Series: Monografias em Ciencia da Computacgao
NO 5/82

DESIGN-BY~EXAMPLE

(Preliminary Report)

Claudio M. 0. Moura

Marco A. Casanova

Departamento de Informatica

é

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 — CEP-22453
RIO DE JANEIRO - BRASIL

PUC / RJ ~ DEPARTAMENTO DE INFORMATICA

Series: Monografias em Ciencia da Computacao, N9 5/82

Editor: Marco A. Casanova May, 1982

%
DESIGN-BY-EXAMPLE

(Preliminary Report)

Ciaudic M. 0. Moura

Marco A. Casanova

*# This research was supported in part by FINEP and CNPq
grant 402090/80

%% IBM Latin Amevican Systems Research Institute
C.P. 1830
22671 ~ Rio de Janeiro - RJ ~ Brazil

ABSTRACT

A constraint definition language, that provides a uniform notation
for data dependencies commonly used, is introduced. Constraints
are expressed in this language in much the same way as queries are
defined in Query-by~Example. Dictionary facilities to manage '
constraint written in this language are also described. Finally
the problem of checking if a set of constraints captures the in~-

tended semantics of the enterprise is. considered,

KEYWORDS:

Constraint definition language, data dependencies, data dictionary,

constraint checking, database design.

RESUMO:

Uma linguagem para definicao de restricoes de integridade, proven-
do uma notacgao uniforme para as dependeéncias de dados comumente u
sadas, e introduzida. Restricoes sao expressas nesta linguagem de
forma semelhante a consultas em Query-by-Example. Um dicionario pa
ra restricoes escritas nesta linguagem tambem e descrito. Finalmen
te, o problema de verificar se um conjunto de restricoes capta a

semantica pretendida para o empreendimento e considerado.

PALAVRAS CHAVE:

Linguagem de definicao de restrigoes, -dependéncia de dados, dicio-
nario de dados, verificacao de restrigoes, projeto de banco de da-

udos.

1. Introduction

A database description consists of a set of data structures and
a set of integrity constraints restricting what data values can be stored
in the database. A database state is said to be consistent if it satis-
fies all integrity constraints. Users'transactions are then forced to pre
serve consistency, that is, to map the set of consistent states into it
self.

The relational model of data adopts flat tables, or relations ,
as the basic data structure. Several classes of integrity constraints,usu
ally called data dependencies, have been studied in connection with the
relational model. A sample of data dependencies includes functional dé—
pendencies [Co, Ar], multivalued dependencies [Fal, M, BHF], join de-
pendencies [ABU, MMS] , inclusion dependencies [Fa2, CFP] and template
dependencies [SU, FMUY]. However, all these classes, and others [YP, GJI,
are special cases of the extended embedded implicational dependencies
(XEIDs) [Fa3].

The purpose of this paper is to explore XEIDs as a practical
tool to model database semantics. Towards this end, a suitable constraint
definition language is first introduced and then the problem of checking
if a given set of XEIDs expresses the intended semantics of the enter-
prise is discussed. ' »

Our constraint definition language follows the style of Query-
by-Example (QBE) [Z1, Z2,Rel] and, for this reason, it is called Design—
by-Example. XEIDs are expressed in this language in much the séme way as
queries are defined in QBE. Hence, the language provides a uniform, easy~—
to-use notation to express XEIDs and, thus, the data dependencies common-
ly found in the literature. ‘

. A database description will then model a given enterprise through

a set of tables, defined using QBE, and a set of XEIDs over these tables,
specified through our language. The problem we address mext is how to verify
that the set of XEIDs captures the intended semantics of the enterprise.

By this we do not mean the problem of proving that a set of XEIDs is logic-—
ally equivalent to another formal description of the enterprise, but rather
we mean the problem of checking if the behaviour of the database, as deter-
mined by the XEIDs, corresponds to the intuitive behaviour of the enterprise.

B conclude this introduction, we briefly describe the contents of

each section. Section 2 reviews the basic concepts of the relational model,

defines XEIDs and shows that many other data dependencies are indeed special
cases of XEIDs. Section 3 describes our constraint language with the help of
a series of examples. Section 4 describes dictiomary facilities to manage
integrity constraints. Section 5 addresses the problem of verifying that a
set of XEIDs captures the intended semantics of the enterprise. Finally, sec

tion 6 contains conclusions and suggests directions for future research.

2. Basic Concepts

A relation scheme is a statement of the form R[UJ, where R is a

relation name and'U=(Al,...,An) is a finite sequence of attributes. A tuple
t over U (from a given set D) is a sequence (al,...,an) where a;,...,a € 0.

A relation over U (from D) is a set of tuples over U from D.

If s is a sequence, then |s| demotes the length of s.If s=(s

R o at

is a sequence such that |s|=|U|, and X=(Ail""9Aik)’ where il""’ik are -

distinet elements of {1,...,n}, then s[X] denotes the sequence (Sil"'°’sik)°

! have the same

f

If s and s' are two sequences, then s=s' indicates that s and s

length and the same entries.
Now, if r is a relation over U, then r[X1={¢[X1/ter}.

A database scheme ‘D={R1[U1],..., Rm[Um]} is a set of relation schemes.

