Series: Monografias em Ciencia da Computagao
‘N9 1/81

COMPARING ABSTRACT DATA TYPE SPECIFICATIONS VIA
THEIR NORMAL FORMS.

‘by
Jean Luc Reny

Paulé A.S. Veloso

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 -~ CEP-22453
RIO. DE JANEIRO - BRASIL

f?%fwagpjaﬁﬁ_

Series: Monografias em Ciencia da Computagao
Ne 1/ 81

‘Series Editor: Marco A. Casanova March, 1981

COMPARING ARSTRACT DATA TYPE SPECIFICATIONS
¥I4 THEIR NORMAL FORMS

by

Jean Luc Remy*
Paulo A.S. Veloso#®¥

* Centre de Recherche en Informatique de Nancy, Universite de
Nancy, 54037 Nancy, France.

**% Departamento de Informatica, Pontificia Universidade Catoli

ca do Ric de Janeiro, 22453 Rio de Janeiro, RJ, Brasil;

sponsored in part by the French Ministry for Foreing Affairs

and the Brazilian National Council for Scientific and

Technological Development.

ABSTRACT:

A simple technique is presented for verifying that two
abstract data type specifications are equivalent in that they
have isomorphic initial algebras. The method uses normal forms
to attemp reducing the number of equations to be checked. It
is applied to a simple example and some exitensions and related

problems are alse discussed,

Abstract data type, formal specification, rewriting system,

normal from, initial algebra, equivalence proof.

Apresenta~se uma tecnica simples para se verificar que duas
especificagges de tipos abstratos de dados sao equivaléntes no
sentidé de terem algebras iniciais isomorfas. O metodo usa for-
mas normais para tentar diminuir o nimero de equagoes a serem
‘testadas, sendo aplicado a um exemplo simples. Além disso, dis-

cutem~se algumas extensoes a problemas relacionados.

PALAVRAS CHAVES:

Tipo abstrato de dados, especificagao formal, sistema de

re~escrita, forma normal, Adlgebra inicial, prova de equivalen-

cia.

1 - Introduction

We propose some improvemen%s on a methodology to éheck
the equivalence of two glven abgtract data type unglchatlons.
The classmcal meLhcd (*ons.;m.b~ in eutabllshlnq an isomorphism
between the congruence classes of the two spec1rlcations oxr 2
equivalently, proving that all the rules of each specification
are theorems of the other. The main problem with this simple
minded approach is the high number of the theorems to be veri
fied. In order to reduce this number our method uses crlteria
iaboﬁt normal forms.

The need to compare specifications appears frequently
when dealing with abstract data types, as ongugften tries to
improve a given specification aiming at clarity, efficient im
plementations, etc. , |

The structure of the paper is as follows. First we pre
sent a 51mple example of two alledgedly equivalent spec1f1cat10ns
for the same data type. Then we prove the main result, -which is
in the sequel applied to the example and to enrichmle_:nt of it. Thereafter
Awe present some extensioné and conclude wiﬁh,séme comments on

other applications of the method and xelated_problems,

]

IS N Saite

éansider the simple'case eﬁ ;inéar lists, consisting
of two sorts éﬁg@ and List. Intuitively the elements of the
sort List are finite, possibly empty, seguences of atons. >We
shall consider,tﬁe following operations {together with an inﬁui
tive description of their intendeé meanipgs):
Null. (the empty list), Unit (which makes a list cansiéting_ SO
lely of a, out of atom a), Cons {which adds atom a in front ‘of

list £) and Append (Append (£,£') being the result of appending

2' after 4].

xWe shall present two algebraiC'specifications for this
data type. The main part of each one is a set of rewriting ru
les, which defines a‘set of normal forms and the effect of each
0peration on them. These specifications can be regarded as
'arigingifrcm different manners of constructing lists.

