Series: Monografias em Ciéncia da Computagao

Ne 2/81

ON THE CONSTRUCTION OF DATABASE SCHEDULERS BASED

CONFLICT~PRESERVING SERIALIZABILITY

by

Marco: ' A, Casanova

Philip A. Bernstein

_de Informatica.

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP-22453
RIO DE JANEIRO - BRASIL

ON

Frlermitios — PUC | ' gm@ ACAG]

& st o AR A B

Series: Monografias em Ciencia da Computacao

N9 2/81

Series Editor: Marco A. Casanova Janeireo - 1981

VC—- 2F841-3

ON THE CONSTRUCTION OF DATABASE SCHEDULERS BASED ON
CONFLICT-PRESERVING SERIALIZABILITY®

by
Marco ~ A. . Casanova
*%
Philip A. Bernstein

* Research supported by the Brazilian Government Agencies

CNPq and FINEP and the U.S5. National Science Foundation.

*% Center for Research in Computing Technelogy,Harvard Uni-
versity, '

ABSTRACT:

This paper discusses solutions to the concurrency control
broblem for databases systems using a method called conflict-
-preserving serializability, an approach significantly different
from conventional locking methods. The major results of the
péper spell out how Eo~im§1eﬁént such a method within

practical space bounds. They are applied to the construction

of schedulers for centraiized, as Well,és distributed data-

base systems.

Key Words: concurrency control, serializability, conflict graphs

RESUMO :

Esta monografia discute solugoes para o problema de controle de
concorrdncia em sistemas de banco de dados usando um método cha
mado de serializacao por preservacgao de conflites, que ‘difere
consideravelmente dos metodos -de bloqueio convencionais. Os rs.
‘sultad?s principais desta monografia indicam como implementar

tal metodo usando uma quantidade pratica de memdria. Estes resul
tados sdo entao aplicados a comstrugao de algoritmos para contro

le de concorrencia em sistemas centralizados ou distribuidos.

Palavras—chave: controle de concorrencia, serializagao, grafos

de conflito.

1. INTRODUCTION

If several users concurrently access a database, synchronization
-anomalies may arise leading, for example, to thebloss of dqtabaée consistency
or to the loss of “P@?FﬁS (sce Figqufl), ?pp§¢_gonqggrency control sub-
systems, or sehedulers, must be interposed bﬁtweeruse;%vﬁnd the database
to arbitrate ac;ess“tp_dat;.‘ This paper_addresség;;hé question of
constructing schedulers hsing a much'less restrictive strategy than
currently évailablé schedulers, thereby possibly increasing concgrrency.
The major résuifs-;f the paéer spell oué how to implement such a strategy
within pra#ﬁical Spécé bounés, a probleﬁ that. so far has remained ﬁnsolved.
The scheduling strategy guarantees serializability [BEl], a widely accepted
cérrectness criterion avoiding both sﬁhcﬁgéﬁiZAtibﬂ’éhémalies preVi0ﬁ§l§
mentioned. |

The paper is organized as follows. Scction 2 introduces an informal
modethE SChéduléré that caéture Ehe’ﬁajqr:cﬁaracﬁéxiétigs of a large class
of reai schéﬁulersﬁ ééctidﬁ'?”ﬁéscriﬁes the scheduling stxateqy‘adobted
and éresents the major.resuiﬁé 6fﬁtﬁé'§aper. Finally,véections 4 and 5
discuss {ﬁplementations:haa centralized and in a distfibuted.en#ironmént,
respectively.

~ Schedulers for databése systems have been extensively studied before

te.g. [BEI, ngzivss,'ch, Ku;léAl, PAZ, RO, SC, ST, TH}). Our model of
schédulers differs from previous work f{e.g. {PAé})Viﬁsofar as we are
concerned.with the:dynamic .acquisition of information about the user's:
programs that charactexize systems-like iMS {IB], where user's prograns
‘become known to the s thm as they are submitted. Our scheduling strateqgy

is derived from IBEl, PAl, PA2}. Although its potential has been realized

FIGURE 1.1

(a) Let Ul ‘and UZ’bevty}o users of a database that decrease x by 1 by
executing the following pragram: ag s=x; a, =a J.:‘-#i"; ®=a.

Assume that the two users run concurrently as follows:

TIME
USER™ 1 2 3 4 5
¢ a; =X _al :==al-],. , X r=a,
uz2. _ -. &, =X a2:=a2~1 Xt=a,

Then, the update performed by U2 is overwritten by Ul and, hence, is

lost.

(b) Consider that the database is consistent iff x>0. Let Ul and U2
‘be two u’sers‘that.decreas‘e X by 1 by executing the following__‘grogram:‘
if x>0 then x :=x~l. Assume that the two users run concurrently,

starting with x=1, as follows:

TIME
lUSER ! 2 ’ ’
vl x>02 | . | xs=x-1
vz 1 x > 07 T xTi=x-d

Then, x=-1 :in the final, state and,~henc¢£,consistgncy is lost. . .- B..

-3

before, previous suggestions [PAl} required keeping information about all
user's programs processed thus far and, hence, were not practical. The
results in Section 3 lead to a new approach that;summarizes information
about terminated transactions within practical space bounds, and constituie
the major contribution of the paper; It can be shown [BE2] that several
currently available schedulers, notably two-phase locking EESI, follow
strategies that are, in a precise sense, more restrictive than ours ({see
also [ST, TH]).

We leave untouched two important aspects, though. <First, a theoretical
and empirical fiamework for comparing the effect of different schedulers on
transactions'® response time is badly needed to guide the choice of a
Scheduling strategy vis-&-vis a particular application. ‘Second, more -
detailed implementation descriptions using the proposed scheduling strateqgy

must be worked out before the strategy's potential can be fully evaluated.

2. MODEL OF A CENTRALIZED DATABASE SYSTEM

This section sets the context for the résults in Sections 3 and d.v It
introduces the notions of database schema, transaction, databaseksystem and
general purpose scheduler and describes strategies for constructing
“échedulers. To avoid a heavy conceptual burden, we proceed as informally
as clarity permits, referring the reader to [CAl, CA2) for a formal account
of'these notions. We concentrate exclusively on centralized database

systens, leaving for Section 5 considerations about distributed systems.

2.1 Basic Notions

A database schema is a pair DB=(V,A), where V is a set of database
variables taken from a universe of variabZes U, and A is a set of |
consistency criteria. A database state is an assignment of values to the
variables in V from a certain domain of variqbles D. A state is
conststent iff all consistency criteria are.satisfied. The lénguage used
to write.schemas and the method admptéd to decide satisfiability need not
concern us he}e,

A prégram accesses a database by executing read or write operations,
that retxiévg'or modify, respectively, the value of a set‘of:database
variables (the operation's readset or writasef). We assume that read and
write operations arebuniquely numbered within each program so that we can
refer to the program's i~th read/write operation. qu'puréosesvwe explain
later, we force cach program to signal when it starts/terminates by
executiné a begin/end operation. .Finally, we assume that each program
preserves consistcncy‘of the databése, that is, each program is a trangs-—

action, and that it terminates when executed by itself.

‘A centralized d&tgbqse system DBS has four components, as summarized
sin Figure é,l:, a database DB, a set of transactions T==(Tl,...,Tﬁ}, a
g¢hadh§er,§c‘§pd a‘ddtaﬂmanager DM. Eachvoperation of 'f& actually sends
La message.ta sC ccntaining: |
= wnbegin oriend operation: just the‘transaction number;
— read operation: trgnsactioninumbef'and the number and readset of
the Qpergtion;

»f-writerpera;ionzf same as a read operation, plus new data values.v
SC may delay the message, bup eventually passes it to DM.. DM accéssés the
détabase on behalf ¢§gphe transactions, replying to a ;ead‘massage w;ﬁh the
gata values requested and to all other messages witb&ipst an ACK {acknow- ‘
ledgement). We assume that 5C only outputs messages if received and that
alllmessages~of eéch transactipn Ti are outpgt_invthg_same‘order»as
received. Moreover, we assume that messages sent by SC to DM are pipelined

(i.e., received by DM in the same order in which SC sends them).

