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Abstract

Current closed queueing network models suffer from  a
severe limltation since they require that the number of jobs

1n»the system beyﬁlxad. However, -in actual systenms, . the
number Qf jobs multiprogrammed in each job class is not fixed
but varies dinamically depending on the nature of the * class
and on the amount of memory awulable for each class. This

paper presents the ‘solution of a. multlclass queuelng'“ network
model in whlch the nunber of jobs of a given class. is not
flxed but varies within a given range.

* Partially supported by Financiadora de Estudos e Projetos
(FINEP), Brazil.



1. INTRODUCTION

Queueinyg network models .of computer systems have galned4
considerable attention from the performance analyst 1n the
last few years. The first analytic results in queueing networks
are due to Jackson [1 and 2} and Gordon and Newell [3]. In
1971, Buzen [4] introduced a conﬁenient model of multiprogrammed
systems - the central server model -~ and presented [4 and 5]
efficient computational algcrithms for closed queueing networks.
Baskett, Chandy, Muntz and Pala01os [6] extended the theory to
allow multlple classes, different quﬁuexng dlSClpllnes and non -
exponential serves. .

In 1976, Buzen [7 and 8] introduced operational . analysis
and explained why some of the classic results in queueing theory
hold even when the assumptions upon which they were based are
not verified. Later, Denning and Buzen [9 and - 10] applied
operational analysis to the study of Queueing networks. Bouhana
[11] gave an operational treatment of'centralized gqueueing
networks -~ a geﬁexalization of the central server model. Roode
[12] extended these results to treat multiclass queueing net-
works. o S _

All closed queueing netwdrks models suffer from a
severe limitation since they require that the number of jobs in
the system be. flxed.‘ It turns out that in actual systems, the
number of jobs multlprogrammed 1n each job class is not- fixed
but var&es dlnamlcally depending on the nature of the clasé
and on the amgunt of memory avallable for each class. In = this
paper we present the solution of a multlclass queueing .;netﬁork

model in which the number of jobs of a given class i (1<i<R)

is not fixed, ‘but is allowed to vary from’ zere up to Ni}_: iLét‘
a conflguratlon be a tuple (n 1,.5,,n oA auch that n, is the_“" ’
current number of class 1 Jjobs being mnultiprogrammed. We

present here an algorithm to obtain performance measures (e.g.
throughput, response time) for each job class, averaged over
all configurations observed during an observation period

Section 2 presents the computer system model con51dered
here and characterlzes the tvpes of woarkloads analyzed Sectlon ’
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3 presents the ‘corresponding’ qupuelng network modal Section 4
shows how to thaln the normalization constant for: the solution
of the network and section 5 contains the derivation of several

performance measures basad on the normalization cmnstant;j”r'ln
‘sagtimn.ﬁ; the problem of a variable degree of multiprogramming
is solved. Finally, section 7 establishes a parallel = between
the operational and stochastic approaches to the model introduced
in.this paper.

2. COMPUTER SYSTEM MODEL AND WORKLOAD CHARACTERIZATION

Our model of a computer aystem consists of a ~ central
subsystem which contains the CPU and I/0 devices.

A collection of t@xmlnal% outside the central - subsystem -
0r¢g1nate tlmesharlng and tran%dct¢on processing jobs. which
are executed by the central subsystem along with batch.jobs. .
(see flgure 1)

o o CENTRAL
¥ TERMINALS - v ' SEBSYSTEM\_
Figure 1 - Computer System Model
Let us describe below the three tybes of : Wsrkloads

considered in our model,'namely batch, timesharing and
transaction processing. '

The batch typuv of class is characterized by theay@x@e
&egree of multiprogramming of that clas We assume that a
contlnuous backlog situation exzsts for batch jobs. In:. cher
words, a batch that terminates is 1mmedlate1y replaced vby an
identical job. For thlm type of class the maln ~ performance
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nmeasures are the throughput and the turn-around time.

The. tlmesharing class is described by the number of
terminals, by the averago think tlme and by the maximam level‘
of multlprogrammlng for this class. Think time is défined as
the intérval between a respohse'tm'a terminal dnd the submissxou
of a new command (job) by the same terminal.  The main pen&mmenee
measures in this case are responaa tlme and throughput

Finally, the trdnsactlaﬁ pr@cesalng class is dhmmmiﬁrlzad
by the average transaction arrival rate to the central sub-
system and by the maximum level of multiprogramming., The main
performance measure in this case is response time.

The ex1stence of these three types of workloads implies
that a multiclass queueing network is needed. A job class
characterizes a cémmon behavior and resource usage  statistics
observed for a collection of jobs. We consider the existence
of R classes numbered from 1 to R; Each class may be of one
of the three types described above, i.e. batch, timesharing and
transaction processing. However other types of claéses may be
imdgined. The methods describes in this paper work as well
for any type of class, provided one can derive the fractlon of
time that the system is in a given state, in terms of the
throughput for that particular class.

‘The central subsystem is assumed to be a.  centralized
network, as introduced in [11]. Figure 2 illustrates such a
type of network., As it can be seen '

R
qoo
”1‘ // ‘ i
, -~ CLOSED
‘ | NETWORK
\ziﬁtln 7 0 ) L | - x}>,
() T oA ..
CENTRAL =2y gy N
SERVER

Figure 2 -. Centralized-Network
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a centralized network is a generalization of the central server
model [4] in which aside from having a. central server (possessing
-a ldop), the rest of the netwark ‘can have an arbltrary:hxxﬁogy.