Oné’way of describing these lists is as-follows. First
we have the empty’ list, denoted by Null. Then we-have the liéts
of length one, dénoted by Unit {(a) for-a in Atom. Finally, we.
can obtain longer llsts by repeated applications of Agpend.s
But, this operation is intended to be associative and to have
Null is its identity.‘SO in order to have unique names for the
lists, we restrict the applications of Append. Thus we arrive

at the following set of normal forms

= {Null} v {Unit (a) / ae Atom} v

v{Append (Unit (ai},.,., Append (Unit (anwl)’

ggig(an))...)/ @yr-ner Bp€ Atom, n>1}

In other words, a normal form in F, is either Null, or Unit(al,

1
for a in Atom, or else Append (Unit(a), f), for a in Atom and

f in with £ = Null.'So,'the Operationv'symbols cccurring in the
terms of Fl are Null, Unit and Append. A specification Xl for
List (Atom) based on these normal forms appears in Fig. 1.

Formally, the normal forms involve not arbitrary a's in
Atom but their.normgl forms. However, wé'leave this implicit by
taking the same normal forms for the sort Atom in both specifi
cations.

Now, one can verify that the set R, of rules of El has

1
the properties of finite‘termination and confluence {(a Church -~
Rosser property), which ensure that each term reduces to a uni-
gue normal form [33.

Finite terminétion can be shown by -applying Musser's
criterion [11] for proving the termination of ramiting sys;ems
obtained by iterated enrichments. The main point is connepted
to the assqciativity of.Apgend;_ in;;ule (AA) the first argu
nents of Append in the righthand side (namely,.gggg (é) and x }

are sigpler than the corresponding one in the lefthand side (na

mely Append (Unit(a), x)).
Confluence can be verified by showing local confluence

on the critical pairs, according to the Knuth-Bendix criterion

{2]. In this case we have

Append (Append(Uni@(a);Nﬁli), y)

(AD)
i
Append(Unit(a),y) <-—

(AN). Append(Unlt(a), Append(Null;y)'

One can also verify that the irreducible texms of I,

are exactly those in F.. Indeed, every normal form in F ig

b 1
clearly irreducible and, by induction, every t £ Fl is shown

reducible.

On the other hand, there'is‘another way of construct -
ing lists, which giVes origin to a,différent set F2 éf unigque
names and a specification with other constructors. Namely, a
list is-denotea by either Null or elﬁévgggg(a,g)‘for'a-in Atom
and g in Fy , . So
F, = { Q.gg;s’(al,..:;, Cons(a, Null)...) /ays...ia_e Atom, n20)

where we agree that the case n=0 corresponds to Null. Now

Append and Unit become interxrnal operations.

A specification Ezafor List (Atom) corresponding- to
these normal forms is shown in Fig. 2. Notice that this set R2

of. rules has no rule between constructors.: Moreover, it is qui

te simple to check that it is finitely terminating and con
fluent.

‘* Now, a qguestion arising naturallyiis whether 21' and
22 are indeed equivalent, in that they specify the same data
type. dne~way‘to show their eéuivalence'is»by verifying that
they have the ‘same theorems. This is equivalent, as they . are
confluent and and finitely terminating, to’ establishing | ‘an
isomorphism between their 1n1t1al algebras whlch glves a
bijection between theilr normal forms. In the next sectlon : we

shall show how this idea enables us to reduce the number of

theorems to be checked.

TYpe List { Atom)}

Sorts List , Atom

gggra§§9ns with a: Atom ; X%,y : List

e i T

{ constructors }

Null

: Li st
Unit{a): List
: List

Append (x,y)}

{ internal }

Cons{a,y}) = List

Rules for each a: Atom ; X,y : List

{ between constructors }

(AN) Append(Nuli,y) Q‘y
(AU) Append(Unit(a), Null} - Unit(a)
{ARn) Append (Append (Unit(a) ,x),y)=

- Append(Unit(a),Append(x,yn

{ defining internal operation }

(c) Cons(a,y) - Append (Unit(a),y)

end of type

Fig. 1 : Specification Zl

Type List {(Atom)

Sorts List, Atom

Operations with = a: Atom ; X, ¥ : List

{ constructors }

Null : List

Cons{a,y) : gist
{ internal }

Unit(a): List

e

Append (x,y} : Eiﬁﬁ

Rules for each a : Atom ; x,y : List

{ defining internal operations }

(U} Unit{a} - Cons (a;Null)

{AN) AEEena(Null,y)“? y

(AC) Append(Cohs(a,x);y) + Cons (a, Append (x,y))

end of type

Fig. 2 : Specification ZZ

3 ~ The main result

A specification I consists of a set § of sorts, a set
O of operation (symbols} together with their profiles, and a
set R of term rewriting rules, which we assunme conflvent and

finitely terminating.
S ‘ .

