrallzed DﬁMS, His ideas could not be directlykincorporae
ted into our-'design since‘the storsge ‘oomponeht he proposed
does not support the'notioo of a traﬁsaction as a sequence of
ractions whichbmust:be coosidered as an atomic operation., Ne-
vertheless, we retéined in our design some of the ideas pro- -
posed by Lorie, The notion of an intentions list, suggested
by Lampson and Sturgis in [1], was ‘also incorborated into our

design,

s is nartlcularly true in

Menasce and Landes . : o 4‘ : , 2

Our design‘of a storage component of a DDBMS builde on:
severelﬂ ekisting ideas aud adds'veomevotherf'craehbrecovery
,strategles. The result is an 1ntegrated oesign which can lead
to.a -dlrect 1mp1ementatlon. Thlq paperu preSeufe'gnoinformai
‘but thorough descrlptlon of our de31gn. Avformel;'Paecal—like_
'descrlptlon can, be found in [GJ The «toraéeecomponent propo-
sed’ here is robust tomtrauSactxon.rfaiiures; Systemufeilures»
eud;secoudéfyuetorege'fgilurgs;- | -

”séectiou'2 Hpresents the baqlc concepts end deflnltlonsh
ﬂused throughout the paper. Sectlon 3 deqcrlbes the orgaulzu—=
.tlon of a DDBMS as a three component system>~ one of whlch is
the storage ‘component. The 1nterface between thls,component;
and the remalnlng software is defined here.»The‘next‘section
‘describes thev basic structure of'ﬁhe vstorage'compouent, rhe
'updatékéﬁreteéy it_;uees aud therfuncfious .which‘compose_irsb
'inrerface'tovthe reSt of'»theibDBMS. The paper concludes with
a summury of performance analysis results of»the etorage com-

ponent in terms of the price paid to achieve a robust design.

2, Basic Deﬁihitionéiand Concepts

The .users of a ~database manapement system 1nter ct with

it through transactnons. A transaction is ‘a sequence of'ac?
tions of the type read, write (i;e. nodify, ‘insertior dele-
te), lock and’uulock. A transactiou'is‘considered the unit of
/consistency, in the sense that it:takes'fhe database from a

consistent state into another consistent state [7]{ A tran-

‘Menasce and Landes ‘ o S ' 3

saction is also considered a unit of recovery, in the sense.

that either all or none of its actions must be reflected 'into
the database [2], i.e. transactions must be considered as a=--
tomic operations. This property of a transaction nust be en-

fdrced-by~the;DBMS_even-in»the_presenCe_efvfailufes.j-

‘There ~may be several types ‘of failures, but we- will
" classify thenm intO‘th%eeucategories_;aegording to the kind of
recovéry ‘action that is needed: transaction failures, system

 °fai1gfes'andfsecondary storage failnres~.A-transaction failu- .

‘rc occﬁr‘ when the normal ternlnatlon of the transactlon can—f
wnot be reached and the transaction must be aborted A system.‘
failure is characterized by thefilossiof,the'eohtentsvof,pri;

mary memory. Therefore, all in-progress transactions are

lost. Secondary storage failures occur ' when part or all of
thejcahtents_'ofxthe“datEbaSe"isjlost-and'muet be recovered

fromfa.previously saved copy or dump.

It is important at this point to distinguish ﬁetween the
tﬁq types of memories thatlﬁe considerf" - |
& : - :
i, volatile. memory (maln nenory) It does not survive a
svstem fallure. : ’
ii.vnon-volatlle memory or stable storage_b(secondery
sterage). It usually suryives system failgres‘
Stable storage is divided into fixed size blocks, called
pﬁysical pages or simply pages, which are.coﬁsidefed the unit "
of space.alloeatien and the unit of transfer between main and

secondary storage., We assume here that stable storage has the

strong atomic property indicated in [1]; i.e., the transfer

Menasce and Landes o . ' v . 4

of -a page from main mémbry'intOVSecondary storage may have
elther one of the £0110w1np outconee.

1. the page is ‘not transferred

2, the page is successfullv transferred

Each physxcal page stores the contentS'nffa loqical péF

1&3; Loglcal pages may be: allocated statlcally or dynamlcally.e

;Statlc allocatlon means that a loglcal page is always storedh'

1n the same phy51cal page- even after the age~ is modlfled
.Dynaﬂlc allocatlon 1mp11es that a: 1og ca] pageemeyfbe stnred

in any phy51ca1 pag at any poxnt in tlme. In this eaee, the—
re must be-a p01nter (stored in anv pthxcal Dage) wh:ch nape

‘the ‘logical pqne 1nto the phys1cal page whlch storeq it(

There are two techniques to implementjtﬁe'strong atomic
property dependlng on the type of allocatlon (dvnam:c or st
tic) being used:

Ta. static'allocation. in order to update a page, a free
phyvlcal page is found and the nodified original pa-

~ge is written'into it. If this operation succeeds
then the contents of the nevw .pace nust be written

* into the original page. ' ' I

b, dynanic allecation: in ~order to: update a page, a:
free phv31ca1 page is found and the nodified origi-
‘nal nage is written into . the new page. If this ope-

~ration is succesvful the pointer which pointed to
the original page nmust be updated to point to the
new physical page. : ‘

In any case; the strong atomic property is achieved by

associatine two physical pages to a logical page during the

o

undate process., Tigure 1 illustrates the two techniques abo-

ve.

Menasce and Landes - - ' . 5

STEP TWO

— &

"MAPMNG_'__\ S .srép"ows-:-\‘

.. N .‘ L~—‘ N B .‘ ..>) . . B .
WOGlcAL - PrysieAaL o NEW. Pﬂysw/xy
TPAGE L - o PAGE X PAcE R

?
}
|

Tigure i.a‘— Implementatlon of Strong- Atomic Property for
Static Allocatlon ‘

POINTER PAGE
S

TEP TWC

T PRYSIGAL
PAGE PN

MAPPING . STEP ONE

-~

LOGVCAL PH voichl NiEw PHyskcm.

PAGE L PAGE) PAGE R |

Tigure. l,b = Imn]ementatlon of S%rong'Atomic Propexrty for
Dynamic Allocation.

‘Menasce and Landes c; . - . , ‘ 6

In figureul.a; 1ogica1‘paée iis alwayS'storedjin physi-
vcalfpaéenj. A neu'vereibn of the'logical-bage:is Written'inrp
a;neu ﬁhysiceljpage k,“if;the write operatién on the nhysical
,;uage.kfis.successful ; ene k is: copled into the orlglnal pawe.'

.

g A fallure may have the follow1ng effects on. the values of
phy51ca1 pagesSJ and k:'.'