The loop around the centr&W server raprusents ra

«

conceptual exit of a 3oh Fram the system, i.e. a fractlon q
for l<r“R, of all cla xr “eabs that leave the centraJ server are

said to leava th@ system an are lmmedlate]y replaced by a new job

of the same class. The eonccptual ex1t 15 an extremely
interesting wodeling device since it allcwa us to consider
arrivals and departures of jobs in a closed network. Section 3
ﬂxnlcres 1n more detail. the advantages of- cansmﬁerlng a centralized
netwerk

3. QUEUEING NETWORK MODEL

‘This section.presents the quantities which describe the
queueing'network model used to model computer systems. Consider
a queueing network consisting of M devices. (e.q. prccessor ‘
i/o devices). Jobs in the system may belong to any cne of R
classes. Jobs ére not allowed to change classes.

n,. = number of class o jobs at device 1i.
R s »
n, = rél'nir = number of jobs at device i.
M
Nr = ié n,. = total number of class r jobs
R o | ,
N = rgl Nt = total number of jobs in . the system.

We assume that all deviees in. the network have a load
independent behavior, i.e. the time a job takes to be serviced
at the device does not depend on the size of the queue at the
device. Let us now define the"ba31c Qperat;onallgugnt;tles of
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interest. These'quantities represent data collected during an.

observation
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number of c¢lass r Job artivals at device i

number of times that a class r Jjob requested
service at device j immediately after being

serviced at device i. C°

ir is the number of

class r Jjobs that leave the network immediately

after leaving device i.

number of class ¥ Jjob completions at device i.

cmx is the number ﬁf c%aSS r exits from the
1 = J = .1, ¢
network. C . jgl cir and Cor jélﬁ ir

‘ throughput of class r icbs at device 1.

P K he o1 a X7 €
Bip = Cip /T X :Ls.tnv clase r system throughput

total busy time of device i for class r jobs.

average service time of class «x jobs at device

1. 83, = By /Cyn s

average number of completions of class r jobs at
device i r class r job system exit. V., = /

e i i 3 - C. C%r’vir
is also called average number of class r job
visits to device i, or device i visit ratio.

average usage of device i by class r jobs .

Yir = vir Sir",ThlS is the total amount Cof-

service time accumulated by a fjob in all visits

to device i averaged over all class r fobs.

utilization of device i by class r jobs.

U, = Bir/T = X, 85, .

ir ir 1r

3.1 - Network Solution

A netwérk state n is defined as p = (31’32"“’n%>

=5
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where .Ei is the state of device i given by

'n; = (n l,‘n PYRERY niR),
In order for n to be a fea51ble network state it
is necessary that
M R

15-1 rf1 Pyy =N

Let T(n) be the total time that the network was in
state n durlng the observation period. The proportion of time
that the system is in state n is given by

T(n) o

e

and ' z p(n)
possible states n .

1 where the summation is over all

‘The solution to-the network was shown by Roode in"t123‘
to be o '

1 M | '
p(n) = £ .1 F, (n, ) (2)

where @ is a hormaliéétion constant calculated so that
g p(n) = 1, and

{1 if By = 0 C(3)

Xir Syr(n ir)Fir(nir-l) if 1n;,>0

F r(nir) =

3

Since we are only con51dering load independent dev1ces,
we have that:

n, =
(X, 8. * ¢for

F:i.r(nir)»:= ir Tir nir20 (4)

‘The solution givén in (2) assumes that job flow is
balanced, i.e. arrivals equal departures at each device. There
fore the troughputs Xiil must be a solutlon of

M . o
= J : M ‘
xir jgl xjrqir for 1l<izMm (5)
where qgr is’ the fraction of class r jobs that move to
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device i after leaving device 3. The qgr are called
routing frequencies. As is true of any eigenvector equation ,
the values of the X (1=isM) are not uniquely determined .

ir
Any solution of (5) may be used in (3). 1In particular, since

v a cir - ci’r/T = xir (6)
ir Cor Cor7¥ Ror
we may use (6) in (5), yielding
o= ’ j O
Vir jgl Vir 9ir )
Equation (7) says that the visit ratios are also a

solution of (5). 1In the case of a multiclass centralized net
work, it can be easily, shown, following an argument similar to

the one in [111, that the visit ratios may be uniquely
determined since the c¢lass r wvisit ratio for the central server
is l/qor. Therefore, if we use Vi in place of X, in (4)
we get

n

= ir . =
Fir (nir) = Yir if n, >0 and 1 if n, =o (8)

Notice, the important fact that in the case of a
centralized network, the network solution may be obtained
directly in terms of the average resource usage Yi which are
far more simpler to measure than the routing frequencies that
would be necessary to solve (5).

The network solution can now be expressed as

=1 ¥ Py Py %R
Plo) =gy ¥y ¥35%.- Yyg

It should be emphasized that no assumption regarding

service time distribution was made in {121 in order to
obtain expression (2). However the following operational
assumptions, which are defined in [10], must hold for
expression (2) to be true:



Flow Balance: arrivals equal departures at each system device

or network state.

One~3Step Behavxmr* thn only obsexv&hlw state chdngea ssulL
from 5&ngl@ jobs elther entering oxr leaving
~the system, or moving from one device into.
énsther“ |

Device Homogeneity: the ocutput rate of a &evice is independent
of the system stata and may be ﬁepend only on
the gueue size at the device,

Routing Homogeneity: ‘the routing frequencies between  devices

independ on the system state.

4. CALCULATION OF THE-NORMALIZATION CONSTANT

Computatlonally efficlenf alqorxthms for calculatlng
the normalization constant in closed queuelng network were
first presented by Buzen in [4 and 5]- Balbo et al [13] give
solutidnvtechniques:for'the case of multi-class models in
which jobs may change class membership. Williams and:
Bhandiwad [147] suggested a generating function approach to the
analysis-of multi-class queueing,neﬁwarks in which jobsﬂ' are
not aliowed to change class membership. They onlyvgive
expressions for the case of two classes only.