I‘ "’
» -’
v ”
i
n
[" . : ;
T, —
. Al, N
sC 8 DM % DB

FIGURE 2.1

vaWeuassumeza‘limiteé restar£ facility operatinéf#s~foklows.'4The
scheduleggmay_g?start a~transacti0n Ti by sendiﬁq tO'.Ti a vestard:
meésdéeg?;aéfore‘sending»any message to the schéégler,‘-wi “checks if.it
was restarted and, if so, resumes execution at the beginning. However,
the schedulai cénuoaly restart Ti after it outputs the begin message of
T, ~and before it outputs ényﬂwrite message‘ofwai; Hence, restarts do
ﬁot cascédehand no database rollback is necessary, since>“Ti will never
be restarted after writing on the database. We show in Sectiqn 4 that,
under:cértain agsumptions about- transactions, strongly motivﬁted‘by
reliabiiity-considerations, this limited restart facility suffices. “Wezdoi
not state these assumpﬁions here, however, bécause the results in Section®H
are insensitive to them.

It»is'clcarafrom‘the’previous discusé'on thatothe gcheduler.controls
‘the‘concurfentwexecutiop of-thé»transactions by relaying: the:messages it
receives to the.data manager in axdifférent order, ..Thus, to discuss
concurrency control strategies, it is convenient,td introduce a special
notation for streams of messages. We then define a log as a pair h={(L,S),
where L»bis a string of symbéis from ﬁhe alphabet Z ={Fij,w.‘.8..8i/

R

i,3 Enm} and § is a function assignihq to each symbol ’Rij or Wij

occurring in L a subset of the universe of variables ' U. We use elem(L)

and last(L) to dénote the set of symbols and the last symbol occurring

in. L, respectively. --If x€X precedes vE€EL in L,}wéfwrite~1c<Ly. We

call é.Zog-pPeHicate any. restriction on logs.
We inteipretma log h=(L,S) as follows. The symbols Bi, Ei' Rij

and Wi correspond to the messages gencrated by the begin, end, the i~th

k

read and k~th write operations of Ti; L - records the order of the messages

»-in the stream; s{Rij? givgs the:réadset of the j~th read Qperation‘af Ti,
and simila;ly.fqr S(Wik).

‘&n/ogtputllogiof a database system DBS is defined as the log Ey=:(LaS)
corresponding to the stream of messages.sent_hy-the_gdhgduler during a
computation of bBS., Togﬁake into account restarts, we define the reduced
output log corresponding to h=(L,S) to be the log h'=(L',S") where L'
is obtg?ned from L by de1gting all symbols‘correﬁponding to opgratian’
perfgxﬁéd by rgstanted exgqp;icns‘of a trgpsgpgiony énd §' is the
resgriction.of‘ S to L’._ Since the messages sent by the schedule: to the
data managex are pipelined, the.:educed output log»recqrds.the order_in:
which operations performed by the final execution of each transaction were
applied to the @apabase..

In view:of‘thg‘abqge discussion and since, by asﬁumgtion,‘the/scheéu]er
outputs messages of Ti in the same oxder as received, for any transaction
Ti’ we may restrict ourselves to lqgs satisfying the foilowing log

predicate:
h = (L,S) is a well-formed log (k CWLOG) iff

(1} each symbol in L occurs at most once in L;
{2) each R,. or W, occurring in L must succeed . B, in L;

S % ik : L T IE SR
(3) if B, occurs in L, then E, must succeed B; in L and all

symobols R,. and W, occurring in L.
ij ik R .
Ultimately, we want to design datobase systems free of synchronization
anomalies. The first step is teo define a system corvectness eriterion Q
restricting the behavior of database systems so that anomalies do not arise.

Given two criteria © and R, we say that @ Implies R 1iff any database

gystém satisfying Q alsb satisfics R. A log predicate - P éoes not
‘unalify directly‘as a system correctness criterion, but ﬁs an ahuse'éf”'
language we classify P gsioﬁe in the sense that a database syéﬁém-satisfics
P 'iff‘all restricted output‘lcgs'pf the system satisfy p.
' ¥We will be primarily interested in the following correctness ceriterion.
We say that a database systemnnas iS‘seriaZizabZQ iff~éh?“computaﬁioh of
‘DBS‘producés the same changes'on‘the database variables as SOmgﬂserial
execution of the transactions of DBS, one after’ the other. Hence, if DBS
is'serializable, we can transfer properties of serial ‘executions of the
transactioqs to‘DBS.'“For‘example,*éiﬁée‘éach”tfansactidn“ptééerVééﬂ
consistency, so does any serial execution of thé'tiaﬁSACtions”ahd;“hence;‘,
. DBS. This was the original argument in favor of serializability. "But
equally important, since in a gerial execution of the transactions' no update
is lost, DBS also enjoys this property. - In fact, if wéhco;sider the dutput
of each traﬁsaction'as'a databasé-variable,'we can go- further and éSéert
that serializability éuarantees that each transaction executes without
interference fyom the others. Thus, serializability is central to con-

- Currency control because it precludes the basic synchronization anomalies.

2.2 General Purpose Schedulers

The design of a détﬁbase é?stem satisfying a correctness criterion Q
depends on Q itself, the scheduler aﬁé‘£he'$et of trahgaétiOns, assuming
a data'manager operéting as inéendcd; Altho&gh‘the déﬁéﬁéendy on Q is
intrinSic, we can factor 5utu£ﬁé set of trénéacfidﬁs {xepreéenting the
application‘in.question)Zby considering QénetélipufposG schedulers, <g

scheduler SC is a gemeral purpose scheduler for ¢ iff:

— any database system whose scheduler is SC satisfies Q. Hence, SC
is not applicationfdeyendegt;
~— the response of 5C at a givén‘poinp in ti$e‘dgpgﬁq§ only on the
readsets and writescts»c;ntained in the messaqes‘reqeiyedJ and, on
the stream of messages output thus far. Thug}ephe response of SC
does not depend on theﬁge§pingbgf‘thg transactions, the consistency
criteria of the database, and on the operations not yet executed.
&ven without fixing the correctness criteriﬁn, ¢, there are cerxtain
genexal remarks about the construction of a general purpose scheduler SC for
@ worth stating. They Wiil alsc help put into proper perspective ﬁhe‘results
of Sections 3 and 4. We first obseérve that Q offers little help in the
- construction of SC, since @, in general, imposes restrictions on the data-
hase systems using SC. However, this is not the case for log predicates,
because they restrict directly the scheduler output. . Therefoxe, we propose
the following problem-reduction strategy: f£irst find a log predicate P
implying @, then construct a general purpose scheduler SC* for ~P°, It is-
trivial to see that SC' will also be a general purpose scheduler for Q,
but as pointed out before, it is'chh simpler to construct SC*. than SC.
Once an appropriate log predicate P is found, the pext step is to
.choose a scheduling strategy. We have found it useful to distinguish
between conservative and aggressive schedulers. A conservative schedulex
tests if each message received can be added to the current output log
without violating P; if not, the message is deiayed,thherwise it is output.
If the scheduler does not know in advance*which operations a transaction
‘will perform, scheduling mistakes can be made, which are corrected by

restarting operations. On the other hand, if the readsets and writesets of

-10-

each operation are known whcﬂ:thé transaction étarts;.mistakés and,.thus,
restarts can be avoided [CAl]l. An aggressive schcauict tesﬁs'if:ch;}output
log catiéfies P only wheﬁaactrénSScticn T, requést; to tcrminacéﬁsy
executing an énd'dperaticn. If the current output log does not satlsfy P,
operatlans nust be restarted to correct achedullng mlstakes. Note that the
cheduler cannot allow T ' to terminate thhout testlng the output log,
since thé mistakes may only be correctable by restarting operatioﬁéfbf T, .

?ﬁath'stratcgies; as outlined, only gua?antee that the output 16§“¢
édEiSfiéﬁ'the‘lég prédicaté,‘but‘not that all transactions términate. In a
‘consérQative schedulér.ah operation may be del&yed'inaefinitély or restarted
,repeatedly, whlle only the last problem occurs in an aggress;ve scheduler.
Thus, rescheduling operatlons must be carefully planned if all transactions
must,tcrmlnate. N

Conservatlve schedulers should be used when the probability of creatlng
logs ‘not satlsfylng the log predlcate is hlgh, since they tend to make |
fewer scheduling mistakes and, hence, require fewer res;arts. Symmetrlcallv,
aggressxve schedulers should be used when such’ probablllty is low,:51nce
they do not delay operations.