1. both pages contain thelr orlglnal values (the fallu-‘
. 're.occurreéd before any of the wrlte operatlons had
- started) ., »

I 2;.pegefk isrndetéctEd_t6~belin_err0r:and7,pQge‘j"Stiii”"“
~ ‘has its original value (the failure :occurred during
~the write of*page k); SR - : S
' 3;7none of the - pa?es are in. ~error, but: page j'has “the
‘ original value and page k has the new value of logi-

cal page 1 (the fallure occurred immediately after
the write of page k).

4, page'k bas the new velue‘and‘the’other haerﬁn,inCOrr
rect value ‘(the fallure occurred durlnc the write of
Page‘J)

5._bdtﬁ:pages contain the new value of logical'page i

' (the‘failure.occurred'after the write of pege.j).
Iﬁ'casee 1 and' 2, the recovery procedure coﬁsists in
urestart1no the undate process fron the first step. In chses;3
and 4, the redcvery procedure consiste‘in restartlng the upfr.
?dete procees'frem the secpnd érep.zFinally, ina'case 5, uot—
‘hing has to ‘be doue since‘rthe update process had alread& £3-
nished,wheu‘che failure;occurred._ |

‘Inffigure 1l,b, logical 'uage i is initieliy ‘storea in
physical page ‘j. There is a“pointer page which implements

this mapping. A ‘new page k is used to store the contents of

pad
—

the modified logical page i. If the write operation on page k

Menascé-and Landes o - . ‘ 7

~is successful, physical page m (the:pointer page) must be up-

dated ‘to reflect the new mapping .

,If—thezpointer page. is dynaﬁicailyﬁallocatedE(i.e;,_tﬁe_
_}rg is a pointer to it»stored in’a'physiCai»éagE)‘then wevmﬁst.
:tépéét the-ﬁrocedufe.descfibedvin ffigurexl;b-in order'tq up-
date}the'poihtérvpééé._This feéur§iveﬁess'ends when we find a
séaﬁiééliy‘véiiqﬁatéd;pageﬂ.,Then,wé‘”qut ué§'_theapfocedure

‘described in figure 1l,a.

_Let_u54now‘réview thé“:condeptJéfgiptéhtiods”listﬂiﬁt:q;
3ducedvin“1 ,_-Aﬁ inteﬁtions lis£ is,afiist;;df7dcfi§ﬁs;which
must be executed in order 'to'iﬁstéli.inté the ~database all
‘updates of a gi§en transaction;:This 1i$t,must be stored.in
féf#bie stbfage with'tﬁé éfrbng}atomic proﬁéfty. The inten-
_tions liét nust be-idémpotent,. i.e., ‘a single and complete
exegutiqnvof - the list is equiValent‘(pfoducesbthe same re-
sult) to‘the concatenaﬁed*execution of partial lists féllowed
byr the ‘exécgtion of a compléte list,. For~.instance if
L=A1,A2,A3,A4 is. ‘an intentionsvliét, then Al,A2,A3,A4 is e~
‘ . .

quivalent to. Al,A2,A1,A2,A3,AL,A2,A3,A4.

In order for an intentions 1list to be idempotent, it is
ieient that each action of the 1list be of the form: write

the value v into address a.

llote that once the DBMS succeeded in writing the inten-
tions list in stable storage it is always possible to recoVer
from a system failure. If the failure occurs while the inten-

tions list is being executed, the recovery procedure consists

Menasce and Landes C : ' ." 8

simply in restarting the execution of the intentions list

from the begining.

Ina distfibﬁtéd databaée environment;_a7tnéﬁsactionemay
uﬂdate data stored'at several eites. Therefore,. thereumuet be
1an lntentlonsvllst at each of the . paft1c1pat1no 51tes. In or-
;der.to-lmplement atomlc,etransactlons;«an“xntentlcne»1;5t>céﬂ
only eearf “to be- exebuted at ‘a glven siteuif 'allfthessites
Qhave already wrltten thelrbflntentlons Iists;in“eteblegstera—i
e yLampson, and turgls presented ..ng[l];theiﬂfretoeolfthat »
’must be followed by all the 51tes 1nvolved iﬁ.thé‘tr?ﬁSQCtiéﬁ-
-in ‘order. toesynchronlze the executlon ief~the‘iinfenffoﬁe'
1isfs,>fhi$ proteCOi'has,also been descrlbed by Cray LZ] and’

;called'two—phaéeeeommit-protocol. ‘This protocol aSSumes that

one of the sites involved_ acts .as a‘coordinater; We assume -
here that the 51te of origin of the transaction is responsi-
ble for coordlqatlng the execution of distributed transac-

tion.

&

3. Internal Structure of a DDBMS

A"database menagementesystem>may'be conceptually divided -
into three ‘components:

a, high“level‘component - respon31ble for: creatlng and
malintaining the user's views.

b, low ' level component = implements the logical to
‘physical mapping, . ' : '

Menasce and Londe$ o '-c . f .9

c. storage component . - responsible for the . mapping of
physical records into secondary storage and for the
transfer of information from/into maln .memory.

vThis‘paper ﬁescribes c storage'componco: (SC)ufor a oio—-
tribnted-database- ‘manag enent system.‘Th;s 'scoragc component.
,isirobuSt wich‘respect to-transactlon failurcs, system'féiiu—
’res'and‘secondar§c °toraoe fallures. Fof thc"éavefof's}mnii?
city,‘we_oill-cée the term DBMS to refer to the database ma-

magement .system except the storage component.

vThcslnterface Becwcen ‘the’ storaoe conponent and che DBNS'c
consists of a 'set .of fuoctlono.or operatnons 1np1emented by.
the SC. ;The'DB ‘users . submlt transactlons. to.the' DBNS. The
DBHS then translates the user conmands lnto 1nterna1 commands"
whlch 1nc1ude the functions 1np1emented by‘the storage‘compo—
neot.”These-funCtions‘will be described in.section.é;S‘an&_a
complete example"of“‘a transaction‘ and its .correspondingv

translation appears .in section 4.4,

‘The storage component assumes that the DBMS is in charge
of the following tasks:

a, implement the concurrency control ' mechanism. Exam~--
* ples of such mechanisms can be found in [8,9 and
10l. It is important to note that the DBMNS nust con-
“trol concurrency at the level of the user ' view of
the database (logical level) as well as at the level

of logical pages, In other words, transactions must
hold any - modified logical pages until end of tran-
saction, which " occurs when the intentions 1list of

the transaction is created (see section 4.2). '

b. handle deadlocks, Deadlock detection algorlthms for
distributed databases appear in [11]. :

Menasce and Landes S o 10

c. detect any kind of failure and take the appropriate
.actions to restore the integrity of the DB, These
‘actions may include callq to the functions .provided

.. by the scC. " .

d. maintain an audit trail,

e, recover the DB from the .dump and the aud it trall in
~case of secondary storage failures, :

-f.-translate ‘a sequence of user comnands 1nto a sequen-
‘ce ‘of .commands which lnclude calls to the functions
prov1ded by the SC ’

'fg.‘coordlnate the dlstrlbuted executlon of a transac-
- “tion, ‘ . , o

lh;mlmplement the dumplng pollcy.
1.'1mp1ement Lampson & Sturgls protocol ‘to coordinate
“the eXecution of a distributed transaction. The sto- .

rage component provides some functions which are ne-
- cessary for the 1mp1enentat10n of. thls protocol

4, The Storage Component

4,1 Basic Structure

 The*basic ,strﬁcture_of £heldatéba§ev considered‘here is
simiiar to the. one peroséd by Lorie in‘[B]_ buﬁ.it exhibits
some iﬁportant differences. The‘détabaée“is divided intq seg -
 ments.anch segment . 1is a linear address spaée of vafiable si-

ze., Segments.are divided into fixed size logical pages. Logi~

cal pages are stored in physical pages in secondary storage.