-In this section we use a generating function approach ’
in a similar way as in [14] , to derive an expression = for
the normalization constant for the case of R job classes. ‘

The normalization constant G is defined as
iz Msmr

Y. aea Y., 10
G n cs(N M, R) % Y iz ¥1R ‘l )



where

S(N’M’R) = {E‘s (nll,n12’ . .’an,nzl, . ..,HZR, - ..,nMR) ]
' M ; ' ‘

12y, = N_ &rgl N =Ng& nirzo Vi,r}

' Let us define the generating function of device i as

ey oS _ oy
fi(Tl,Tz,...,TR) = ;Lo (Y Ty + Yo Ty +oeet Yyp Tp) (11)
which yields
o o 1 ‘
(T Torees,T,) = — (12)
ittirt2rtctrtR | -
1-(¥y, Ty f...+ YiRﬁTR)

Let us define the network generating function as

M
g(Tllvnoa’ TR) =i]}__1 fi(Tlpo-n' TR) (13)
It can be easily seen that G is the coefficient  of
' Ny N2 NR . )
term Tl Tz.... TR in g(Tl,..., TR). Lg G(Kl,..., R
Kl K2~ K

.. . R ;
be the coefficient of the term '1'1 T2 ...TR in g<Tl"'f'TR)'

Define now

it

gl(lecno,. TR) ‘ fl (Tlroo-, TR) (14)

and

]

gi(Tl,.f., Tp) fi(Tl...., Tg) gifl(Tl,..., TR)

for 1l<isM (15)

_ Let G'(Kl"“' KR) be the coefficient of
R ?R in gi(Tl""' TR). Using (12) in (152 we get

T
R

+ .(T veo, ) %‘ Yi,. T - (16)
EFRR K '*rir2] *ir "R

gi(Tl' 0,'-0’ TR) = gi_l (‘leqoo" T } -+

10



5 o R
P l Tt R
both“sides of expression (16) it follows that

Equating the coefficients of the term T at

Gi(‘Kl"..' KR) i (vlpu.e,1< ) 4

Gy-1

* - (17}
-r=1 j‘IG (&{ ’-u.,h{ l"..,.KR)

where 'Kly..., h, represent the number of jobs £rom classes
2 ,

l,...,vR respectively.

Expression (17), along with the initial conditions

given below, provides a computationally efficient way of
calculating the normelization constant.

Ryseeer Bl =1 iF R = ... = K= 2
Gy (Rpseees Ko) i K, Ke=0  (18)

and P 4
{1 i K,=...=K_ =0
\J (—\}pk{gionagb\]?)} ) l KR (19}
i 0 otherwise

Firally, expressions (17) through (19) allow us to
calculate the normalization constant aos

5. PERFORMANCE MTASURES

Che of the nice properties of the normalization
constant is that several usefu 1l perforisance measures can be
derived freom it,

Let

pi(nil,...,niR} fon of :imc that flyqreeernip Jjobs

O
ki L]
e}
)
O

o4 clagges Lowhrengh | R, respectively, are

oy
o
(4
|5
Lot
!.‘-1-
o,
%)
Bt
(&)
b
G
h

device i, when the system
jobs of classes 1

Ui(Nl,...,NR)

contains NT,.,,, N,

i

threough B respectively.



(N utilization of device i by c¢lass r jobs,

.

l,...,N:T :

“when there are  Nl,...,N ‘jobs of classes

R
1 through R, respectively, in the system.

system throughput when the system contains

e

| X (Njseea M)
l""' NR jobs of classes 1 through R
respectively.

X r(Nl""’.NR)"z throughput of class r jobs when the system
contains Ni,..., NR jobs of classes 1
through - R respectively.

Qi£(Nl,...;NR) : average.number of class r jobs present at
device i when there are Nyse.. Np  jobs
of classes 1 through R, respectively, in

“the system. '

5.1 - Marginal Proportion of Time

- The proportion of time that zil""'kiR jobs of classes
1 through R are present at device i is given by

Py (£yqrennslyg) = nls (v, m) P {20y
whg;e
Si(N,M,R) = {ﬁz(nll'an"'ﬁ'an'n21""'n2R"‘"nMR)!
j§1 njr= r & rél Nr é N & nerO for J#i &
‘*nir=£if Vﬁ,r}

The summation of equation {18)  can be calculated

using genérating functions. In this case the generailng function
211

of “device i,,fi,‘can only have a.term in . Tl cae T .
If we consider Leibniz formula [15]
(atbtot...+0)" = & | ni a%Pf... ¢

0B+, . . +A=n (alBl...nt)

12



one can See that the generating function for device i must be v

equal to
' ) - (Eil+...+£iR)! - T)Lil v T)t
R Zill...LiR: il "1 Tt iR "R

' (21)

iR

*
fi(Tr"» n‘.' T

Now, the generating functlon to calculate p, (ﬂll,...,ZiR)

is glven by

h(T - g(Tl,..., T_)
l’.l"

R T ETT T T « £ (1"”'T) | (22)

R%

The summation in (18) can now be easily obtalned by
dividing the coefflclent of Tll . TRR in h(Tl,..., T ) by
G (Nl,..., N ). Using (20), (21) . and (22) we .get

3

P' (z 2 ) _ (‘eail+o - o+‘e R) . zll YziR x
s . Feway . bl 5 ] 3 (] LRI
i'7il iR lil"”le‘ Yi1 iR
R | o ‘
X [GM(NI—'eilp-.o,NR—'eiR) —rél er GM(Nl £ l]a--'N'—z 1’-..'N,R-£;§_R)
GM(Nl,..., NR)