To conclude, we suggcst that the constructlon of a general purpoqe
scheduler should start w1th the choice of an approprxate log predlcate
restrlctlng the p0551ble output logs. ThlS sten depends only on the klnd
of synchronzzatlon anomalies that must be avoided. Next, a schedullng |
strategy should be fixed, taking into account the expéctcd transactioﬁ

population.. Sections 3 and 4 explore these remarks in detail.

~11-

3. CONFLICT~-PRESERVING SERIALTZABILITY

We row concentrate on tha construction of general purpose schedulers
for serializability, following the remarks in Sécéi&ﬁvz.i. This section
introduces a log predicate, called conflict—pre&e}&iﬁg serializabilit}y ﬂ(CPS'R)
that implies serializabiiipy, and explains how to test if theAreduced output
log satisfies.ié:° -$ection 3,1-@gfings,CPSR and relates it to serialigaSility.
Section 3.2 describes a straightﬁo;wa:d-mgphod of testing for CPSR ﬁhét
unfortunately requires ioo mucﬁ MRMmOTY . This objection is removed in
Section 3.3 via a refined method, which constitutes the central result of
the paper.' Section 4 uses the refined method to construct an aggressive

scheduler, illustrating its usefulness..

3.1 Basic Results

Serializability. is universally accepted as the apprqpriaté”ébtrectness
criterion for eliminating synchronization anomalies, but the methods used
to construct whatnwe‘calied“§eneral éurpose schedulers for serializability
- vary considerably. A general cohsensus is regained if we observe the
scheduler output only,‘because it can be shown [BEl]l that several of these
methods guarantee thai the restricted output log satisfies thé'twdwphase
lockihg'édndition of [ES], viewed here ds a log predicate. We depart from
thiS'consensuS'by exploring a different log predicate, first described in‘
[PAl], called conflict-prescrving serializability (CPSR).

Our reason for choosing CPSR is two-fold. First, there is a fast
method for testing if a log is CPSR,‘which is certainly necessary for

construction of cfficient schedulers.. Second, any log satisfying the

12~

two-phase locking condition also satisfies CPSR, but the converse is not
true. Hence, CPSR allows more freedom for a'scheﬁuléf.tq_ghoo§giips
output, thereby possibly increasing concurrency.

CPSRyis‘definéd as follows.

DEFINITION 3.1: Let h=(L,5) €WLOG.
h' is conflictipreserving serializable (h€CPSR) iff
PRECEDES [h) @ 1#° is a partial order

where i PRECEDES[hlj iff i#j A

((ER ,wjg‘Eelem(L))(S(R } NS(W, 2) ;ép:iAR 1k L ﬁ.’ \'
(3w, k,w JLEelen(L))(S(w) NS (W, 2) EB Aw 2) v
(aw k.R erlem(L})(S(w Y NS(R, g') ;észs AW 1. 312.” . 0

We abbreviat:e PRECEDES[h] as PRIh}. Intuitivelw, transaction T,
precedes transaction ‘Tﬁ iff Ti reads or writes on a variable T. writes
later on, or T, ,writes on a variable T, reads later on. Thus, if h is
in CPSR, we guarantee that there‘is a partial order aménq-transactions,uor,

equivalently,wtha;ﬂnomtransaction transitively ' recedes itself.

EXAMPLE 3,1: let a log h= (Ll..‘.Lk,s) be denoted by L, IS(L)]...
Lk[S(Lk)]. For simplicity, when a tramsaction Ti igsues'just.one read
or write, we represent it by Ri' or wi' respectively.

. The followihg logs
are in CPSR:

i

h, = BleRl[x]h [}]wzixlwl{y]EzEl_

=2
1

5 = BlB3R3[x}w [y}L B R IyIE {y]E3

-13-

Readers familiar with [ES] will note that h, does oot satisfy the two-

phase locking, condition. The following log is not in CPSR because T

1
precedes- T, and vice-versa:
h, '-= BIBZthxlkzix}wz [x}w]L E:»c}EzEl . o

CPSR guarantees_sérialiiability in the following sense.
THEOREM 3.1l: Let DBS be a database system..

If any reduced output log of DBS is¢in‘CP5R,

and all. transactions terminate,

then DBS is serializable,

Proof. {See Appendix.) o

In view of Theorem 3.1, we propose to construct a general purpose
scheduler sc for serializabili;y by guéranteeing that any final -reduced
output log of any database system using SC is in CPSR and that all trans-
actions always terminate. Irrespectively of the scheduling strategy used,
we, must thén_p;gvide an'efficienF"CPSB strategy, that is, a method for
testing if the current reduced output.log is in CPSR. Sections 3.2 and 3.3
Adeééfibe=£ho'§uch’5tfategies} ‘We wiust ‘also give a termination strategy
guaranteeing th#t all transactions eventuvally terminate. Section 4 discusses

one such strategy within the context of aggressive schedulers.

14~

3.2 Basic CPSR Strategy

This section describes a straightforward CPSR strategy, which raises
an interesting problem, tﬁough, solved in Section 3}3.‘ Let h?=(L,$) be
a log, to be interpreted as the current reduced qutput logﬁ From now on,
we will freely ;se graph~theoretic terms when referring‘tﬁ {the graph of)
fR(h]. A straightforward bPSR,strategy cons%sts>of checking the acgglicity
of PRIh] [PAZI. However, this strategy is not guite éxactical since>it
requires keeping the whole log h and computing PR{h] “when needed, or
keeping PR[h] (or even PR{h]+) and S, which is needed to update PRIh].
That is, the scheduler would require time and Sﬁaéélﬁﬁich is'a function of
the total number of transactions. Nonetheless,’fﬁg$fblloﬁ{hg éxémplé
suggests that S and a large subset of PR{h}* ‘must indeed be kept

{assuming the second alternative).

EXAMPLE 3.2:

{(a) Consider the following reduced output log:

he =0 BlRl{xlszR2{yz'x]wz{Zz'x]EzngRj[y3'x]w3[z3thBj

. BiRi[yi,x]Wi[zi,x]Ei e Bnnntyn,xjwn{zn,x1ﬁn

We firstiobserve that all transactions have'terminated, :except T,, and.

1
*lPH{h}ﬁi%_”for each i ~in {2,n}.

We now argue that%apparently- $. must be kept. For suppose that the scheduler
tries to output Wl and let h' be the log obtained by adding Wl to h.

If S(Ri)fis{wl);ég or s(wi)(ws(wl)géﬁ, then iPR[h']+lu But since h 1is

+ o +
a prefix of h' and 1PRIh} i, then 1PR{h'} i. Therefore, IPR{h') 1 and,

~15m

hence, Wl cannot be output. If S(Ri) ‘or s(w&t were discarded, this
fact would have gone undetected. Likewise, the scheduler has to remember

+ s . .
that 1PR[h} i, for each i im [2,n], to decide if W, can be output or

1

A - . .

not. Note that this subset of PRIh] takes ©O{n) space to store, while
. 2

PR{h}+ requires ©0{(n} space.

{b) Consider now a more elaborate version of (a):
g = BlRl[yl,x}ﬁznz{yz,xﬁwztzz,g}gz.,.,,u
Bo1-1R2i-1 Y211 1 ¥1BiRp; [V XMy 129y 1By --

Bon-1Ran-1 Yon-1 %182, Ron o ¥1Wo (20 x3Bpy -

Noﬁé that all even transactions have terminated, while all odd ones are still
running. Moxeover, (Zi—lij[g)*j; for each i in [1,n] and 5 in
4 ’ : . ' . . ‘o . . .
[{2i,2n}. Again, the scheduler has to remember S;RZi_lL, S(Rzi), S(wzi)
) +, SIS PO
and (2i-1)PR{g] j, for each i in {1,n] and 3 in [2i,2n]. However,
unlike {a), the subset of PREg]+ .that’must be remembered and Png}+

both require, O(nz) space. s

Examéle 3.2 capitalizes on the fact that iPR{h']l can only be detected
after transaction Ti has terminated. We consi&erxthis,intrinsindependency
on terminaﬁed transactions to be thée central problem of CPSR'scheduling, since
it may lead to space and time bound§ which are a function of the totél‘humber
.of transactions. While such time bounds are unavoidable in scheduling

problems, the space bounds are clearly unacceptable and impractical.