There may be K segments in each node, A logical vage

will be referenced by its sequence number within a given seg-

ment Sk, e.z. age i where i=1,...,Mk and Mk is the maximum
> .y Page 1 3000y ’

Menasce and Landes 11

number of pages that may exist in segment Sk. Two consecutive
logical pages of the sanme segnent- - may be mavned into two non

consecutive physical pages in secondary storage.

For each segmeﬁt,_tﬁere is a ‘page table, vhich is a se-
quence qf‘physicalﬂpggé édareéées. ihe i- th element of a paoe
table‘indicatés the address of‘ the phys:cal page: whlch is u=
sed to store the- loplcal page in question. Each ‘page. table is
implemented using- physlcal paoes (all phy51ca1 pages are e-=

qﬂiValent)'called;polnter.pages.;FiguteﬂZ”illustfateS”the ba~-:

sic structure of the database..

A page’ table may occupy more than one physical page.
Therefore, a segment is composed of one.or nore pointer pages
and several data pages. The pointér'pages,of each segment are

numbered sequentially from‘one up.

In order to get access to the pointer pages which form a

segment, the storare cor-onent maintains. a segment table,

There is an entry in the segment table for each segmeht of
the lbcalfportion_ of the database. Each entry .of this table
contains a list of all - the éddrésses of the physical pages
whichistore -the_pointer ?ages which form the page }table of
the. segment in questlon. iote ‘that the i—th‘entfy 6f this ta-
ble corresnonds to segment i, Tﬁe j=th éddress of each eﬁtry
corresfonds-to the j-th pointer page 6f‘the segment. The seg
ment table is also impleméntéd-usingvphysiéél pages which;iin.

this case, are called segment pages.

‘Menasc®e and Landes. ' ‘ co o) 12

L
= - »o' L .‘ ‘e
. 1 ' EI : .
! . : ;
R : . L} P SRR T : : X . .
PkGE ONE vbvu o h't .,,:‘ . e . — ;_?“. o
: T . T .
: —J —)
Lo seeMeNt T —
: o bAGE. N S
o ‘Pdiw‘rsn'-‘l
L PAGE
. DATA {
' PAGE
/’. [}
[N »
[]

Figure 2 - Basic Structure of the Database

Finaily there is a page in the sjsteﬁ }whiéh coﬁtains a
1i§t oi‘ all the segment pages;,in sequential order,; -of. the
local fortion‘of ‘the database, This pagébis called,gigé‘ggg
since it 1is étatically ailocafed “to physiéal,page_.one,'All

the other pages in the system are dynamically allocated. .

Segment pages, ' pointer pages and the page one will be

called access pages as opposed to data péges which store the

contents of the database,

Menascé :and Landes. 13

In order to access logical page i of segment Sk, the .
storage compohent must execute the following steps:

1. Find the segment page which contains the entry cor-

responding to 'segment Sk. This page is pointed by

. the j-th entry 1in page one where j is given by the

expression
_(k 1)/R] + 1 s
where R is the number of entrles per segment pa?e.

2.'F1nd the p01nter page - wh1ch contalns the p01nter tof:
* logical page i. This pointer page is pointed by the.

‘n~th address in entry number (k mod R + 1) of the:
. ‘segment page found in the step above, Where n 1s g1~
Cven by ‘the expression :
no= |(i-1)/n} + 1
where N is the number of data pages polnted by each
- pointer page.
3. F;nally, the entry in the p01nLer page’. whlch p01nts
to ‘the deSLred data page 1s the ong ;;nunbered
(i mod N # 1) '

The storage -component prOpoSedb here, uses -a nechanlsm
sxmllar to -that presented in [3] v1th respect to creation and
Hmodifications of data pages. The new versions of modified
physical pages, as vell ‘as the first version of a new page,
are built in free pages. In order to find these free pages
the storage component maintains a bit array, in secondary
storage,* called MAP., The i-th entry of this array .is one if
the i-~th physical page of the systenm is‘occupiéd and zero:ot~

herwvise,’

Somé-comments about the_‘buffers uéed b& the component
are in érder. All buffers are of ‘the saﬁé size. FEach buffer
has associated with it the following inf§rm5tioﬁ:

é..address ih secondary storage of the physical page

into. which the contents of the buffer is to be
transferred, ’ '

Menasce and Landes o T : 14

b. identification of the transaction which is using the
buffer (only in the case of updates of data Pages).

C. modlflcatlon bit which 1nd1cates ‘1f the buffer must
be.‘transFerred to secondary storage .before 1t “is
reused

d. . lock counter: when a physicali page if transferred
‘into.a ‘buffer the transactlon which ~originated the.
transfer locks the buffer. The buffer remains locked
while the ~transaction is using it. 'In other words,
the buffer management system - cannot free a locked-

- buffer. Notige that several transactions may be u-
sing the same buffer concurrently. As 'a result of
this, the locklng nechanlsm is- 1mp1emented .as fol='

Clows, ' - : .
: To ' lock the'vaffer,uthe ‘transaction increments:

- the lock counter, associated with the buffer, by o-

“me. In order to free 'a buffer, the transaction must
decrement the lock counter by one. In this way, the.

“buffer management system - will only reuse buffers
‘which are. 'not being used by any transaction, i.e.,
those with lock counter equal to: zero. The . lock
counter-is automatically ‘incremented by the storage
~component when it delivers. a buffer to the transac~
tion, The transaction must explicitly decrement the
lock counter through a function provided by the sto-
rage component (see section 4,3),.

The SC maintains a per tranéactibn 1ist of buffers which
.COntaiﬁ data pages. Therefore, when a transactlon is nborted
all buffers in * the 1lst for the transactlov will haveﬂthelr

"lock counters decremented by Qne,(see'function ABORTR. in sec-

tion 4.3).

In summary, the database at each site is composed of the
page one, segment pages, pointer pages, data pages and the
pages which‘store the affay MAP. All of them but the data pa-

ges are called acccess pages.