(23)

5.2 - Utilization

The utilization of device i :is given by the expression

below,
Ui(Nl;foo, NR) = 1 - Pi(nily--c, niR) (24)
where Nip & eee = n;g = 0.
Using expression (23) in (24) we get
R L -
. ; Y G (N P I N"'l LI 2 N)
Ui(Nl,-.-,NR) = r.l lr 1 4 ’ . R (25)

G (leoua’ N )

The utilization of device i by class r jobs is
defined as '

13



N N.
K : T R n.
U Nyge ey NGY= B0 00e s Iy IO, iy : noy
ir 71 R nyq" Nip=L =0 TR Py Ry ey

iR
(26)

Replacing (23) in (26) and after consxderdble algebrala

manipulation, it fcllows that
ir G (Nl,e.,,N *,@.», N )

o N ‘F e ae N = g
15:(_ 17 e e Ng) G Ny <<y M)

(27}

5.3 - Thﬁoughgut

From (6) we know that Vir = mirfxor' But since

Xip = Uir/sir it follows that .

X, i U,
X - ar r ok (28)

°r  Vir Vi Sir iy

Using (27} in (28) we get
CppNyren )N, 1,..,,1\1)
‘{ (Nl’-oo’N ) = G (le.-.gNR (29)

The total system throughput, Xo, is the sum of the
system throughputs for all c¢lasses. Hence,
R v
Gy (Nyy e e N “1, ... Np)

- r*l : i
X5 = Ty W, N 30)

5.4 - Average Queue Length

The average queue length at device i, or equivalently
the average number of jobﬁ‘at.device i (including those getting
service from the device) is given by the expression bellow,

N, N Np ;
Q (N }-ol,N ) = z__; e » B Z:: ® 8 o Ez 'n. p- (n. ;-a-yn- :n';o'n )
r' 1l R nyq 0 nir.O niR 0 Tir FitMil ir iR

(3L¥

where pi(nil""'nir"“"niR) is calculated from the expression

14



in (23). After considerable manipulation of expression (31) it
follows that

N N, (n,+...+n.)!
Qir(Nlr‘.“NR) = G (N l N )n goonn E l.-.n:ESO nl' n I} x
M l’ﬂ’t, r " R 1‘0000 R.
n n n '
¥ T | R. N -
x nl+,.,+nR X Yil iR GM (Nl nl""’NR nR)
(32)

6. Varying the Degree of Multiprogramming per Job Class

The central server model [4], which has been
extensively used as a model of multiprogrammed computer systems,

has a severe limitation in the fact that the ‘total number of
jobs in the system is fixed. This limitation extends to all
closed queueing network models. It turns out that in actunal

systems the number of jobs multiprogrammed in.each job class is
not fixed but varies dinamically dependinq‘on'the‘dlass nature

and mainly on the amount ‘of memory available for each class

during the period of observation.

As shown in section 5, performance measures can be
efficiently calculated as a function of the normalization

constant for a fixed configuration (N -+ N.) where N, is

P
the number of class i jobs in the s;stem. The procedure
introduced in this section allows one to obtain performance
measures for each class when several different configurations
exist during the observation period. In other words, we do
not require anymore that the number of class i jobs be fixed,

but we allow it to vary from 0 up to Ni'

A condensed description of the algorithm for class
composition will be given below. Sections 6.1 through 6.4
present the complete an formal spec1tlcatlon of the algorithm,
Some notation must be introduced first. Let C = {nl,.,.,nR)

be a configuration, where n, (1=i<R) is the number of class i

jobs in the-éy stem. During the observation period, several
conflguratlons C may'be observed. The subconfiguration g?
o

is defined as (nl,...,nff. €~ is the null configuration and

15



cR =C. Now, let. cf
conﬂiguxmtiung'iur+l,wga,nﬂ,. inus, Q; is the null I
configuration ‘and g+ = C. C may also be written as (g},g;).
The notation xor(*) will be used to denote the throughput
of class r jobs for configuration #*, TIet p(*) denote the
fraction of time that configuration * occurred. The goal of
the algorithm is to obtain the throughput of class r (1<r<R)
jobshaveraged over all configurations observed during the

Observation period. Consider the following Algol-like

be defined as the complementary sub~

description of the algorithm.

for r:=R step -1 until 1 do

, r,._ ror x, .
Xor‘s )i= gr Xor € ,g+)p(§+),
=4
for all ¢t = (gr_l,.nr) do

calculate pr(nrfgr"l) in terms of xbr(gf);
{these-calculations depend on the type of class r
(e.g. batch, timesharing, transaction}
end ' ‘ )
{ at this point we have XOl(g;) and pi(gl)}
for r:=2 to R do
p—e—g.i__r.‘; ] . r-..'l r-1
pr(nr) g= anl pr(nr;g yp(C™ ™) ;

o r-i r-1
xor(nr) := cg‘l X, (€ ,nr)p(g )

.

end
{calculate average throughput per class}
for ‘r:=1 to R do

N

x
XOI.' ' n

0 Xor(nf)pr(nr) i

Rt

6.1 - Batch Processing Class

The batch processing (BP) class is modeled assuming a
contintous backlog situation. i.e. as soon as a job of this
class leaves, it is substituted right away by another identical

job. Therefore, the number of batch jobs in the central sub-~
16



system (see figure 3) oscillates between two consecutive integers
Ntand NH' The average number of jobs in the system is N. -

CENTRAL
m>’ ' SUBSYSTEM

Figure 3 ~ Batch Processing

Let,
N: average number of batch jobs in the central subsystem.

X;tN): throughput of the batch class when there are « jobs
of this class in the system,

R: a&erage fesponse time df batch jobs.