-16--

3.3 RefinedfCPSR,Strateqy

In this section we present a refined CPSR strategy that circumvents
the central problem of CPSR scheduling. It achiéves this goal by taking
into account. the past behavior of the scheduler and summarizing information
abbut transactions that terminated.

Let h==(L,S)' be a log, again interpreted as the current output log.

Define the set of transactions active in h as - follows:
ACInl "= {i€mu/B, €elem(L) A (E, felen(L) v E, =last(1)}

and denote by PR[h]+lAC[h] the restriction of PR(hi+ to aCcfh}. The
refined CPSR strategy we propose replacesAtesting the acyciicity of _PR[hT
by testing if ﬂai(iPR[h]+lAC{h]i). The correctness of this Qtrategy,,for
both aggressive and conservative schedulers, is based on the following
xesult.

Let the set of prefixes of h be defined as

PREEIX[h] = {h'=(L',S') EWLOG/L' is a prefix of L} .

Note: we consider L to be a prefix of itself.
THEOREM 3.2: Let h=(L;S) be in WLOG.
(31 €10) (iPR(h]TE) iFf (3’ €PREFIX(h]) (35 € 1) (3PR[R*]VIACIR' 15) .
Proof. (See Appéndix;)

‘We discuss the correctness of the refined CPSR strategy only for
aggressive schedulers, since the case of conservative schedulers is entirely

similar. We must show that if the aggressive scheduler guarantees that

“l 7

ﬂai(iPR[hI*IAC[h)i) then it ailso guarantees that h € CpSR, for each
reduced output leg h at the time a Eransaction terminates. Note that the
éonverse is trivially true, since .h €CPSR iff -qﬂi(iPR{hJ+i).~
We argue by contrédiction. Asume that the scheduler élways guaranteecs

that ﬁai(iPR[q]?iAC§q}i)} for each reducea70utpu£ log g ={K,R} such that:

last (K} #*Ej. jERE, but .h’EC?SR, for some reduced output-.log h= (L,VS) such
that last(L) ='Eg," L€1L. fThen, by Theorem 3.2, there is a pref‘:?x “h* of
h and a transaction ’f‘k such that k(PR(h'] " IACTR K. wa')ce' H* = (L",S")
as the smallest prefix of h such thaﬁ h' “is a prefix of h* and
last (h"} =E, .

violates the scheduler behavior. Hence, any aggressiﬁé“écheduler guaranteeing

Then, k(PR[h"}TIAC[h"1)k holds when 'k terminates, which

that ﬁai(iPR[g}+|AC[g}i) when a transa‘ctidn‘"téfﬁii‘ﬁa*f:"e's”;"a;so guarant:ees"
that g € CPSR. Therefore, our CPSR strategy works 'co:re&tly for aggressive
schedulers and is; in facf,‘equivéienﬁ"to testing if hi;C§SR,

The new strategy has a considerable aévantage over the old onhe, though.’
We will prove that it requires storing basically a subset of PR[h}+lAC{h]
and a new function g[hl: {R,w} KAC[h]-+2V,' whereas the oldébﬁé?féﬁﬁired
_ keeping “PR[h}+ and 8. Therefore, we contend that the new strategy is
practical, since it uses informatioﬁ_which is a function;of the set of active
transactions, not of the set of all transactions, as the old one.

The following example illustrates the new strategy.’
EXAMPLE 3.3: Consider the foIiSWing log g, which §s mot ‘in cPSRY
g RlEW]RZ[y]W2[w1R3I21_W3[y114\’4IZ.Xlwlbd

Suppose that messages are sent to the scheduler so that the input log
eventually equals g. The new strategy requires kéepihg;ifor the current

reduced output log h, the set

18~

PR{h] = {(i,3) €PRI(hIT1ACTh] /there is a path (i.il,,.;,i .3) in PRN]

g
such that .Ti has Eeiminated, for all p ‘ihx‘Ii.q]}
P

and-a new: function Sthls {r,w} xacih) 27 such that S[h}(R,1) contains
the union . of the readsets of all read messages bf,”T5 occurring in h, for all

Tj ~such that there is a path (i,i ,...,iq,j)-'in PR{h] such that T

1 3

and ”Tié,’have terminated, . for all “pin [1,9)1; S(h}(wW,i) is similarly
défined, but using writésets. ¥Figure 3.1 illustrates how ‘the scheduler would
behave. - We comment only on steps 5 andb8. In step 5, usingﬁ“glhI(R,ll, the
scheduler discovers-that transaction ', precedes a transaction that has
téxminated,-%szﬂﬁhose”feadset intersects 'S(Wj);- Hence, the scheduler
deduces that *lﬁR{ﬁ]fB. Likewise, in step B (parenthesized lines), the
scheduler éeduceéﬂthat if Wl ‘is output, thenj;lPR[h]+l. Henée; Rfﬁ%m@stvz

be ‘restarted (lastitwo lines).

| We now preciseély characterize, S[hl..

DEFINITION 3.2: Let h=(L,S) be in WLOG.

(a) PRT{h]c:ﬂmz is defined as follows:
"4 PRP(h}S = i PRINDG AB, €elem(L)

(b) s, il {r,w)} xm~>2" is defined as:

it

U S(R,-.)

| R, Eelen()

U SW, .}
W.. €elem{ry
ij T——

Solb) (W, 1)

-} O~

FIGURE 3.1

i input log g output log h } E?im 'E;m.(_x‘z,u('s‘;h} {W,1)

1R R @ /8

2 KRy S try 2 o 2

3 RRW, R,R, W, {22} {ylzlv}

4 RRWR, Ry RW, R N {y}/ v}

5 RRWRW, R1R2w2R3t§3 {a,3} {'y. z}/{‘w,.y}

6 RyRWHRy5Ry Ry RN3RyM5Ry 2 Ay 2yt

7 RRMRH.RUH, R RM R P H, {(1,4} {y,z}/{w,y,z}

8 RRWRMRWW, RRWRWRWN, P {y, z}}{i&,y (2}
R W R.W.R W R | @ o/8

NOTE: to save space, we only ‘represented S{hl(R,1) “and CEIRY W, 1)

w20

(¢) Sihl: {r,w} XAC{h] * 2¥ 15 defined as:

§ihltx,i) = U | s ihlx,3), i€acthl and x€{rwl.
i PrRT{h] j :
o
‘pefinition 3.2 is not appropriate, though, because it depends essentially,
6:1 PR»[h]-P and S, which the scheduler is not supposed to keep.. We avoid
this ‘piohlem in Theorem 3.3 bel&w. Given a log hv== {L,S}; 1let h = (L*,S-“]
‘denote the log obtained by deleting the last symbol of L and the |
corresponding pair from S. If h xepresents the '.current output ibg; h™
stands for the output log just before the last message was output..

For each h=(L,S) €WLOG, define S'[h]: {R,w} xAc(h] »2" as_ follows:

(a) If h=(A,®), then S'[h] =9
(b) If last(r) £{E/k €1},

then for each i €ACIh] and x € {r,w}

§'hl (x,1) = if i €ACIN] then § else 5*[h1(x,i)
(e} If last(L) =E,, for some k€ER?, then for each x € {r,w}
(i) . for ‘dach “i €ac[h]'such ‘that * =1 (PRT[h}* opR-{h}"[Ac'{'hJ')k:
s*[h} (x,i) = s'[h }(x,1)
(ii) for each i €AC[h} such that i(PRT[hI* e PR{h]|ACIh]}k

S'[h] (x,i) = S'[n7)(x,4) US' [h] (x,Kk) US [b] (x,%) .

THEOREM 3.3: For any h = (L,8) €WLOG, S'[hl =5(h].

Proof. (Sce Appendix.)