Denote by T(X) (respectively T) the set of terms with
variables in X (respectively‘variablewfree terms) and by T{X)

(respectively T) the term algebra on T(X) (respectively T). On

T(X), let t.t' iff both reduce to a common t" ¢ T(X). Let the

congruence on T(X) generated by . be denoted by =, the same
symbol being used for its restriction to T. The data type
‘specified by ¥ is I(£) = T/..Call F the set of - irreducible

{

H

‘terms of T and notice that each teT reduces to a unique feF and

that for u, v ¢ T({x}), uw = v if ulf/x] = v [f/x] for all feF.

We shall be considering two specifications Zl and 5 7

both with the same sets 5 of sorts and O of operations. Let_Rj,
F,

JF
forms and the equality of Xj, for 3 = 1,2.

L
B

Ej denote, respectively, the set of rules, set of normal

Theore@;"Let Z, and I, be as above.

1

il

we have u =

l. If for each rule u » v of R = <

2 v thgn Ez 1 -

2. If, in addition, for each normal form g e Fz there exists a
normal form f ¢ F, with g ¥, f then %, and %, coincide on T.

Proof

1. Clear from the definitions of ~ and .

2. Consider ,t' in T with t 2, t' and let g, ¢'e¢ Fz be their

1
normal forms, so that t Ez'g and t' 52 g'. By asSumptiGn ;

there exist f,f' ¢ F. with g =, £ énd'g"f? £°,

1 ‘
Thus t Ezvf and t' ﬁz £', whence by 1, t 51 f and t° El £, Sd;
since t Ei t the.séme‘hmldéifor £ and £' and £ = £', as both

=t o

of them are in F,. Therefore, t =, f o= =, £' QED

The idea behind the theorem is very simply ‘described
in terms of the discussion atbﬁﬁeQSndbbf section 2: conditions
1 and 2 have the effect of guéraﬁteéing'the bijection between
normal forms coxreépoﬁéing to the iseiorphism of their initial

algebras.

The conditions 1 and 2 of the theorem are clearly ne

cessary for the equivalence of 22, thus we have a test for e
guivalence. Not only does the failure of either of these .con
ditions imply non-equivalence, but, more important, it helps

pinpointing the trouble spots and may suggest modifications of

z. dr x

1 2 in order to achieve equivalence.

4 ~ Application and a criterion

We have, in section 2, two‘specific$tions El and fE2
allegedly for the same data typé&fTheQ have the same sets of
‘sorts and of operations and‘afé finiteljhterminatihg and confluent.
80, we can apply our theorem.

12

1. We have to check that each rule of R. is a theorem of I.. The

2 1
case of (AN) is trivial and for (U} we have in I,
Cons (a,Null) L&, Append (Unit(a), Null)} (AN) Unit(a)
As for (AC}, we have in Xl

Append {(Cons {a, x),y) ()

> Append (Append (Unit(a),x),y)
“ Jea

Cons (a, Append(x,y)) — 1> Append(unit(a), Append(x,y))

>~

2. Now we have to chéck that each geF2 is R2~equa1 to some feFl.
Thé'case of Nhil is obvious, as Null eFl.
can take f = Unit (a), since in ZZ f~i§l~> g. wa, for glﬁ

= Cons(a,g’} with g' € Fz and g'# Null, éssume that we have

such that g' =, f' and take f = Append{Unit(a), £'}).

H
£reP 2

1

Then, in 22 ,
Append(Unit(a), £*) U2 RN Append (Cons({a,Null), £')

~i§9l45 Cons (a , Append{Null, f’)) ~i§§lw~w> Cons(a,f‘)
whence £ 52 Cons(a,f') 52 Cons(a,qg’).

-~

Therefore, by our theorem. we can conclude I(£1)1=,I(22)

Let us examine more carefully what was involved in

checking that for each geF with g =, £.