Menasce and Landes ‘ BEAPURRET R 1S

4.2 - Update Strategy

" This éection ~describes.the upaafevgtrétegy .usedvby'the
's:orage component-tobprévide resilient ﬁpdqte 6f'£he databa~
.ée.,Accesg'pgges'afevalway§ vnpdafed by;;ﬁtions‘of'intentibns
lists. ﬁecall}thét £héf§:is éﬁkinténfioﬁsf 1ist'associéted‘
'ﬁifh‘EVefflfransaétidg.‘The'actidﬁé' OEffhéée"iiéfs are upaé~‘
‘tes tq-aéééssipgges”only;' Aéces$'pagésfalwaysiféflect a.con~
_§is£entiétatelof:thé.dafah%sa;. $hés¢;p@ges_are.égceSSQd;cénF .
zcurrenfly'By dis£indt”£ransactions. Therefore, ailUupdatesgtor
Waééess;pagés‘shou1d beiseen‘ﬁy'a11 £tansactions vin §rder to:1
‘aQOid'aﬁ'incdnsiéteﬁcy{_Fof' instance; éénSidéf thé followiﬁg:
éituation:-traﬁsactidn Tl creates the-segment :pageiwhiéh is
_goiﬁg to=confain gn#fies-for ‘;égments l_fhru R.and:initiali*
'zes’ the’entry’_pf ségment 1, “Concurrently, transactioﬂ T2
wants‘to initialize .the entry for segment 2. This transaction
.éannot crgate-a new page, but if.must use the éamevpage al-
ready created rby‘tranaction’Tl.'-This‘problem is solved as
»féllows:‘the_storgge component maintains a copy of allvacbess
pageé'which’are being updéted. Tﬁekgbpieg éré»updated in pla-
/ce and,vfor_»eéch suchvgpdate;’the »éomponent.creates'actibnS-
in the prbpef ‘intentions list ﬁo‘update ~ the origiﬁalvaccess

pages.

When the system 'is activated, 'a copy of page one ‘is
brought into main memory as well as a copy of all pages of-
the array MAP, which are stored in an array called

CURRENT MAP,

Menasce and Landes . _: : : | 16

Figure 3‘illustrates,fhe uﬁdéte stnatggy b? means of ﬁhe
'followihg éxample; Consider an update pd 1ogicélipage i of
:segﬁent k. 'As,wé already mentioned, défa pages ~are upaated
3using fréé:pﬁysiéal-pageé-ta conétruét the new version. of the
data pagés.tThe stofage.cémponeht'muét.i;clude t&o;éctioné in(
.thé.intentiohs 1ist‘ffor everyidata Pagéfmodified by é_tfah—_Y

~saction. One to reset

4

thé 'bit;iﬂ the.arrayFMAP cérresppﬁdiné
,fO thé>physica15pégé_Whiéh fc6ntained1tﬁe;ingiﬁal‘Qeréionwa::
 thé;data 'pég; éhd 5ﬁofher tOjge£i£H§igb;f,iﬁ thé»karraf MA?
;corﬁesponding‘to fﬁe,physical:ﬁégé used'to.buildfthe pew.vef—;
”sion; In figurea3, ;his néw veréibﬁ resides in,ﬁhysical‘pége :
~d. In ofdef‘ to réfie;t this new giéuétioﬁ,' the'§oiﬁpef pége.
“which correspbnds‘to logical pége i should bé deatéd to

point to the new data:pagé;

Since the original ﬁointér page . is part of a cqnéisteht
database stafe,.\the original pointer page is copied . into a
Sfrﬁé page‘and the pointer to 16gica1 page i is updated iﬁ the
'cqpy to point to:the ne@ version of the data page, In order
FO\update-thé’originalgbointer.page,.an action must‘bé'inclu-
vded‘in. the intentions 1list ;f the.transaétiéﬁ in question.
vTﬁis action is of the form: "wriﬁe the value d inté wofd X of
phyéicél page b" whet e x is the word which contéins the poin-
ter to logical page i, Note that tﬁe ofiginal segme;t page
which poiﬁts to -the original péinter page sho#ld be updated
‘ta.pointfto thé.duplicated pqiﬁfervpage.‘At this point, the
sane proceés described above is repeated. In other words, the

original segment page is copied into a free physical page and

 Menasce and Landes

17

COPYy CF PACE

ONE " tN ALY

MEMARY

Figure 3'—-Update Strategy

| eeemewt
PRGE

CoPy OF
SECMENT
. PhGE

.

A
|

POWITER

ONGE . OF

sEeMeENT A

copy OF

POINTEA PAGE

CF SEGMENT

LAGICAL -

- PAGER L

NEW Vemsiaw
eF LoGieAat.
PARGE L '

the address of the pointer page is updated in the copy. The

address of the duplicated segment page should be updated in

page one. Since a copy of page one always resides in main me-

mory, this version of page one is updated to point to the du-

plicated segment page.

‘Menasce and Landes - B R . 18

It is important to emphasize that after an access page
~has been duplicated once, it is mnot necessary to duplicate it
”again. All vsubseqUentgmodifications can be -done directly on.

:the coples.

Uhen an ‘access’ page is- dupllcated the correspondlng th--
mln the array CUPRENT MAP is- set to 1nd1cate that the phy91ca1:

' page: ~that stores the cOpy 19 not free.»'

An t ;,;-y}ag,ta* p? ‘done through the copy of
,pagé'bnegiﬁtm&in‘ﬁémory;* Therefore, anyutraﬁsactlon.w111 al—:
Ways‘access the copies of theu access.pages 1ﬁstead of the 0=
riginal ones.,This guaranteeé that all transactions will al-

‘ways see the current database state.

_'Periodically, the ﬂuplidated éccess panes- should be’
freed. Care must be taken to preserve the database 1ntegr1ty;
Thérefore, the DEMS must‘make sﬁre that.there are. ﬁo trﬁnsac-‘
tions 1n.pro res‘ and that theté are no'intentitts lists‘peﬁ—
ding to be ex ecufed 31ﬁce 1t is through.the executlon of 1n-‘.

'tentlonsallst tnat the updates are reflected 1nt0’the;otig1-

nal access pares. Let us'define;a reorganization:péint‘asvthé
 point in time when thé,abéﬁe cdnditidnstﬁfeftrue ahduwﬁen'thé
DBMS_requestsbthat:the‘ component frees allzduPlitated access
.pages.bThérefore, duplicated ‘access pages-exist between"two-
reorganization pointé. So, whéﬁ an access page is to-be updaé
ted, the component _checké whether the. page _has'already been-

duplicated since thé last reorganization point. In the affir-

Menasce and Landes = - | | | 19

matiVe'Case the component updates the duplicated page, other-

wise the component duplicates the pape before updating it.