The recursive equations in Theorem 3.3 permit us to compute S[h]

from AC[hT}, S[h'), AC[h], PRTI{hI* o PR[h]|AC(h] and .§0{h], the restriction

-21~

of So[hl'"to the transactions active in h. We now prove that PR{h}*IAC{h]
can be computed from PRT[h}¥* oPR{hIlAC[h}, and :PRT[hIﬁ;vPR[h]lAC[hE can

in turn be computed from _§[h“], §O[h], ACih] and PRTIh’l* °PR[hM}IAC(h].

THEOREM 3.4: Let h=(L,8) be in WLOG.

pDefine PRD{h], PWRI[h], PTE[h]CJI{2 as follows:

~ {3) 4 PRD[N]S = 1 €ACIN] ATK(Ry =last(} A

(s, (h] (W.i)_,_ﬂS(Rjk) #BALAI VSR 1w, 1) ﬂS,(RjkD £0))

{ii) i PWRT[h]j = i €acCih] AT (i, =last(LIA
((Solh} (W,1i) Usolhl (R,1}) “S‘ij) FPALF#EFV

(S1h™) (w,i) US[R™) <R,i’))‘”ns('wgks # 2))

(iii) i PTE[h]j = £y =last (L) {\i(PRT{hT}* o PR[h1IACIRI} 3
Then

(a) PRT[b]* o PRIh] [AC(h]

B

PRT[h]* o PRIh] {ACTh]
U _PRD[h]
U PwWR{h]

U PTE[h] o (PRT[h]* o PR{h"1]AC(h])

() Pr{hITIACIh] = (PRTIRh]* o PR{n}iac(hl) ™ .

We can now-yive a «€ull-description of the new CPSR strategy.we propose.
The scheduler will keep’ AC[h}, S[hl, PRTIh]* oPRIh}|AC[h] and . § [nl. -
~ Initially h==(A4¢) ‘and all’ these objects are empty. When the scheduler
outputs a new messadé, a new output log. h is created frém the previous one

h . The scheduler then updates its internal structures as follows:

— ECIh] can be constructed directiy, using éc[hf};

- PRT{h]*'oPﬁ{h}fﬂC{h} can be updated using PRT[h 1* oPth"}{nC[h},
§[n"1 and gé[h'],7by Theo;em'3.4;

- §Q{hl caﬁ be bﬁilt from §0Eh*l and the message just output;

— S[h)- c&n be constructed from AC[h“), Sth' 1, AC{hI,

PRT(h}* aPR[h]lAC{hl and §OYH”],'by‘Thearem 3.3

A conservative scheduler will guarantee that the output‘log formed ijust
after outputting any message satisfies -3i(i PR[hlflAC[hli), while an
aggressive SChedulef guarantees the same property just after each trans-
action terminates.

The space bounds of the two CPSR strategies can be derived as follows.
Let T bé the set of all transactions, TAF be the largest set of
simultaneously active t¥ansactions; M be the set of all messages igsued
and Vv be the set of databasc variables. Then, the space required to stoxe
pr[h1, S, AC[h], éfh'],'.,gs_nfr-{tm «PRIb}[ACTn] ana § B is d{'-'l"‘friz), |
otfviuh, ot Dy, odviir, b, 'o([T“A[z) anad o(jv]|T,|), respectively.
Hence, the bakic CPSR strategy requires 0(!T12'+IV|;M‘) space, while the
refined oﬁe needs OtlTAIE-flviiTAg). The time bounds of the two strategies
are also deriv&d; |

. Although we have glréady discussed the advantages of the refined CPSR
.strategy, we stress the importaqce of our conclusion. We obtained, albeit
in sketchy form, a practical éPSR_tcst; This result was achievgd by
"summarizing"™ {via the.union operation§ taken to define S[hl) information
_about transactions that terminate into space prqpo;tional to the numbey of

currently active transactions.

-

We close this section with some variations on the above strategy.
Consider first thé problem of implementing the refined CPSR strategy using
iimited memory. Since Sih) poses the biggest problem as far as space is
concerned, we suggest the following. S{h}{x,i) can now have either the
usual value or frue, indicating that S[hl(x,i) =V, where V is the set
of database variables. When the scheduler runs out of memory, it selects
the largest S[hl{x,1} and sets it to true, theveby freeing some memory.
Since V includes the previous value of SMh) (x,1i}, the schedulér will now
be more conservative, but will still produce an output log in CPSR.

Consider now a move realistic database model where the readsets and
writesets are described by predicates, rather than lists of variables. Ball
our results remain essentially unchanged, observing that Sinl(x,i) is now
a disjunct, rather than a union, of readsets or writesets. If g{hl(x,i)
becomes too long, we can set it to frue, e%actly as before. However, we
- now have the option of simplifying the disjunct, thereby obtaining a smallex
" description of S{hl({x,i). The predicates allowed must be simple enough to
permit the construction of fast simplication procedures, though.

We alse note here that an implementation of the refined CPSR strategy
depends on quite familiar algorithms--testing if the intersection of two
sets is non-empty and detecting cycles in a graph--which require no further
discussion. Interestingly enough, an implementation of two-phase locking
{ES] also depends on exactly the same algorithms, since granting a lock
depends on checking intersections of sets and deadlock detection reduces to

cycle detection.

P

4. AN AGGRESSIVE :CPSR- SCHEDULER

In this section, we discuss how to construct an aggressive general
purpose scheduler SC for serializability, using the results in Section 3.

Briefly, SC will have two properties:

Pl if the last symbol of the current reduced output log h is Ek

{transaction Tk was granted termination), h €CPSR;

P2 all transactions terminate.

By Theorem 3.1, Pl and P2 imply that any database system using SC is
serializable. To achieve Pl, we use the refined CPSR strategy of Section 3.3
rand a restart strategy to correct scheduling mistakes by restarting trans-.
actions. Property P2 requires a termination strategy, guaranteeing that

all transactions terminate.

Section 4.1 discussed how to use the refined CPSR strategy, and
Sections 4.2 and 4.3 concentrate on restart and termination strategies,
respectively.

The results in this section depend on a siuapler transaction model,
that we now describe. We assume here that each transaction executes only
one write operation, which is also interpreted as an end operation
{termination request). 1In terms of logs, the symbol Ei always immediately
precedes wi {dropping the second subscript). Our assumption abstracts a
reliability subsystem operating as follows [LO]. All updates made by each
transaction t are kept in a local workspace invisible to other trans-
actions. When t terminates, the updates are then installed in the data-

base (or commiticd) by a single atomic action, thereby becoming available

i G

to other transactions. Therefore, the database state is always consistent
and, as far as the database is concerned, each transaction either runs to
completion, or not at all. Moreover, if a transaction t is restarted

before terminating, no database rollback is necessary, and no other trans-

action t' needs to be restarted because it read t's output.

4.1 Using the Refined CPSR Strategy

Most of the problems regarding the refined CPSR strategy were already
discussed in Section 3.3. We only have to analyze the effect of restarts.
Let h={L;5) be the current reduced output log and h® ={(L',5') be the
reduced output log after Ti is restarted (assuming Ti is active in h).
Then, L' is L with all symbols Rij€22 deleted and $' is the re~-
striction of S to the symbols occurrinq in L*. In view of Séction 3.3,
the scheduler must then construct AC{h'], §0[h'}, §[h'] and

PRT[h']* o PR[h'] |AC[h'] as follows:

Y

—acih'l = aclhl -{i}

~8yh') = §ylal|{r,u} xach')

— 8’1 = S{ni}{r,w} xacin’}

— PRT[h'}* o PR[h'1|ACIR'} = PRT[h]* o PRIh]|AC[R'] .

Note that the situation would be considerably more complex if we allowed

restarting transactions that had already written on the database.

zﬁ‘d"tﬂ&ﬂwﬁ CRTERICA

-G

4.2 Restart Strategies

We now discuss how scheduling mistakes can be corrected by restarting
transactions. According to the aggressive strategy, the scheduler only
tests the reduced output log when a transaction requests termination. So,
let h=(L,S) be the current reduced output log and suppose that the
scheduler tries to output the end message of Ti' Since we adopted the
refined CPSR strategy, a scheduling mistake was made if there is a j in
acih] such that jPRn]IT3.