2

we have feFl

For g = Cons(a,Null) we

Firvst, as B, G By £ is necessarlily the Zl - reduction of g.
Second, we had to eliminate Cons from g , for it is a

Z?mcgnstrUCtor'but not a xwwaonétrucﬁbr; Finally, we can derive
from’Rl‘twc xrules describing how in Zi the internal operation

Cons transforms the normal forms. Namely

(Cl) Cons(a,Null) __ *, Unit(a) -

{C2) Cons{a,f} ——s Append(Unitla),f)
Nétice_thé£ the righﬁhand side of (¢2) is in Fl if feFl B and

f=Null and that repeated applications of (Cl) and (C2) give the

Z,-reduction of each normal form in F,. S0, all we had to do
was checking that (Cl) and (C2) are theorems of Rz.
We now state a useful criterion generalizing these

ideas. It is based on the partioning of the operations of a da
ta_type into constructors. and internal operations; according
to their occurring or not in a normal form. The extra as

sumptions are frequently easy to verify when the normal\ forms

have recdursive definitions.

Proposifion . For j =:1,2 ,letAEj be as before, Cj»theAset5'va

operations occurring in the normal forms in Fj and Ij = O nﬁCﬁ,

Assume that

a) for each'ger without operations frqm,I1 there exists fEFl“

with g =, f.

2 i;...,fks Fl,

b) for each ceC 1
we have c(fl,...,fk) Ez f with feFl~

n I, and f

1t

Then for each“geFZ there exists feFl with g Ez‘f.

Proof by'inductionwonﬂtheﬂnumber_n~of-dccurrenCes cf operations

of C?nl in geF

1 2

Case n=0 follows from assumption {a).
Case n>0, let g' be a éubterm of f of the form o(gi}ig,,gé) with

4

0eC,nI,. Then, for i = 1l,:.., k, gie-F .and by induction-‘we have

2 2
L 3 f = F 1 N :) - ¥ 2 A
fle Fy Wlth,gi =, fi,bgygw,,ﬁrom {b) we have £'eRy with
o(fi,...,fﬁ) 22 £' , whence g' 52 £* . The term §zabtaingﬁafrom.g

by replacing g' by f' to has fewer occurrences of operations of

C,nI than g, so by induction, g Hence

1
o 9 52 £. QED

52 f for same'fe*Fl.

Hi

g

12

5 ~ Extension to parametrized specifications

In order to illustrate more clearly the advantages of

this method, let us consider the data type List(Atom,Bool)

obtained by enriching List(Atom) with a Boolean sort @gg;,with

Boolean constants True and False and the ¢orditional operxation
r

1f ~ then - else, together with the (external) operation

Equals List x List - Bool (to test equality of lists) and

Same: Atom X Atom -~ gggij(chééking equality of atoms).

We can deconpose & spécification of List(Atom, Bool)

into two parts:

. a parameter specification of the sorts Atom and Bool,
including some rules for defining the operations If-then-
else and Same;

a proper part consisting of the rules‘given in section 2
together with a set of rules eﬁabling the reduction of
each term of the form Equal{t,t'} either to True or ko

False.

Consider the set of rules Ri obtained by adding to

R] the 11 rules below, where x,y: List; a,b,c: Atom

(E1) Egual (Null,Null) -+ True

(E2) Equal (Null,Unit(b))+ False

. (E3) Equal (Null,Append{Unit(b),y)) » False

(E4) Egual (Unit(a),Null) » False

(ES) Equal (Unit(a),Unit(b}) » Same {(a,b)

{E6) Egual (Unit(a),Append(Unit(b),Unit{c}))) + False

(E7) Egual_(Uﬁit(a),Append(Unit{b},A@pend{Unit(c),y)))~+ False

{E8) Egual (Append(Unit(a},x),‘§p{;) + . Palse

(£9) Egual (Append{Unit{a}, Uniﬁ{b)), Unit{c))~ False

{E10) Egual {Appen&(Unit(a), Append (Unit(b),x)), Unit(c)) » False

(E11) BEqual (Append{Unit(al,x), Append{Unit) (b}, y}} -

+~ If Same(a,b) then Egua%v{x,y) else False

It is tedious enough to write down this set of rules
based on the recursive definition of the normal forms in Fy- No-
tice, in particular, that one cannot merge (E6) and (E7) into a

single rule with lefthand side Bg

val(Unit(a), Append{Unit(b},v}).