In order to 1introduce.some other aépgcts .of :the update
fstrategy,:ifvis necessary>tQ éhow,'in ﬁorg detail, thg»inter- :
nal gtfucgureﬂéf‘é# accessJbéﬁé'(éeﬁment or-poin;erlpage), Ag:.
fiiiﬁstfated'iﬁi figure 4, bthe flrst word of'dﬁ 'aécess-pééef

 c§nta1ns-a bit, called create-blt‘"the;purpose~6ffwhich*ﬁillf'
'*be explalned 1ater, sand a p01nter. ThlS p01nter 'iéfnullﬁfof
orlglnal access paaes and dte polntq ‘to the correspondln oﬁi—
sginal page'ln the .case of;duplicated.access[pages,‘By inspec-
iing fﬁié‘Pbiﬁfer; theHh§mpoﬁeht‘is'ébie tb{détéct ﬁhéthér an

‘access page is'a copy ‘or an or: 1n11 (see ‘the . dashed llnesﬂln

flgure 3).

¢

The remaining words‘of_ an access ?agé form a list of
'pqinters to otherfaccess or d;tavpages..Each suéh'pointer is
;actua lv mplemented as-a pair (lock_pit,address); The loce-
.k;bit is :used‘to'indicaﬁe tha; “the page pointed by the;ad-_
ﬂreés part»of the'pointef‘isfbeing du§1i¢ated-lﬁy‘éome‘trén-'
fSaetioﬁf_Thié 1ocking~mechaniém is;nece$sary“to'.avoid that

two or more .concurrent . transactions.-duplicate.more than once

the ‘same -access page.

Let us now review the process of updatln? an-.access. page

P.'Let P' ‘be the access paoe which coutains a .pointer to P,
The lock bit in this pointer is set to one (if it is zero).

Page P is accessed., If it is already a copy, then the loc-

"k bit is set to zero, i.e., the page is unlocked. Otherwise,

Menasc? and Landeév : o | 20

CRENTE - BVT
v | PolnTER TO
| OPMGINAL PAGE -

POINTER A

CPOINTEPY 2

.

POINTER L

e
.

POINTERY, M

LOCK

. ‘ PDODMESS L
VT L L '

3
5

Figure &4 - Internal Structure os an Access Page

the page is duplicated, the,pointef to P in P! is updatéd_and

page P .is unlocked (lock_pit set to zero).

Let us now éxamine'the uée of the create bit, Whenever. a
segment or pointgr ﬁage is created,b a free paéeAis found, i-
~nitialized with zeroes, and an ac£ionvis_ihc1uded in the iﬁ—
tenfioﬁs list to wupdate the pointer in the o;iginél p;ge fo

‘point to the néwly.created page. Another ‘action is included

'Ménaséévand.Laﬁdes e . : 2

in the intéﬁtions 1ist to.set.thé.Bit in the ‘afray\MAP cor- ‘
pesﬁondingfto‘fhe physical'page}used.toustore the,écéess pége
béingxcreéted.fBesideé,. the\pdge is duplicaﬁed.a$ if i; al-"
réady éxisﬁe&; The copy is ma@é: to.pqintvﬁo the ofiginal and
:thé ¢féa£e;b£tvqf‘thé‘copy is set ﬁo‘oﬁévfoﬁindicétéiphat‘fﬁé_
upagé'is being»creéfed;1Tﬁé create;ﬁit:of bfiginéi;éécéss}pa-

- ges is meaningless.,

¢ U » . o
}Whén/a@tﬁansactipn T éccesées ;a éégmént«bf!pointefjpagc‘
whichdis”ﬁeiﬁg.créated by -transéctioﬁ T’,}£hé»storagé_cbﬁpo—,
"ﬁéﬁtﬁmﬁét iﬁ?;ude.in tﬁe' inteﬁtions¢lis£ offtransactionfTuap
aetion Wﬁich u§dates 1the'ﬁointérft6'the .fagejﬁéiﬁgtér;aféd{'
xThis~pr§cedure enéhrés thatweven’ifl?ﬁaﬁsactiﬁn_ T'fis abor->
:téd;.all‘Hothef trénsadtions which used the access lpage are
not afﬁected; Whenever any qfvthese"transaCtiqné completeé
sUccéssfully, the database.will reflect thé cféatidn of the

new .page.,

" .The storage component must .also include in' the.inten-
“tions 1list of every ‘transaction which 'uses an access page-
s - : '

that is being created, an action to reset the create bit,

-Iﬁ order ‘to ffee:the duplicatéd accesé‘pagES at a reor-—
vganizatién‘Pdinfa the DBMS m#sf»reduest that " the cémpénent
exécutes-thei function RESTART »(seevéection 4,3), This.fun;
ction brings”the origipélxﬁage one:froﬁ-secdndary sforage‘ihé
to méin memory., In this way, the-access to all tﬁe.duplica;ed
pages ‘is lost. The function«RESTART‘also:copies the array MAP

stored -in secondary storage into . the érray CURRENT_MAD in

Menasce and Landes e ‘ 22

main memory in order to free the physical paﬁes-whichvstcre
the»duplicated»pages. Notice that the‘erray'MAP.never reflec—

f_ted»the.existencegof;thesevpages.

fRecovefy:from_systemuaneatransactiOn'failureswis:straig—
~htforward given the- update ﬂstrategyfdeeenibed“in rthielsecf
tich;'Fcf'uihetance, when al-system-failﬁre‘occurs, -the*DEﬁéi
frequests that the component executes the functlon RE. TART Ine
'Fthls case, all the transactlons whlch were Ln'provress at ‘the

vtlme “of the fallure ‘must ‘be executed ayaln. If a- transactlcn\
ttfallure occurs, it‘is‘ sufflclent to ‘delete ﬂthe‘transactioﬁ
-ldentlflcatlon frem the table ‘of.acttvef treteaCticﬁéeeihcet
its_intentions‘list has;nct yet‘been\written into etable ste—t
”rage.‘It“is importent tcvtecall that a transaction only.upda;t

tes the database when its intentions list is executed.

In summa:y, “the pages which store the array WMAP, all .
‘segment pages, pointer pages and page one are only updated by
;actions of intentions 1ist; All copies'of these pages-ate up- -

dated in place 2t transactlon executlon tlme.