The important observation here is that all scheduling mistakes can be
corrected by restarting only active transactions (before they actually
wrote on the database). For suppose that there is j in AC{h] such that
jPR[h]+j, Then, by definition of AcC[h] and assumption about transactions,
either Ej is not in elem(L) or the last two symbols of L are ijj'
Since Tj issues no other write message, only a read message Rjk of Tj
can force TJ to precede some other transaction Therefore, if Tj is
restarted, all its read messages will be deleted from I and; in the new
log h', 43PR(n'15.

Finally, we note that if there is a choice of .transactions to restart,
it should try to minimize the amount of computation that must be xedone.
any optimization must be based solely on the information Kept by the

scheduler (e.g. PRTI{h1* o PRIh}{ACIR]).

4.3 Termination Strategies

A termination strategy must guarantee that each transaction always
terminates. In an aggressive scheduler, this reduces to guaranteeing that

a transaction is not continually restarted. We first observe that cyclic

restartslfRO}, a situation in which one transéction causes the restart of
another and‘vice*versa, continually, cannot occur here since each trans-
action executes at nnst‘ane.writé ééeration. Wa_h%véﬁéo cOnsiﬂer_mnly the
cése of a transaction being xepeatediy restarted by a set of different
transactions (of course, we can bey the question by'assuming a finite

number of transactions). The following example illustrates this phenomenon:
EXAMPLE 3.4: Consider the folldwing output Jog:

h.ﬁwBIRI{x132R2WZEXIE2(WlEKIEX)Rl[XE«-.

s BiRiWiiiji(wl[xlﬂl)Rl[x]..,

h should be understood as follows. When W1[X3 and Ei are received,
the scheduler tries to output them (Symbols within parenthesis), but
discovers that the CPSR conditién,is‘violaped. Then, tb'avaid the
vidlation,'Tl is restarted aﬁé*Sénds'a read’messaqe aééin. This scenario

is then repeated indefinitely. ‘n

We can face continual restart from two diametrically Qpposed positiqng.
First, we.méy optimistica11y assume that, fqr the,application»iﬁ question,
transactions will_beirestgrted with very low probability and'that repeated
restarts are independent eQents. Therefdre; the probability qf a trans-
action being repeatedly restarted is quite low. _Bug‘cerpéin systems clgaxly

do not satisfy these assumptions.

EXAMPLE 3.5: Consider a banking system containing a transaction
ASSETS summing up all balances, and a series. of trangactiens TRANSFER[A,n,m]}
transferring d dollars from account n to account m. Considexr now the

following sequence of operations:

-28-

ASSETS reads the balance of n
TRANSFER reads and writes on the balance of n and m

ASSETS reads the balance of m.

Then, un@er CPSR, ASSETS pfegedes and succeeds TRANSFER{[d,n,m] and, hence,
must be restarted.

Assume that TRANSFER is veéy common. Then, since ASSETS takes a long time
tﬁ execute and reads the entire database, the probability of Qesﬁarting
ASSETS repeatedly can be very high;‘ A situation wight arise where ASSETS

‘is continually restarted until it ¥uns alone. o

To handle systems like tha; of Exawmple 3.5, conservatiye'schedulers
have to be built. If the scheduler has access to thg readsets -and -the
writesets of éach,transaction when the transact@on #tarts,vthen the schedulerx
can,évoid restarts entirely [CAl}. The situation hexe;paral;els_deadlock
avoidance. Notherwise, we may adopt the following conservative scheduling
strategy. After a transaction. T is restarted once, the scheduler assumes
that Ti' will read and write on the whole database. Then, to satisfy the
CPSR condition,rno'transaction running concurrently with Ti is allowed
to write on any‘daté item Ti previously read. BAny write operation
violating this condition is delayed until Ti terminates. The final output
log is in CPSR and each transaction is gquaranteed to be restarted at most
once, butvthe xesponse time is likely to inc;ease due to the introduction

of extra.delays;

[y Ls o

5. EXTENE)IIIIG THE RESULTS TC A DISTRIBUTED DATABASE SYSTEM

- We now turn to the concurrency control problem for distribute& data-
base systems. We consider two extensions of the concepts of Section 7 to a
distributed environment and, for each one, we discuss the problem of con-

structing general purpose schedulers for serializability.

5.1 . A Distributed batabase System with a Centralized Scheduler

Let G = {N,E) ‘be the graph ;epresenhing a networlk, with_”n=*fﬂf. A
disé;ibﬂteﬁ daﬁabasg.over G is a set DDB=={DBL,f‘,,?snﬁuﬂsqgh_that,‘for.‘
all 4i.,3 in ' N, i#j- aBi = (vi'.Ai} is a database, :-Ai #Aj ~and ‘;"i_ﬂvj_aéﬁ.,
A distributed database system over. G (with centralized schedulexr) consists
of a set 'i'-"= {Tl;;v,...,i‘m} of 'jb_ra;r.zsaef;ions,b a g_che_dr«g?,er' SC, a set
o= {1, ..} oof transaction .r‘.rzcmqger’a,fa set DM%_{DMI,..‘.,DMH} _‘of.‘
data mq&agers,.apd a-distri?uféﬂ database over G. We qonsider that DBi'
™, and DMy resz‘ldg in node i, i in N.

We assuﬁe from the beginning a transaction model such as that described

s .

in Sectio@ 4. ‘Eachktransagtign ii rgns_aF a single.ppdg ~ti €t§ and‘gtarps
and texminates by executiné a begin.and an end operation, réspectively. Ti
may execute several read operations, but at most one write opefatioﬁ; thch
must’ immediately pfecede the end operation.

- Each operation executed by a transaction Tg"'{ruhning on node }2)
actually sends a message to 'the scheduler, as in a centralized database
system. . When the scheduler outpﬁté a read message, with readsét RS, it

breaks the message into a set of fead’messaQQs RMl.;«.,RMq, with readsets

RS ,...+RS_, which are sent to a set of data managers DM, ,...,DM. . The
1 9 : : ‘ 1y 1q

~30~-

messages are generated so that RS = Uf 3 RS; and RS, v, e 3 in
. A Sy 3

{1,ql. b, pEOCeSSQS; RMi as in the»centralized‘case, sending to the

tlansartlon manaqer TMg of node 2 the approprlate data values, TMR
is respon51ble for assemblxng the Final answer to the tran<action s read .
message. A write message is processed likewise.

It‘should be clear that.the scheduler Qperates exactly as in a
centxalized database systéﬁ, The breaklnq of messages, forc&d by the
@istributed nature of the database, does not affect schedullng at all.

Hence, the concept of log in Section 2.1 and all the results in Sectiéns 2.2
and‘ 3 hold heré'Without»changé;' Heﬂce,‘éonstructing a"geﬁeraivburpose
scheduler for serializability presénts no new problem.

Finally,’ we obherve that an aggressxve scheduler constructed along the
lines of Sectlon 4 will be functlonally identical to a centrallzed locklng
scheduler for a dlstrlbuted database system Boﬁh require sendlng a -
message to the centralized scheduler (a lock request in the second case},

before each local data manager can service a transaction operation.

5.2 A Pistributed Database System with a Distributed Scheduler

D1°tributed database systems with distributed. cchedulerg dlffer from
the model in Section 5.1 in that thcy havc a set SC {SC ,...,SC } called
a distributed Schedﬁqu, instead of a centralized scheduler. The trans-
action mpdgl xemaiﬁs ﬁﬂe‘samé(_bpg thevquges$ing of operations differs
considéréb%y;”‘Lgt ,Tk' be g tfangagtion rpqniﬁg‘on node £, Each. read
Operatioﬁ“of .Tk‘ isﬁ?roken by T“R intg}a set of read messages ‘RMl,.,.,RM

with readsets RS ,...,RS , which are sent to the schedulers 8C, ,...,scC.
: . 17 qn oo R : iy g

7.

3]

The messages are generated sc that RS = Ugmlvﬂsi and Rsi =V i oin
| 3%
f1,ql. SCi and DMi process RMi as in the centralized case, except
B 3
that Dmi sends back to TMQ the appropriate data values. ng' then

3 . _
assembles the final answer to the read operation. A write operation is
pxocessed'likewise, The begin operation of Tk is absorbed by TME’ which

sends a begin message to a scheduler when T accesses that scheduler for

Rk
the first time. The end operation and end messages follow a similar
procedure.