Ny3  dreatest integer smaller than N. ({N})

N+ sméllest integer greater than N.(fNT)»

P(£) : fraction of time thatlthereﬁare £  jobs in the system,

I(L) : amount of time during which there are ¢ jobs in the

system.
If N is an integer, the average response time of
batch jobs can-be obtained from Dittle's Law ElG](l). Thus
N , _ v
R = (33)
XO(N) _

(1) The operational Counterpart of Little's Law was proved by
Buzen in [73, - - :

17



Let us now examine the case where N is not an
integes .

From the definitions of N, NL and NH and from our
continuous backlog assumption, it follows that,

p(NL) + p (NH) = 1 (34)
NL I(NL) + NH I(NH)

T.

If we observe that p(f) = 1(L)/T, expression (35) can
be rewritten as |

NL p(NL) + NH p(NH) = N (36)

From (34) and (36} it follows that

PN ) = Ny - N (37)

I

The average throughput is giVenfby’

X, (N) = p(NL)X(NL)+p(NH)x(NH) (39)

and the average response time of bétéh jobs can be obtained
by.applying Little's Result.

Hence,

R =,W (40)
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‘Since NL and’ NH are integers, 'the throughputs X(NL)
and X{NH) can be obtained from equation (29}, i.e. through
the normalization constant. Notice therefore that formula
(39) allowé us to obtain the throughput when the number of

jobs in the system is not an integer.

6.2 - Timesharing

Figure 4 shows a computer system devoted‘ekclusively
to the processing of timesharing jobs.

N_~N N ACTIVE JOBS -
L(N)= - ’
Ny, - CENTRAL
2 SUBSYSTEM.
TERMINALS -
S (N) = ok
3 " X

Figure 4 =~ Timésharing"‘CIass
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Let,;

Z : average think time (i.e., average time between the system
response to a user request and the submission of a new
request)

nhumber of terminals

QG =

maximum level of multiprogramming (i.e. maximum number of
active timesharing jobs in the central subsystem)

N : current number of active jobs in the system.

XO(N): throughput of the timesharing class when there are N
jobs in memory.

L(N) : average arrival rate of timesharing jobs when there are
' N jobs in the central subsystem.

M® average number of jobs in main memory

NQ: average numbér of jobs waiting for memory

ﬁsz average number of jobs in the central subsystem. ﬁs=ﬁQ+ﬁM.

p(N) : fraction of time that there are N jobs in the central
subsystem.

The analysis of the timesharing case will be lone
considering the central subsystem as a load dependent server
with mean time between service completions equal to
S,(N) = 1/X(N). Notice that X(N) is the throughput of the
central subsystem obtained, undér a constant load of ;N‘jobs,
i.e. studying the offline behavior of the centralusﬁbSYStem.
This kind of approach is the decomposition principle introduced
by Courtois in [17]. This principle allows the analyst to-
replace a subsystem by a single state dependent server. The
service rate of this server is determined by studying the sub-
system in isolation. ULittle error is obtained with thig
approximation if the rate at which transitions occur within the
subsystem is much greater than the rate at which the subsystem
interacts with the rest of the systém. However, as observed by
Denning and Buzen in [921, a theorem proved by Chandy et al
(18] asserts that if the product form solﬁtion holds for p(n)
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then the replacemant of the central subsystenm by an equivalent
server with:service rate determined offline yields an exact
result, ' '

Let us consider the central subsystem in more detail
as in figqure 5. 7If there are N jobs in the central sub-
System then min(N,J) Jjobs are in mémoxy. These jobs may be
in oné of three different;étates: ready (R), executing (E) and
suspended (S), If there are more than J jobs in. the central
subsystem, then thére willibe’ (NLJ),ﬁjobs Qaiting fof memory.
The central subsystem may now be viewed as being formed of a
server and a queue. The throughput of this server is equal to

XO(N) if N<J and XO(J) if N>J.

N, ~N
N - S

s Tz
TERMINALS e

" WATTING

(N)

max (0, N-J)

min (N, J)

Figure 5, Detail of Central -Subsystem

Let us write balance equations for.the fraction of
time, ‘p(N), that there are N jobs in the central subsystem.
If one assumes that the system is in operational equilibrium

and if one assumes single arrivals and departures [8] one can
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obtain the balance equations given below, follqwing an argument

similar to the one presented by Buzen [8] to derive = the
‘General Birth-Death Formula. ’
NT~N+1 ‘
o .
for  N=1,...,3 (41)
‘ S ,
~fér__’utna-fl,...,NT " (42)
We also have the normalization equation
-NT |
£§0 p{i) =1 _ (43)

. Setting b(O)#l va”obtain a first‘setlof values  of
p(N), for lsNSNT ;recuréiVély from equations (41) and (42) .
In order to get the true values of p(N) one must dividﬁ each
of the values obtained by the normalization constant C=i§gfp(i),

where the p(i)'s of the previous summation are the ones

obtained in the first place.

calculated as ; ‘
= e .
Ny = ;Z; ip(i) + JiZ; pii) (44)

The average number of jobs “in the memory is then

The average number of jobs waitind”fcr'memory may bhe

calculated as N -3

i py (i) | (45)

where pQ(i) is the fraction of time that there are i jobs
waiting for memory. The values. of pQ(i)‘are obtained directly
in terms of the values of pP(N) as follows.

Pyli) = p(i+d)  for i=l, ..., N-3 (46)
; J | ’
Po(0) = ;Z, p(i) (47)
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Thé*évérage nﬁmberIOf jobssin;the system is now given
by

NS = I}IM..-I- N ‘ | (48) .