TR

4,3 ~ Functions “Provided by the Storage Component

-The high level and low level componeﬁte of*the‘DBMS must.
translate‘a-transaction into a sequence_of acticne‘which can. .
‘be execeted directly by the storage comﬁonent.:This section‘
describes the ‘functions whichiare.prdvided to the upper‘1ee

vels by the storage component. In the following description,

‘Menasecs and Landes. : B - . 23

TID is the identification of the transaction which originated

‘the eall,

-Segﬁentgkelated;Functidns:

K CREATESEG(TID SEG#) the storage coﬁponent eﬁeetee“an
.n_entry for se?ment number SEG# in the segment table. AllV
'}p01nters to p01nter pages of thls segment are lﬁ t ali- |
_zed as null. ThlS functxon creates two 'actlons 1ﬁ thei
:intentions#litt'ydf}transaetion*TID; One'ftolupdate“tﬁe}:
‘epdiﬁtef in'ﬁaoegﬁoheﬁtolthe;neﬁly created segment .page
.and the . otner tosset: the b1t din array MAP correspondlnge

to the Dhy31ca1 page used Sto . store the new seg ment pa-

;‘DSLETES TID SEGﬁ) an eetion is creeted.in'the ieten-'
tions-list,of the transactioﬁ to delete 'froﬁ the‘seg—.
nmeﬁtﬁtrsle,' the entry corresponding to segﬁent SEGH#.
~A,l-the poin ter paves and :datavpages of this segment
eneftteed, This is accompli hed by creatlnv'actionsfin
the‘inteﬁtions ‘list to reset the approprlate >bit51ef

,thé array HAP.

sMenasceuandlLandes g : , ‘ _ 24

;Eege-nelated.Functions:,

."RE\AD’PAGE(T~I}I‘),SEG#‘,PAGE'1I‘,BUI’FADDR): ‘the 'physical page
‘whichecorresponds:to“logicai_pqge,PAGE#'of seement SEG#ﬁ

’if~transferred *from\Secondary sStorage\into a buffer.._

The- address of. this buffer: is returned in’ BUTFADDR. The_'

'fLock countersof the buffer ‘is also rncrementedibygtbe

storage conponent.

'.,CRFATEPAGE(TID SEG% PAGFﬂ BUFFADDR),.tneﬁstoregeucom§o~'r>
:nent flnds a free phy51cal page and assoc1ates 1ts ad-ne
adressvto‘av buffer. The modlrlcatlon blt of. the buffer'
is setttotone, 1ts 1ock counter is 1ncremented and lts
address ‘is returned in BUTTADDR. BefOre the buffer 1s_
reused, 1'3 contents w111 be transferred into. secondary

storage. The approprlate word -in the approprlate p01n-

vter»pegewof' segment SEGH is made to point to the phy31— L

vcalspage;~ust_ found, as ‘a result:of :an action created-

in “the intentions list of the transaction. An:action is
5 . . . : .

_also created in the intentions list to set :the bit in

:the array “HAP corresponding to the physical page used

to store the new logical page.

.fDELETEPAGE(TID,SEGH;PAGE&): the ‘logical page PAGE# is
deleted from segment SEG&. An vactlon is created in the
intentions list to nulllfy the pointer to the data page
in the appropriate pointer nage. The physlcal page as-

sociated with the logical page. is freed, This is accom-

ﬁMenascE and‘Landes : T '-1 ‘ © 25

plished by creating an action in the intentions list to
reset the bit in the array HAP_cbrresponding to the da-

ta page.

b'i’UPDATEPAGE(TID,SEG*,PAGE#;BUfFADDR;: the logical page
"PACEﬁ-of segment SEGQ isvtransferred to a buffer. A,n
.free phy51ca1 page is found. and its address rs assoc1a5g
Hted with the_buffer. The modlflcatlon bit of the buffer -
.‘ie set to one. Therefore, before thei buffer is reused"
[1ts contents are rransferred to the free phy31ca1 page'
assnc1ated Ulth :thls buffer. The sC . creates an action
in-the_intentions llst- tofupdate the anproprlete poin-.
ter pégé of the ‘segment SEGH# to point to the new»vef-
sion of the data page. . Actions are alse creared in the
intentions list to reset the bit in.the'arrey MAP cor;
responding to the eld version of the data page and to

set the bit corresponding to the new one.

Whenever a data page buffer is delivered by the SC to
the DBMS as in the functions RFEADPAGE,CREATEPAGCE and
UPDATEPAGE, the SC includes the buffer in the list of data

page buffers associated with the transaction.

Buffer Related TFunction:

« DECRBUTF(BUFFADDR): the lock counter of the buffer at
address BUFFADDR. is decremented by one, and the buffer
is deleted from the list of data page buffers associa-

ted with the transaction.

Menasce and Landes . v S 26

Transaction Related Functions:’

Since a transaction must be considered as an atomic ope-.
.ration, “the actions . of a transactlon are delimited by a.

‘BEGINTP and by an ENDTR comnand

j. BEGINTR(TID) thevSC 'creates an entry in the table of
;actlve transactlons for transactlon TID The 1ntent:onsv‘

115t of the transactlon 1s 1n1t1allzed as empty.v‘

. ENDTR(TI#S: eﬁe ,iﬁtentieﬁs.lieﬁ.of ihe.'tfansection is
'created éﬁd written into stable etorege.'wheﬁ this‘liéﬁb
is execﬁted~ja11‘updafes'_generatedfby‘.the transaetion
'w111 be reflected into the database. The llst w111 be
ekecute” ‘upon demand of the DBNS through the use- of the'
fuﬁction EXCCUTELST to be descrﬂbed shortly. As’ mentlo-
nede-before, the DBJS implements Lampson and Sturgis
pfptdeoi‘tO‘synchronize the execution_of the intentions
‘list emong_all the.éartieipent'sites;‘ |

L3

" Intentions List Related Functions:

Intentions list constitute the basic mechanism to imple-
ment atomic transactions. Actions of an intentions list in-
clude updates to segment tables, page tables, the page one

and the. array MAP,

When segment and page related functions are executed,

actions of intentions lists are generated. As mentioned al-

 Menasc@é and Landes o o o | ' 27

ready the functions CREATESEC and DELETESEC generate actions
to update“'segﬁent tables and the-'array'MAP. The functions
‘CREATEPACE,'DELETEPAGE'and‘UPDATEPACEvgenerate actions to up-

‘date page tables and the array 1MAD. i

Conslstency of the database is Dreserved bv the DBMS and'
“the ‘SC by follonlng the. rules below°

 Ru1e 1:- the pBiS does not allow 'éoncdrrent updates to
loglcal Dages. L :

”Rule'Z:fzall resburces_iocked by' a transactlon (1nc1u—
ding‘logical pages) are held until its intentions list
is written in stable storage at all: nodes 1nvolved in:
the transaction. L : S
‘Rule 3:.at each site, 'intentionsulists are executed in

- the order they were created. Notice that this restric-
tion does not imply that transactions must be executed
serially. As soon as an intentions. list for transaction
T is written in stable storage, its resources may be
released and used by . other transactions before the in-
tentions list of T is executed. ’

‘As a result, when transaction T2 uses a logical page

~previously modified by a transaction Tl, the qvqten puaran—‘

tees that the *ntent:ons lzqt of Tl w111 be executed, at e-

very node, before the one of T2.
E

Mote that if Rule 1 were not enforced the SC would have
to implement a concurrency control mechanism at the level of
actions of intentions list, therefore increasing the comple~

' xity of the 8C,

The level of concurrency can be increased by decreasing
the size of logical pages at the expense of increasing the
number of access pages, This is the classical space-time tra-

deoff,

‘Menasceé and Landes = - T - 28

Since the DBHMS implements the concurrency. control mecha-
nism, it is also responsible for requesting that the SC exe-
cutes intentions list in the proper order. The storage compo-

nent provides functions to maninulate intentions lists.