For each node i, we define the local reduced wutput Log h and the
relatlon PR{h } as in Sectlon 2.1, except that we use tg;’alphabet
Zi = {B 'Ej'R)k’w /i k €nu}. If h ,.@.;h are the local red§??§:§utput
logs of the nodes in N, a gZobaZ reduced autput Zog h of tha dxstrxbuted

database system is any merge‘of h ,...,h renreSQHﬁlng a DQQSIbXP execution

1
of the transactions, Note that, erespeutlve of thJs last assumptlon, since
V. nv} ”ﬂ, ‘we trlvx.ally have
PR{h] = U PR{hi}
i€n

Using the concept of a global log, we can define the notions of general
purpose distributed scheduler and aggressive or conservativa.strategies.

We now briefly discuss the concurrcncy control problem for these
systems, concentratlng on the: pxoblcms of using the reqults of Section 3 to

construct an aggressive gener al purpo 33! dlstrlbuted schedulet~

The refined CPSR strategy rcmalnsythe samé, if we consider the global
log. A way to implement it goes as foilows, sci, the scheduler residing
at node 1, will keep Ac{hi}. S[hi}, PRT{hi]*‘oPRLhi}l§Q§hi1 and SO[hi},,
exactly as discussed in Section 3. Note that SCi can update its own

information without consulting other schedulers.

However, grénting termination to a transaction raisés two difficult
problgms. Suppose that transaction >Tj requcsks to terminaﬁe by writing
on the databé$e stored at nodes in the.sﬁﬁ J ‘ﬁia méssaqas w?; k:Eﬁﬁ,.LQt
hi bea thg cﬁrrent reduced output log at nd&e_ i. Then,\tp grant termination

to Tj(we have to apply the test {(which is a correct improvement of the

method discussed in Section 4):

k(M ?RTIh{]*o-PR[hi}[AC[hi})k

where hj=h), for Z€N-J, and hi is obtained by adding w’; to hy,
k€J. Hencg,:we must face two pnéplemsf,
fjaQPIYing the test may reqégrq ¥isiting.several, if not all nodes of:
~the network;
5-9%}fpo§es,visited must be properly synchronized so that we o6btdin a

correct picture of the information about their lécal logs we' hneed.

The foilawing example illustrates the situation.

EXAMPLE 5.1: The following scenario illustrates the problem of testing

if a transaction may terminate. .

tlme l ! 2 . . 3
nodes TR AT) n
. Tessage: Ri[xl' wj[xl o=
| precedes | g i<y | a<§
‘1me93age: 'R.[YT W‘ty} -
" |precedes | 4 | i<k | i<k
mossase [wm |- e
| precedes % g k<i?

33w

At time 3, transaction T, sends wi[z)' to sC, and requests to terminate.

i
Although Ti had not visited‘noae b, its tgrmination request depends on
informatiﬁn stored there to discbvef the cycle L <3<k <i. Moreover, thg
timeliness of such information is crucial. It is worth roting that the node
b problem can be generalized to a cycle spénning any number of nodes. 7
We can éircumvent the first problem by choosing one of the local
schedulers, say SCy» as the master scheduler, which is responsible for
keeping at all times" UiEN PRT[h, ¥ °PR(hi]{Athil. Each local scheduler

sC; must then ‘send to S . any changes made to ‘Pm:*[hi J* e BRI 1]ACIH, 1. :

However,'we know of no straightforwﬁrd way to solve thg secd@d‘problem;

without introducing excessive inter-site commuhication. and, Qe doubt that
aystraightforward solution is possible. Therefore, the applicabiiity of the
refined CPSR strategy to the construction of distributed schedulers is left

open pending further investigation.

w3
6. CONCLUSIONS

The main result of this paper spells out héw to implement CPSR
schedulers witﬁin‘practical space bounds. We emphasize that, although CPSR
was suggested gslﬁﬁeqxetically‘a_way to synchronized database systems, no
correct\praptical implgmentatipn existed.

W¢,suggestbihat furthex wdrk_shculd be done in two directions. First,
investigate undergwhatﬁconditionsIis CPSR superior to two-bhaseilocking“,
Second, study the feasibility of constructing distributed CPSR schedulers

without excessive intersite communication.

36w
REFERENCES

[BEl] Bernstein, P.A., Shipman, D.W., Rothnie, J.B., Goodman, N. “The
Concurrency Control Mechanism of SDD-3: A System for Distributed
patabases.” ACM Trans. on Database Sys. 5, 1 (March 198C), pp. 1-17.

{BE2] Bernstein, P.A., Shipman, D.W., Wong, W.S. "A Formal Model of
Concurrency Control Mechanisms for Database Systems." IEEE Trang-
actions on Software Engineering (May 1979).

[call Casanova, M.A., Bernstein, P.A. “"Goneral Purpose Schedulexs for
Database Systems.” Acta Informatica (to appear).

fca2] Casanova, M.A. "The Concurrency Control Problem for Database
Systems.” Ph.D. Dissertation, Harvard University (Nov. 1279).

{Es] Es@aran, X.P., Gray, J.N., Lorie, R.A., Traiger, I.L. . "The Notions
of Consistency and Predicate Iocks in a Database System.® CACM 19,
11 {Nov. 1976}, 624-633.

[GAl Gardarin, G. and Lebeaux, P. "Scheduling algorithms for Avoiding
‘ Inconsistency in Large Databases.® FProc. 1977 Int. Conf. on Very
Large Data Bases, 501-516. :

{iB}] IBM "Information Management System Virtual Storage . {IMS/VS8) General
Information Manual." IBM Form No. GH20-1260.

[xu} AKung, H.7. and Papadimitriou, C.H. “An Optimality Theory of Con-~
currency Control for Databases."™ Proc. 1579 ACM~SIGMOD Int. Conf.
on Management of Data (June 187%).

{10} Lﬁrie, R.A. "Physical Integrity in a Large Segmented Database.”
ACM Trans. on Database Systems, Vol. 2, No. 1 {Maxch 1977}, pp. 91-104.

[PAL} Papadimitriou, C.H., Bernstein, P.A., Rothnie, J.B. "Some
Computational Problems Related to Database Concurrency Control.®
Proc. of the Conf. on Thaoretlcal Computer Science {Aug. 1277},
275-282.

[pPA2] Papadimitriou, C.H.. “Serializability of Concurrent Updates."
JACM, Vol. 26, No. 4 (Oct. 1979}, pp. 631-653.

[RO] Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M., "System Level
Concurrency Control for Distributed Database Systems.® TODS 3,
2 {(June 1978}, 178-193.

{sC] Schiageter, G. "“Process Synchronization in Database qystcmo v
TODS 3, 3 (Sept. 1978), 248§-271.

feisTl

{TH]

o B TF .

Stearns, R.E., Lewis, P.M., Rosenkrantz, D.J. "Concurrency Control
for Database Systems." Proc. of the 17th YEEE Symp. on Foundations
of Computer Science (Oct. 1976), 19-32.

Thomas, R.H. “A Solution to the Update Problem for Multiple Copy
Databases which Uses Distributed Control.“ TODS 4, 2 (June 1979},
180-~209.

-3~
APPENDIX

THEOREM 3.1: Let DBS be a database systen.

iIf any reduced output‘lbg of DBS is in CPSR and all transactions

terminate, then DBS preserves consistency.

Sketch of Frcof;

Lét C be a computation of DBS and h = {L,S} be the correséonding
reduced output log. wé first observe that if two adjacent symbols in L,
x and y, are such that none_is a write or S{x) 1s{y) =@, then we can
C§mmuté their order in L withqut,affecting the final database state
produced by C. Now, since h €CPSR, PR[h} is a partial oxder. Let R
be any total order compatible with PR[h}. Since, by assumption all trans-
actions were executed.to completion in C, R is a total!érder on T, the
set of transactions of DBS. Using the previous observation about
commutativity, it can be shown that there is a sequential ccmputatioq Cf
of the transactions in T, one afte; the othef in the order dictated by R,
such that € and C' have the same initial gna.final database states,

Therefore, we may conclude that DBS is serializable.
THEOREM 3.2: Let h={(L,S} be in WLOG.