N Notlce, that whlle NS could bé obtalned dlrectly as
lzg i p(l), the analy31s above yields several 1nterest1ng
memory utilization reports which include the average degree of
multlprogrammlng (N ) and the dlstrlbutlon of jobs in execution

and waiting for memory.

Let X(N ) be the central subsystem throughput when
there are N termlnals.

 From the values of p(N) one can calculate X(NT)vas

N

ey o Np
X(Np) = (o X (N) p(N) (49)

Job fldw balance implies that

» _ NT~N
_XO(N)»%‘—Eﬂf' (50)

Replacing (50) in (49) it follows that

N N, ,~N N N N,~N
T ~ T _1 jr _ pNg

(51);

Finally,'applyihg Little's law we get the response
time, R, of timesharing jobs.

6.3 - Transaction Processing Class

Figure 6 presents a computer system subject to a
load of transaction type jobs which arrive from ‘terminals at
an average arrival rate of I transactions per second.



b : ‘

7 CENTRAL
' SUBSYSTEM
‘TERMINALS - ‘
5™ = xtay

K

X (N)

Figure 6 - Trahsaction Processing Class

Let,
L: average arrival rate of transaction type jobs.
J: maximum level of multiprogramming for the transaction class

XO(N): throughput of the transaction class when there are N
transaction type jobs in main memory.

N: current number of active jobs in the system
NM,NQ and Ng: as defined in section 6.2.

p(N) : fraction of time that there are N jobs in the central
subsystemn.

Similarly to the analysis of the timesharing class done
in section 6.2 we are going to consider the central subsystem as
a load dependent server with mean time between service completions
equal tg SO(NJ = 1/X(N). The principle of dec@mpmsition is
used .again in this analysis. Let us consider the central sub-
system in more detail, as shown is figure 7. .Thére may be up to
J jobs in memory. The remaining jobs must wait for memory.
Therefore, the central subsystem is again viewed as a server
and a queue. The throughput of this server is X (N) if N<J
and XO(J) if N>J.
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TERMINALS - L

"N JOBS

/N

Figure 7 - Detail of Central Subsystem

Assuming that the system is in operational equilibrium
and assuming single arrivals and departures one can derive
balance equations for p(n) in a way 51m11ar to Buzen in
(81 . Let N be the maximum number ‘of jobs in the central
subsystem during the observation period. Then

p(n) = EETHT p{n-1) n=1,f.ﬁ;J k53)
- X

p(n) = sy pin-l) n=J,...,N (54)

o |

The normalization equation is

J-1 N*
ako P Iy B = 1 (55)

From {54) we can obtain the value of p(n) as a

function of p(J) for n>J.
nrd *
p(n) = ( L ) S n=J,...,N (56)

X, (J)
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*

If N is large and L<XO{J} we Ccan wxite(l)

N N* y n-J p(J) ‘
' - iR ) ~ (J)
Lo P = ks () e | 1- g 7
° X (3)

We are now ready to find the true values of 'p(n) for
any value of n as follows.

1. Set plol=l
2. Calculate p(n), for n=l,...,J, iteratively using (53). .

3. Use the values obtained in step 2 to calculate
- J-1

e I pm + R

n=0 L= oy
. X, (T}
4. Divide the values of p(n) obtained in step 2 by C. These
are the true values of p{n) for n=l,..., J. The true
value of pl{o) is 1/C.

5. The true value. of p(n) for n>J is obtained from expression
(56) where p(J) is the one obtained in step 4.

The average number of jobs in memory, ﬁM' is given by
J~1

Using (57) in (58) we obtain
J=-1
=L, ip(1) + R (59)

1e . gt
XO J)

Ny

The average number of jobs waiting for memory, ﬁQ, is
obtained by
Ny m.igl 1pQ(1) (60)
where pQ(i) is the fraction of time that there are i jobs
waiting for memory. Since (i) = p(i+J) for 121, it
follows that

Pg

*
| . N -J+1
(1) More precisely we require that&~-w*a

: <<1,
XO(J)
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. L i
o = yI; tp(i+d) = I [xO(J)} pla) =
] . . 9 L j'_‘ ~ X'(q)
}D(J) X(d) a( I )1§l [XO(J)) p(J) 1 L. 2
W : [ X (J)}
(61)

Notice that the distribution of jobs in memory is
easily obtained from p(n) as follows.

il

J
pQ(O) 1&g p(1)

(1)

e

Py p(i+d)  for i21

The average number of jobs 'in the central subsystem ,
ﬁs, is given by

From Little's law we obtain the average response time
of transaction type jobs, as

R = —2- (62)

6.4 - Composition of Job Classes

As mentioned already, queuelng network theory llterature
contalns algorlthms to analyze queuelng networks with multlple,?
classes. However, these results requlre that the number of jops
in the system be fixed. This section presents an extension to
the operational analy31s of queuelng networks that al]ows the
performance analyst to deal with models which contain multlple
classes of jObS and where the number of jObS 1ﬂ each class’ may
vary in a given range, determlned by the maxzmum degree of '
multiprogramming of each class. Therefore, the number of jObS
in the system is not fixed anymore Thls is achieved by the class
com9051tion algorithm glven ‘below.

First we'introduce the new notation used in this section.
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Then, we present the. algorithm followed by a set of explanatory
comments about the crucial steps. The reader is advised to
follow the algorithm and the comments in parallel.

Let,

pr(nrlnrwl,.;.,nl) : fraction of time that there are nr class r
- jobs in the central subsystem given that
there are n__,,...,n; jobs in classes
r=l 4..., 1 respectively.

pr(nr) : fraction of time that there are n. class ¥ Jjobs
in the central subsystem, independently of the number
of jobs in other cilasses. '

&;inl,...,nr) : throughput of class «r jobs when there are ny
o class 1 jobs,..,,nr'class r jobs, independently
of how many jobs there are of classes r+l
: - + -
through Ro FQI' I’—-R, XOI’ (nly L ,nR)
= X.or(nl,-aagnR) *

X, p(n.) : throughput of class x jobs when there n_ jobs of
this class in the central subsystem, independently
of the number of jobs in the other classes.