Beforé_an inténtioﬁsflist'is created,_the stbragevgdmﬁo—-
_neﬁt’ﬁﬁst make sufe that alinbufferéf‘which‘éon;éin!modifiéa B
Tdata pagés,asgociatedeith the.trans##tioﬁ have é1feaay:5een:'
‘writténvintq éecoﬁdary:stéragé.”These buffe;§:”can‘bg eésily
 r¢¢ogni2ed dué'touthevidé#tification‘of the tfaﬁséétion a550f
ciaﬁéd-to éacﬁ data page_bﬁffef,(seé sééfioﬁ}&.}). This15£rae

tegy pfo§ides.resilienéy to system faiiures; Therefofé;'affef
an,intentions liét for a‘given't;ansactiqn' has been writtenu
into.établé ‘storage.at all participant sites, it‘.ié alﬁaysi

possible to recover from any type of crash.

. EXECUTELST(TID): .the SC executes the intentioﬁs 1ist of

‘the transaction TID. After the execution, the list is

destroyed .and all the ~physical pages which store the

list are freed. If a failure occurs during the”execd-‘
. . o _

_tion of the intentions list, bthe DBMSimust request the

~reexecution of the list.

« DELETELST(TID): if ‘any of fhe participating si#es is
'.nét able to write its intentions list, the DBﬁS coordi-
natérv must requeétv that all intentions list already
written be deleted. This is accomplished ‘by this fun-

’

ction.

Menasce and Landes o | . 29

Transaction Failure Related Function:

 .'ABORTR(TID):;thé. §C‘de1etes'the entfy}'ésédéiatéd with
theftranséCtion'ffom_the' tablejof%active-tranéactionsl
ALl physiééivpagés_vallécétéd:tomathé_fransacfi¢n @re ’
freed. The list '6f buffers of dafai{pagészasébciated i
"witﬁ}ﬁhe;tfénéaction is:tréver§¢d and alL 1¢gk&§ounters
© of these buffers are de‘(‘:f-‘émvvejntj_e_d by ome. ALl buffers
.Whicﬂtébﬁfainféﬁpéés fdgéé ﬁééd tofob£ain é gi%en»dété,,
fpagezare;iocked and‘ﬁnicéked"internaily go the SC fun-
ctibnsfkTﬁefeforé, when,an"ABOﬁTR'fﬁnction ié'béiﬁg e~
’.bxecutéd‘on béﬂalf Qf transaction T, only data pageé ;s—_:

'sociated with T may be in buffers locked b? T,

System Failure ‘Related Function:

. RESTART(): the array MAP is copied into the array

CURRENT_ﬁAP,_in order fér it to represent the last sta-
te‘of.integfity which existed before the failure. Page
one must be erught into>ﬁrimary memnory. Befﬁfe any da-
tabase activity. can be restarted, all the intentions
list already ﬁriften musf ‘be execufed. The DRME must
:fequestb that this‘,bé doné, by invoking the functién
EXECUTELST. After all pending intentions lists are exe-.
cuted, the DBMS must request thét the function RESTART

.be executed arain, so that the last versions of the ar-

ray MA? and of page one le brought into main memory.

‘Menasce and Landes ‘ R ' 30

Secoudary Storage Failure Related Functions: -

. START DUMP(): the involation of this function starts a
~dynamic dump process. The - algorithm used here is the

initial version method proposed by Rosenkrantz'in-[lﬂ”;'

;vRﬁLbADB(PAGELIS?)t “the étorage:qomponent receivé§;>a
list o'f;m’g"i‘c;l pagés,"-pAcELIST, v.zh‘ich have to Be"frje._
'l&éded”ﬁfom'ﬁﬁe vduméliﬁto the détabésé, ”It'is aésuﬁ¢d
;fhat'the.DBﬂs implemehtsvtﬁe $é1e§ti§eIreloéd.élgorithé'

‘proposed by Menasce in-[lﬂ .

Menasce and Landes " : o S ‘ , 31

4.4 - Lxample

Consider the followine transaction in-a bankingy system
database:

"TRANSFER $100,00 FROM ACCT A INTO ACCT B"

- 'The DBME vould translate this transaction, using SC fun-

ctions, as'indicated”below:

:'PECIUTP(TID)

'(assume that ACCT A is stored in pape i of segment K}
 UPDATEPACE(TID,K,i,el) R S

"if ACCT A is valldb
then becin. =

~balance (A) :='ba1ance(A) - 100

1f balance (A) 0

Then AJUPTQ(TID) ("neoatlv9 balance)
else ucaln

(assume that ACCT B is stored in pape i of"
gegment L) '

UPDATEPAGE (TID,L,j,e2)

if ACCT B is valid :

n balance(B) := balance(B‘ + 100

Lke

"else ARORTR(TID) ("ACCT B is Jnvall ")
DECR BUFP(eZ)

end

*l

P
2oena

—

‘else ABORTR(TID). ("ACCT A is 1nva11d")

 DECRBUFT (el)
ENDTR(TID)

Menasce and Landes , o v'” , » _ 32

5. Performance Analysis Results

 The average.number of: accesses to %econdary storage'pef
SC‘funcﬁion-as well as the rétio_betweeh‘the number of daéa
pages. and ‘access-ﬁages appear .in‘[ﬁ}.>>UQ to space limita-
tions we will onlyvsuﬁﬁarizé s@me of the:resulté in this.sec~

tion.

Table 1 shows the average number of = accesses to secon=
- défy,storage per functibn for’thévstorégefcompdnent‘propﬁsédvﬁ
héfe and for‘a storaée: component which‘ié ﬁot _resilient‘fob

failures.

Let,

pl = probability - that a data page is rodified more .
than once by the same transaction. ‘

p2 = probability that a segment page has already
been created. It is assumed that most of the data of
the database has been entered. Therefore, this pro-
bability is fairly hish (=.8).
NFP = maximum nunber of pointer pages per segment.
C = number of physical pages which store the array
5 . o :
AVGHMAD = average number of access pages modified by
a transaction.