(31 € M) (i PRIK} i) iff (3In' €PREFIX(h]) (35 € 20} (3 PRIL)Fincin19).

Proof.

{*} The result follows trivially since PR{h*}<PrR[h], if h' is a prefix

of h.

wn 3 o

(+) Assume i PR{NIi. Let C=(ij,i ,....d i) be the smallest cycle
in PR[h] containing i =1i. Let h'= {L°,S') be the smallest prefix of

0
h such that € is also a cycle in PR[h’]‘a Then last(b_') E{Ri-m’wi m}“

for some m in (L1, and j in [0,k]l, as otherwise h' is not the

smallest such prefii. But‘tifxe;n 13 €AC{h'} Hand ‘we are done. o
THEOREM 3.3: For each h={L,S) EWLOG, define S'[n}:{R,w} Xacih] ~*~:2"
as follows:
{a) 1f h= (A, @), then 5'[h} =g.
(b) 1f last(n) £{g /k € ml},
then for each i Encih] and x€{r,w}

s'{h]{x,i) =if i €AC[h"] then @ else S'[h 1(x,i)

{c} If }g_él_;_(m =E.k, for some kim, Y,han_ﬁor.each:. _x€{R.W}
(i) for each i€nC(n] such that =i(PRTIn]* oPRIAIIACIADIK
§* [h] (x,i) =§' [h7) (x,i)
(ii) for each 1i€ACIhl such that i(PRT{n]* ¢PR[h]]AClh])k

¢ S'Ihl(x,4) =S'[h7] (x,1) US' [B] (x,k) USgEhL bx k).
»Proof,{ We pfovg that S."[h] ==V'S' {h], for any log h= (L,S) ¢ by ‘induction
: on IL! .

basis: |L}=0. . Trivial.

induction step: Suppés.;e that for all logs g = (K,R}, with___-!}(i‘lﬁv_n,
5'[g] =S{g}l. Let h=(L,S) be a log such that _IL[-.:n +1. . We prove

that S'[h] =S{h]. ILet i €ACih} and x€{Rr,W}:

1

case 1: . Suppose; that, last (L) ¥ {P;k/ki €n}.

case 1.1l: i EAC[hnl . We trivially have

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

O

S*{hl(x,i) = §[hl{x,i} = @
case 1.2: i €AC[h }. Since PRT[h] = PR[h'] and by the induction
hypothesis, we have

s*{h) (x,i) = §[h 1(x,i) = S[h}(x,i).

case 2: Suppose that last(L) =E for k€ mu.

K’
case 2,1: -i(PRT(h]* o PR[h] IAC[h])k.
We first observe that i =k is included here. We have to prove that:
s{hl{x,i} = s'[h"] (x,i)
By assumptions, we have
i prrin)*y ife i pRE(RTYS

Phen, by (4}, definition of ‘§[h} and the induction~hgpothesis, we

have:
Sh){x,i) = SIh 1(x,i) = S'[h 1(x,i).

case 2.2: i(PRT[h]* o PRI[h][ACIR])K
We have to prove that
§Ihl(x,1) = $'[h7)(x,1) US*[h] (x,k) US,[h] (x,K).
That the r.h.s. of (6) is a subset of the l.h.s. follows trivially.

We prove that the l.h.s. is a subset of the r.h.s. From the definition

of S(hl(x,i), it suffices to prove that Solh}(x,j) is a subset of
the r.h.s. of (6), for each j €M such that i PRT[h]'3.
case 2.2.1: I=k. fTrivial.
case 2.2.2: i PRT(h 1 jAj#k.
By assumption of case 2, we have:
8401 (x,3) = s, 1(x,9)
Therefore, by definition of S[h] and induction hypotheﬁis; we have:

Sl (x,3) es° [h™) (x,i)

,..41'..:'

-4
case 2.2.3: 41 PRT{h] jAJ#k

By assumptions on i,3 -and %, we have:
. + +,
{9} i PRT[h] k Ak PRPIR] j
Therefore, by definition of Sih} {x,k)} and {9}, we have:

(10) . Syh](x,3) <Sinl (x,K)

Now, by (10) and case 2.1, we have:

(11} So[h} {x,3) €5*'[h] (x,k}.

THEOREM 3.4: Let h=(L,S) be in WLOG.

Define PRD[h}; PWR[h}, PTE[h}Crnmz as follows:

(i) i PrD[hlj =1 €aclh}) AE&k(Rj =last(L) A
k

(8o {h1 W, 1} NS(R.) ¥P AL ¥ VSIh T W,1) NSR, Y #8))
Jx Ix

(1) & PWR[h]S =i €AC[h] AZK(N, =last(L) A
k
((S,[h1(W,1) USIn] (R,4)) NS,) #BALET v
Jk
(STh™) (,4) USIR 1(R,1)) NS(W,) #0))
k
(i1i) i PTB(h]j =B, =last(D) A (PRTLR] - o PR{LT] IACTHD)S

Then

(a) PRT{h]* o PR{h]IAC(h] = PRT[h™I* o PR[h] IACIR]
U PRD[h]
U PWRLh]

"4 PTE{h] o {PRT{h 1* o PR[R"1IACIR]),

) prih} lAacm) = (erTEhIY e pr(b) lace) T

-2

Proof,
(a) The r.h.s. is trivially a subset of the l.h.s., g0 we only prove

the converse. Let p and g be such that

(1) p(PRT[h]* o« PR[h] lAC[R])q
case 1: L;(FR'I;[h*]* oPR{h"}IAC[h])g. Trivial.
case 2: -~p(PRT[h]*¢PR[h]1|AC[h])q.
case 2.1: last(L) =Rq , for some_. k € .

| 4
By (1) and assumption, there is r €m0 ‘such that

(2) p PRT[h J*r Axr PR{hlg A~r PR[h 1q
| By {(2) and assﬁmption of case 2.1; we must have:.
(3) | Soih 1(W,r) nsmqk) #9
If p#x, by dafinition of - Sfh }, we have
(4) splh"l (W,r) ©Sth'] (w.p.)
Hence, by (3), (4) ‘and definition of PRO[h], we obtain
(5) . p PRD{hlq}

case 2.2: last(L) ==qu, for some k€ M.

Similarly to case 2.1, we obtain

{6) p PWrR[hlq

case 2.3: last(r) €{s ,E'}.
= q' g
(7)‘ p PRihlq = p PR{h 1q
Therefore, by a'ésump:tion of case 2, we have

(8) 4p (PRT[h]* o PR[h] IAC[h])q

which contradicts {(1).

(9)

(10)

(11)

=
}ot
18
S

{13}

the

(1)

~43~

case 2.4: last(L) € {Rrk"wrk'nr}" r'#q, for some k€M,

Follows similarly to case 2.3.

case 2,.5: last(L} ==Er, r#q.

Then, by assumption of case 2, (1) can be rewritten as:

p PRTIhI*x Ax(PRT{h]* o PR[h] IACIh])g

By assumption, definition of PR[h] and PRT[h], we have:

r(PRTIh 1* o PR[h }IAC[h])q

If r=p, we are done. So assume ¥ #p. Then, by (9} we have:

p PRT{h]* o PR{h]x

Again, by assumption and definition of PR[hl and PRT[h], we have:

p PRY[R]* o FRIN Jr Alast{L) =E_

Hence, from {10}, {(12) and definition of PTE[h], we finally obtain:

p PTE[h] o (PRT{h }* «PRIh }IAC[hl)q

This completes part {(a).

(b} The r.h.s. is trivially a subset of the l.h.s., so we only prove

converse.- *‘Let p and g be such that

p PRIK] T |AC[h]g

Then, there is a path P= (po,pl,...,pm) in PR{h] such that P=p,

and q=p_ s for some mw& M. Let P,

1

pesealy , with ©<i, <m and
K St s

1 <j <k, be the set of all elements of P such that P; €acihl.

Then, by definition of ACthl, we have:

3

(2) P, (PRT[h]* o PR(B] IACIN1)p, for each 3 in. [1,k)
3 | TS o

which implies that

(2) p(PRTIR]* o PR[N] Iacihl) g .