We assume that any class may be of one of the three
types defined in section two, namely batch, timesharing and
transaction. It should be noted however that there may be any
number of classes of a given type. |

Consider the graphical representation of classes given
in figure 8. This example will be used to elucidate the class
composition algorithm. There are three classes of jobs with
multiprogramming levels varying between 0 and 1, 0 and 2, and
0 and 3 for classes 1 through 3 respectively. Notice that a
‘path from the root to a leaf of the tree shown in figure 8
represents one of the possible configuratidns,’and the’tree_
represents all possible configurations.
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UL

Fxgure '8 - Graphical Representatlon
of three classes.

Class Composition Algorithm

Step 1 ~ Set r=R

Step. 2 ~ [calculation of class -r-'throughput 1. Detérminé'tﬁé
class r throughput for ‘every possible configuration
'(nl,;..,nR),zacgording to’ﬁhe'férmula*giVéﬁun below
and derived in section 5.3, i.e.,, calcilate

G (ﬂl'.'«-fnrnl,.;:_"nR)

X r(nlle-olnrlo--rnR} = G (nlpo-slnR)

for nlxo,.,.,Nl : nzmﬁ,wa,,Nz;_..; nR=0.....NR
Step 3 - [step 4 must be'skipped for¢blass’ R jobsj. If r=R
then go to step 5.

Step 4 - [calculation of class r throughput independent of
hlgher classes :] Determine the class r throughput
for every possible configuration (nl,.f.,n )
independently of “the: number “of jobs in' classés r+l
through R, i.e., calculate
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N

+ NR- r+l
X r(n¥’fwo’nf} mn ~0'.vr£fﬂxor(nl"'°’n ) X

PR(HR !nR_l’vunynr'oc',nl) X
X

L

pr+l{nr+linr,-¢w'nl)

for_,nl=QJfcprl;-fc;nrzoéonQ,Nr'

Step 5 -~ [calculation of cdnditional fractions of time]
U31ng the values of X (nl,”..,n ) obtained in the
}prev1ous step calculate the probablllty o (nrlnr 1,.,@,31}
for nl~0,,..,Nl,..., n. 0,...,N . These probablllties
are calculated accordlngly to the methods described in
sections 6.1 through 6.3 for each tvpe of class.

Step 6 - Set r=r-l1. If r2l then go to step 2.

Stgg z —.ﬁObtainingﬂ;he Unconditional fractions of time and .
' throughputs] Calculate. the Unconditional fraction of

time. Py (n ). for r=2,...,R and for. mn wO,e,.,N as
follows.

N. N

l r=1
p (n ) l__ooc.nii l__o p (n inr”lf-ov;nl)' x s

pr_l(ni—l'nr_zyoonynl)xaw-xﬁz(nzfnl)xpl(nl)

Calculate the unconditional throughput X _(n_) for

. or''r
r=2,...,R and for n =0,0..,N as follows.
. N r r
Nl r—1 +
X r(nr) = T ceep hX {(n ,.,.,nl) X

nl~0 r 1"0 or

pr“l(nr~llnr;z,.¢.,nl)x...xpz(nzlnl)xpl(nl)

Step. 8 - [Obtaining the average throughput for each class, over
all observed configurations]

Calculate N
N
Xor - n§=0 xor(nr)Pr(nr)
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for r=1,...,R.

Comments;on the Class Composition_Algorithm

Comment on Step 2: 1In the example of figure 7, one would
calculate  er(0,0ﬁo), X . (1,0,0),...,
X r(3,2,1).

Comment on Step‘4;"Let us first der:ve the 9xpre551on glven in
Step 4 for x (n n..,nr) Some definitions

are in order. Let

Cor(nl,.,ﬁ,nR) number of class r system completions

when there are ny class 1 ,jobs,...,nR
class R jobs,

number of class r system completions
when there ny class 1 jobs,..., n. class

&
Cor(nl,...,nr)

¥ jobs.
I(nl,...,nR)” ¢ amount of time during which there nl_class
1 jobs,...,n class R jobs.

R

Iy(nyye.eyn} & amount of time AQuring which there are ny
class 1 jobs,...,n_ class r -jobs.

From the above definitions we may write the obvious

relatlonshlps below.

+
C r(nl""’nr)

+ ] .
X r(nlp a‘- -:gnr) """ Ir(nl, .v..',nr}'b (63)

C  (n ,.;.,n ).
o . or ULt R
Xor(nl,ou-gnR) - I(nl'...’nR} (64)

+ NR ,Nr+l
C (n,,...,n ) = Zq N (n ,...,n ) {(65)
r'l r R" ) nr+l =( or _ R

Using (64) in (65) it follows that

+ - Ny New1r
L= I b
Orin{f,fgpr) RR=0"""n_, imo or(nl,...,n Hlnl“..a&g

(66)
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Dividing both sides of (66) by Ix(nl,..;,nr)“ and
using (66) we get

+ _NR Nx+l
X (ny,eee,n ) = 25 .., % {n resosDg y x
r 1 r nR~0 nr+l"0 or 1 |

I(nl,s,.,hR)

T )
r nl,.a..,nr

(67)

Rewrltlng the ratio I(N l,,..,n /T (nl,...,n ) in
the form below, we get

?(nl,...,nR) _ I(Qi,...,nR) § IR~l(n1,...,nR_1) § y
ir(n;,.,.,nr) ;Rfl<n1’”"’nR~l) IR_z(nl,..;,nR_z)
I (n Ito“ I )
% r+l l ¢ r+l (68)

Ir(nl"°"nr)

:If we use the fact that
Ir (nly LI 'nr)

p.{n_In__.,...,n;) = -

r'r Vre-1 ™1 Ir 1(”1’°"'nr~l)
in  (68) and (67) we get the expreSSLQn, for xgr(nl,.,.,nr)
given in Step 4.