By inspection ' of Table 1, it can be seen that most of
the overhead in terms of extra accesses to secondary storage
lies in the execution of the function EXECUTELST. This is

roughly the price that must be paid for a robust storare com-—

ponent,

“Menasce and Landes : ' : _ o 33

1 sc propostn | won-crasi |

| HEPE (- FESILIENT SC .

| T U N CTIoN | AVLRACE NUiRRR oF ACCRESES |
) CREATESRC (p2-.8) | L.z 1 1.0 |
T otipmmsee | 2 s wpes2 | 2 e weriz v ol
v FE T T
1 mEADPACE | plE.5 1.5 | . 2.0 |
R N Y T O
v e a0 T 38|
[UPDATEPAGE | p1=.5 | 3.5 | 3.0 |

| Vpl=s 1 23 1
1 emmaterace 4 13
R T A S
P
U Tmemar 0 eed T
| mxmcutrnst | assesvomar | -

R e . st S (T e WS e e G0t et W S Gk G SD et B e G B SV A S Bt B G e S S S St e S Gt P Wl S e P S e Sou T e

Table 1 - Average Number of Accesses to
Secondary Storage

The ratio, RDA, between the number of data pages and the
number of access pages at a reorganization point is given by
the following expression,

RDA (m= Y'TTI’P)/(”’-H’“ PP+ (I-—l)/T’)

I = number of pointers to data pares in a pointer page
K = number of segments of the 'database

R = number of pointers to pointer pages per segment page

Menasce and Landes ' T a 34

Let.us,eﬁamine avﬁumeric exémple to illustrate a tybicél
value ‘for RDA; Lé# N;iOZﬂ, NPP=10, Therefére ﬁé 1023/L0 =102.
The corresponding valﬁe'of PDA ‘i§'1021.§ ﬁhicﬁ‘ié gpproxiﬁ54
 té1y équal‘to ﬁ, This iS ,eqUi;alent*tb_sayin?_thaﬁ, for eécﬁ
'accesnga#e_ in £he.$§$tem; tﬁéfev érejN%dataapaﬁeé.'ilﬂ thi§fT
exanmple, thg overhead is.of'»tﬁe‘ordef'pfud.lﬂ.~ Motice that
the vﬁrst;case-ha?ﬁen§ whéﬁ'-all:éccess paées éré:dﬁpiigafed;

In this chse:thefbverhead wii1fbe 0.27.

6. Conclusions

‘The stqragé>COﬁnonént is the portion df the.DBHSvrespoﬁ—
.siblevfor‘mapﬁino_pﬁysical‘reéoras iﬁto'sednndafy'sforage and
for the trénsfer-of 'infofmatioﬁ‘between primary "nemory aﬁd
secoﬁdary‘storage; This paper vpreéented an ihformal'but'cbm—
Pleté iesiﬁn of .a storage coﬁnonent for a distribﬁtgd‘databa—.
sévmanagementa syétén which‘is‘robust' to_syétem. ﬁransacgion
‘and.secondary' storage failures.'The ﬁpdate ‘stratégy used in
the design cf the :coﬁponent inﬁegrates somefa1ready existing
techniqués with some new ideas. The basic'étrategy conéistSVa
in maintaining at any.inétanf a‘consi9t¢nt state of the.dataQ
base. This‘cdnsistent. state is nodified only as a result of
the exééution of an intentions 1ist.’A cﬁrfent state of the

DB also exists and 1is updated at transaction execution time.

The level of description presented here leads very ea-

sily to an implementation of the storage component.

Menascé and Landes 35
The results of an "~ analysis of ‘the performance of
storage conponent iudicete that tie rice td be paid to a-

chieve a robust behavior is roughlv provortional to the numn-

ber of access pages updated by a transaetﬂon.

REFERENCES

.vl

[1) LAMPSON, B. and STURCIS, H.E., "Crash Recovery in

the‘

Distributed Data Storage Systen” ferox Palo

. Alto Research Center, Palo Alto, Califorrs
vUSA, 1976 (to appear in the CACHM) . ST

/ H
‘[2] CRAY J. L., "Notes ~on Data Base Operstlng System
. Chapter 3.F., of the book "Operating Systems
Advanced Course" 'Sprlnqer-Verlag, 1978,

g"
An

’[3] LORIE, R,A., "Physiéal Integrity 1in a Large Qegmented

Database",ACH Transactlons on, Patabase Svstens,-

Vol 2, Mo 1, "arch 1977.

{4} rEutER, A
: Logging in Database Systems", Procecedings

. "Winihizing the I/O - Operations for Undo-

of

the Fifth International Conference ' on Very
Large Data Bases, Rio de Janeiro, Brazil,

October 3-5, 1979, Pp. 164-172,

'[6} LANDES, 0.E,, "Recuperaczo de Falhas em Bancos de Dados
de
in

Distribuidos: Espec1f1cacao de um Componente
Armazenamento Confiavel ("Crash Recovery
Distributed = Databases: Specification of

Reliable Storage Conponent"™), Master Thesis, -
de’

Computer Science Department, PUC/RJ, Rio
Janeiro, Brazil, January 1980, o

J.8.M., "Recovery Techniques for Database
tems”, Computer Surveys, Vol 10, No 2, June
. . _ .

[ﬂ ESWARAN, K;P., GRAY, J.N., LORIE, R.A, and TPAIGEP,I;L.,
"The Notions of Consis tencv and Predicate Locks
in a Database Systen", Comunications of ACH,

Vol 19, No 11, MNovember 1976,

Menasce and Landes 36

B] MENASCE, D.,A. et al., "A Locking Protocol for Resource
: Coordination ~ in ~ Distributed = Databases,
Proceedings of the 1978 ACM/SIGMOD Conference,
Austin, Texas, ”ay 31 = June 2, 1978 (to appear

in the ACM TODQ) :

‘[9] BE“NSTEID P. et al., "The Concurrency'Control Mechanism
: of SDD-1: a System for Distributed Databases"

(the general case), Tech, Rep CCA-77-09,
‘Comnuter Corporatlon of Anerlca, Iase.,December
1977. '

[1@_ STONEBPAIER,»H.,'"Concurrency ~Control and . Consistency
SR of Multiple <Copies of Data in Distributed
INGRES"™, Proceedlnps; of the Third . Berkeley
Workshop on. Distributed Data ‘Management - and
Computer Yetworks, August 1970. ST

'[1’1] 'IEPASCTJ ‘D.A. and MUNTZ, R.-R., -'-'Locklng and Deadlock

Detectlon “in iletuiltuate? Natabases" IEEE
- Transactions: on Software Englneerlng May,1979,
PP, 195-201. ' :
[12] vosrm\pAnTz D.J., "Dynamic . Database Dumping",

‘ Proceedlnﬂs of the 1973 ACM/SIGMOD Conference,
Austin, Texas, May 31- ~June 2, 1978, pp. 3-38.

[13] MENASCE, D,A,, "Selective Reloading of Very Large
' Databases", Proceedings of the - Third
International Comnuter . Software and
Appllcatlops Conference, Chicago,. Illinois,
Yovember 6=8, 1979, pp. 583-587. ,
{}4} GRAY, J.li. et al., "The Recovery. anager of a Ta®

zement Systen', IBW Research Laboratory
enort PJ2623(33801) San Jose,: California,
Au wu"t 15, 1976 . - ' N