Like~wise for (E2) and (E1l0).

We now have a specification Z; for List.
> of normal forms we would have a
specification Eé’with, set of rules Ré éonsisting of R2

with the following 4 rules defining the extetnal operation Equal

Had we used the set F

together

(ENN} Egual (Null,Null) ~ True

(ENC) Egqual (Null,Cons(b,y}) =+ False

{ECN) ‘Equal {Cons{a,x), Null)> False

(ECC) Equal (Cons(a,x), Cons{b,y)) -

+ If Samela,b) then EgQgi{x,y) else False

where a,b : Atom; %,y : List

The labor-saving fact here is this:

L0 it suffices
to check that the above 4 new_rulésvobeé‘aré theorems of Ry
order to conclude the equivalence of Zi and Eé.' | | .

Notice that this“method reduces our job of checking the

Having shown the eguivalence of I, and I

in

equivalence of'Ei and) to

(i) proving all the 3+4 rules of I, in Ij;

{1ii) proving 2 derived rules of T

Yoin Rl
1 2

The more naive and symmetrical approach would, instead of (ii},

involve

(ii’) proving all the 4+11 rules of I, in I

. 7 .
S0, we really cut down the number of theorems to be verified

from 22 to 9.

Before presenting the result Justifyving the conclusion

let us finish the verification of the equivalence of Zi and Eéu

We have to check that the 4 rules in Ré—RZ are theorems OF Ri.
For (ENN) it is trivial, and for (ENC) and (ECN) we use (C} and

(E3), respectively (E8). Finally for (ECC)we have in Ri

Equal (Cons (a,x), (Cons(b,y))

(C)l i%c)

Equal (Append (Unit) (a8), x) &QEand(Unit}(b),Y))
J(Ell)

If game(a,b) then Equal(x,y) else False

v

We shall now consider the extension of the theorem of
section 3. First, we consider a parametrized specification I as

consisting of

. a parameter specification Zp = <Sp, G&, RP}’ forming a

confluent and finitely terminating rewriting system;

. ‘@ designated sort s (sort of interest);

. a set O of operation {symbols) together with their pfofilésp

gach ©<0 having at least one argument or its result is § ;|

15

a set R of rewriting rules such that Ruﬂp is confluent and
finitely terminating, and ¥ ig consistent and sufficiently

complete (with respect o Zn) in the sense explained below.

Call FD the set of normal forms of kp and ¥ the set of
normal forms of RURF for the sorts in Spv Then R 'is consistent
5 :

{with respect to Zp} iff Fp =t Fp, and R is sufficiently complete -
4
(with respect to Xp) iff FP o F_.

%

We also recall that for a parametrized specification I
as above with parameter specification Ep, the reduct of the data
type I{I}) to the gorts in Sp and operationsg in Op is iSomorphic

to I(Ep) { see., e.g. [4]).

Now consider two parametrized specifications Ej with

the same parameter specification Xp, same sort of interest s and

»

same set O of operations, and let Fj be the set of normal forms

of Zj for the sort s, for j = 1,2.

Theorem. Let Xl and 22 be as above and assume

1. for each rule u-v of R =,V

2 HE YV

2. for each geF2 there exists feF, with g =, £.

N

jo.)

Then Zl and 22 are equivalent, i.e.

I(Zl) = T(Z,)

Proof

Similarly to the proof in section 3, conditions 1 and 2 ensure
that the restrictions of =, and 2, to the sort s coincide. For a
sort in Sp condition 1 gives 52 < El’ i.e. each 52 - class is
included in a Ei«class, However, due to the consistency and

sufficient completeness of Ej,'each Ej class intersects a unigue

16

the parameter specification, for 7 = 1,2.

coincide on parameter sorts, as well QED

Thexrefore,

17

6 - Conclusion

We have shown that two abstract data type specifications
can be be proven equivalently more‘siﬁply than by proving all the
rules of each one to be theorems of ﬁhe other. In our example we

had to verify.only 9 rules instead Of‘22.

, 7
These ideas appear to be connected to results Huet and

Hulot [7], Goguerm [3] and Musser [11]. They propose metﬁa%i for
proving indictive properties without induction and use for' this

the Knuth-Bendix completion algorithm [9].