In the example of .figure ?, for r=2  one would
calculate X02 (0,0), X 2(1 (1) RN X (2 1} using the values
of X 2(0 0,0), X 2(1 0 0),..., X 2(3 2 1) obtained in step 2
and the values of p3(0I0 O),...,p3(352 1) obtained: .in Step 5
for r=38,.

Comment on Step 5 : Assume that class 2 is of type timesharing.
Then, the balance equations for p,n, !n
would be glven by

. " N,-n,+1 1
p2(n21n1) 2 ZZ X x

I

X Pylnymling)
Xr o (nin. )
02 M7y

for n2=l,...,J

-and

N.,~n.+1 .

22 .i-, "% p,(n,-1iny)
2(J ny )

pz- (1’1.2 ‘lnl) =
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for n2a3+1,,,,,N2

accdrdingly to equations (41) and (42).

Comment on Step 7: The expression fcr pr(nr) follows directly

from the operational counterpart of the theorem
of total probability [191 , whiéh we call.
theorem of total fraction of time. We state

and prove this theorem below.

Theorem of Total Fraction of Time: Let S be a system
configuration and let Si;l,...,n be system configurations such
that
i) if the system is in configuration S, it must be in
exactly one of configurations Si
ii) if the system is in configuration Sy it mist not be
at configuration Sj for j#i.
iii) the system must be in configuration Si for an amount

of time greater than zero, for every i=l,...,n

Then n
p(S) = ;I p(sls;)p(sy)

where p(S!Si) is the fraction of time that the system is
observed in configuration S given that it is in configuration
Sv‘ s

i

Proof: By definition,
— | 1(ss,) |
p(SISi) = m—;-——- - {69)

where I(SSi) is the total amount of time during which the system
is in configuration § and S;,» and I(s;) is the total amount
of time during which the system is in configuration 8, -
If we observe that
n

i = L ] 3 7

I(s) = ;&) I(s8y) {70).
and if we use (69) in (70) it follows that
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= I (s '
I(s).= ;23 p(8Is,) I(s, ) (71)

+

Div1d1ng both sides of (?l) by T it follows that
p(sS) = i 1 p(SiS )p(s )

:aﬁdfthg ﬁheorem.iéjproved. ’ |

. From thé definitibn‘of‘ p(SISi) it follows that

o I(SS )/T p(ss )
p(s!si) =

TS, /T BS,) (72},
Now, from the theorem just proved we have that .
N N '
1 r-1 :
pr(nﬁ? =‘niﬂ0...nr51m0 pr(?rxér«l""'nl)p(nr~;’f"fnl) (73)

From (72} it follows that

P( T l’...'nl) = pr~l(n l!n 2,»«:@‘“ ) P (n 2,..,,1'11) =

= Prml (nr_l [nr""’z’ LAY ,nl)xpr__z(nrwz[nr‘a, e oo 'nl) Xp (nr*33 oo a 'nl) =

= .. o= pr_l(nr_llnraz,».w,nl)xfcprz(n2inl)Xpl(nl) (74)

Finally, using (74) in (73) we get' the expression for
pr(n ) used in step. 7.

In order to derive the expression for . X ( r)@~let us -
first state the theorem below.

- Theorem of Total Throughput: Let S and Sy . for i=1,...,n be
system configurations as defined for the theorem of total fraction

of time.

Then,
n : '
X(s) = iél X(S!Si)p(si)

where X(SlSi) is the throughput of the system when it is in
configuration § giventhatjt‘L>inconfiguration S;r and  X(s)
is the throughput when the system is in conflguratlon S.
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Proof: By definition X(8) = C(8)/1(8) where C(S) is the number
of completions when the system is in configuration §.
Also, by definition

C‘Ssi’ _
X(818;) = v1573 (75)
1
If we observe that
. B ) 76
C(s) =;2, C(s8,) (76)

and if we use (75) in (76) it follows that

cts) = & x(sis;Hres)) (77)
Dividing both sides of (77) by " I(8) the theorem is
proved,
The expression for Xor(nr) used in step 7 is obtained
as a direct conseqguence of the theorem of total throughput and
of expression (74).

7. OPERATIONAL VERSUS STOCHASTIC APPROACH

The results contained in this paper are phrased in terms
of operational analysié. Stochastic counterparts for these
results can be obtained provided c¢ertain assumptions are made.
The term "fraction of time" should be replaced by probability
throughout the paper. The results of sections 4 and 5 are
valid for stochastic queueing networks which have a product form
solution such as the one in (9). The class composition algorithm
of section 6 is valid in the stochastic approach.
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8. CONCLUSIONS

A multiclass queueing network model of computer systems
was presented in this paper. This model extends queueing net~
woik,theory in the sense that it allows the performance analyst
to treat the case where the degree of multiprogramming for each
job class is not fixed, but is allowed to. vary within a specified
range. Although the results contalned here are given an

operatlonal analysis treatment it is shown how one could obtain
~ stochastic counterparts of most of the results and algorlthms in
this paper. The technlques suggested here were used to write a
computer program to analyze multlprugrammeﬂ computer systems.
The results obtained from the progxam showed a remarkable
accuracy when compared with actual;measurements.
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