The need to compare specifications appears naturally
when transforming specifications for a data type trying to obtain
one that leads to more efficient implementations, for instance.
Such is the case of a more cdmplex example with two independent
constructors developed in [21. There,_suntiﬂg from a specification
which considers the data type pointed lists of [i] as consisting
of pairs (list, integer), another pair of constructors is obtained,

which leads to a simpler specification.

, There is yet another interesting aspect to the idea of
changing constructors, namelyi the so—-called hidden operations [6].
In our example of section 2, call ZO the specification obtained
from Zl by removihg the operation Cons and the rule (C). We may get
El back by enriching ZO with Cons. On the other hand, call 23
the specification obtained from L, by hiding the constructor Cons.
Then I(Z3) is the reduct of I(Zz) to the non-hidden operations.

Hence I(ZO)'= 1(23) and thus the specifications 23 with hidden

Operation is equivalent to 20, With the advantage of being simpler.

Finally 'let us notice that our results rely on the

confluence, finite termination and sufficient completeness of the

ig

specificatiohs. It would be desirable to have more systematic
methods to verify these properties. Also useful would be a
methodology to derive the rules of E, from thoée of I,, given the

constructor sets (cf. the derived rules in section 4).

19

Acknowledgements

The authors are grateful to Christine Choppy and
Pierre Lescanne for discussions about equivalence between
specifications. The first author is especially, indebted to

)) 4 . . :
Pierre Lescanne, whose thesis [10] inspired him in many aspects.

References

[1 1 ~

(21 -

(s 3 -

fu 1 -

W. Bartussek and D. Parnas, Using traces to write abstract
specifications for software modules, Research Report,
Department'of>Computer Science;,University'bf North Carocling,

NC (1977).

C. Choppy, P. Lescanne and J.L.Remy, Improving’abstract data

type specifications by appropriate choice of constructors.

Proc. Intern. Workshop on Program Construction, Bonas, Fran-—

ce_(1980)

J. A. Goguen, How to prove algebraic inductive hypotheses
without induction, with application to the correctness of
data type implementation, Proc. 5th Conference on Automated

Deduction, Les Arcs, France (1980). .

J. A. Goguen, J. W. Thatcher and E. G. Wagner, An.initial

. algebra approach to the specification, correctness and

- implementation of abstract data types, in: R. T. Yeh, ed.,

[s 1~

e 1 -

 Current Trends in Programming Methodology, vol. IV (Prentice

hall, Englewood Cliffs, NY, 1977) 80-149 .

J. V. Guttag and J.J.‘Horning, The algebraic specification

of abstract data types, Acta Informat. 10 (1978) 27-92 .

J. V. Guttag, E. Horowitz and D. R. Musser, The desigh of

data type specifications, in: R.T. Yeh, ed., Current Trends

[7 3 -

in Programming Methodology, vol. IV (Prentice-Hall; Engle-
wood Cliffs, NY 1977) 60-79 .
G. Huet and J. M. Hullot, Proofs by induction in equational

theories with constructors‘; Research Report n9 28, INRIA ,

Rocguencourt, France (1980)

[g 3 -

9 1 -

[10] -

L1171 -

[12] -

21

G. Huet and D. C. Oppen, Eguations and rewrite rules :
a survey, Research Report N¢ STAN~CS. 80~785, Computer
Science Depaftment, Stanford‘University, Palo Alto, Ca
(1986). Also in: R. Book, ed., Formal Languages: pers-—
pectives and open problems, Academic Press, New York ,

NY (1980).

D.E. Knuth and P. Bendix, Simple” word problems in
universal algebra, in: J. Leech, ed;, Computacional
problems in abstract algebra, Pergamon Press, London(1970)

263-297 .

P. Lescanne, Etude algebrique et relationelle des types
abstraits et de leurs representations, Inst. National

Polytechnique de_Lorraine, thése - d'Etat, Nancy (1979} .

D.R. Musser, Convergent sets of réwrite rules for abstract
data types, Research Report, Iﬁformation Sciences Institute,

I3

University of Southern California (1978) .

D.R. Musser, On proving inductive properties of abstract data

types, Proc. 7th Annual ACM Symposium on Principles of

Programming Languages (1980) 154-162.

AT »

JLR/PASV/3rp.