A database state I of D is a mapping that associates each relation scheme RiEUi]
with a relation r, over ﬂi. Sometimes we will represent the database state simply

as r,,...,r_. We assume that r.,...,r are relations from a given set D the
1’ m 1 m .2

domain of 1.

Given a database scheme D={R1[Ul],...,Rm[Um]}, and a set of variables

Xys Ky wees @ relational formula over D is a statement of the form Ri(g), where

1<i<m and X is a sequence of variables such that [il*}Ui}. An equality is a

statement of the form x=y, where x and y are variables. An atomic formula is

either an equality or a relational formula.

" Formulas (involving connectives and quantifiers) and sentences {for-

mulas with pno free variables) are defined as for first—order logic [En].

An extended embedded implicational dependency (XEID) [Fa3] over D

is a sentence F of the form Vxl...me((PlAm..A Pk) :>3y1f..3yr(Q1A Qﬂ))
where Pl"“’Pk are relational formulds over D, the antecedents of F, and
Ql""’Qﬁ are atomic formulas, the consequents of F, such that each %, oceurs

in at least one Pju

note: we do not reguire that Pl""’Pk be typed and not inter-relational,

unlike the original definition of XEIDs [Fa3].

Given a database state fm{f}g.“t,rm} of D with domain P and a
set of variables XysXpseee, @ valuation over U is a function v assigning to
each variable X, an element V(Xi) e P. We say that a relatiomal formula
Ri(xl,.,‘,xm) over D is true in I for v iff (v(xl)so,ogv(xm)) € r,. We also

say that an equality x=y is true in I for v iff v(x)=v(y).

Now, given an XEID F over D of the form Vxl.,*me((PlA,.aA ng =
:»ﬁyl...3yr(Q1A...A QK)) we say that F is true in a database state I iff,
for any valuation.v over U, there is a valuation v' over I such that v' agrees
with v on Xysene,X and if Pl””"’Pk are true in I for v', then Ql“"'”Qﬂ are
true in T for v'. In this case, we also say that I satisfies F.

) ’ ;) L e W (R, (x.,3 A R. W x, =

For example, the XEID ¥y VvS(Plixl,wz,x3) Rl(xl,xa,x5)~>x2 X,
is true in a database state Tygeoesty iff any two tuples of g that agreé‘on
the first entry must also agree on the second entry. As a second example, the
XEID ¥X19X2VX3(R1(X13X2,X3) = ﬂxa Rj(x4,xl,x2)) is true in ry,...,x ~ iff
the projection of ¥; on the first two columns is a subset of the projection of

rj on the last two columns.

We say that an XEID F is a logical consequence of a set F of XEIDs

iff any database state I that satisfies all XEIDs in F also satisfies F.

We close this section by defining some of the familiar dependencies

in terms of XEIDs. Let D={R1[U1],.un, Rm[Um]} be a database scheme.

A functional dependency (FD) over D is an XEID F of the form

- - q
¥, ..o 8 (Ry{(u) AR.(v) = A u =v.) where ¥ is a sequence of distinct
1 ni i j=1 kj l,i ;
attributes of Ri[Ui], as is Yz(Ykls»»l,qu)a and u is a sequence of distinct
variables from the set {xl,...,xn}, as in ¥, such that [GI=I§{&|U{! and

ulXJ= v[X]. We abbreviate F as Rj:K¥Y,

A multivalued dependency (MVD) over D is an XEID F of the form

Vxl...vxn(Ri(a) A Ri(;) = Ri(E)) where X is a sequence of distinet attributes
of Ri[Ui], as is Y, and . Z is a sequence of the attributes of Ri[Ui] not in X
or Y; U, Vv and T are each a seqience of distinct variables from the set
{Xl""’xn} such that ulX] = v[X] = £[x]1, v[Y] = F[Y] and G[7] = F[Z]. We

abbreviate F as Ri: XY

Z or, simply, Ri: XY,

An inclusion dependency (IND) over D is an XEID F of the form

4

vxl,,.vxpv(gi(a) = ﬁyl.“_gy R.{v))) where ¥ and W are sequences of dis~

tinct attributes of Ri[Uil and R%[Ual, respectively, such that |X|=|w|,
and u and v are sequences of distinct variables from {xl,ﬁ.,,x } and
{x ZEEFLI yl,,.qu}Q respectively, such that ulY]=v{W], We abbreviate

F as R, [¥X] < R.[W].
i i

This brief list covers all dependencies we will mention in later
sections, but it could be extended to include other familiar dependencies
(the reader is referred to [Fa3] for further discussion on the expressive

power of XEIDs)

We close this section with an example illustrating the use of
XEIDs. Consider the following database schema [Dal
D={SUPPLIER[S#, CITY, STATUS], SPLS#, P#, QIYl}

We define the following ¥Ds over D (together with their abbrevi-

ations):

(a) ¥s¥Wc¥t¥e'¥Wt' (SUPPLIER(s,c,t) A SUPPLIER(s,c',t') = c=c¢' A t=t')
~ SUPPLIER: S# - CITY, STATUS

(b) ¥s¥c¥t¥s'¥t' (SUPPLIER(s,c,t) A SUPPLIER(s',c,t') = t=t')
~ SUPPLIER: CITY - STATUS

(c) ¥s¥p¥a¥q' (SP(s,p,q) A SP(s,p,q') = g=q')
~ SP: S#, P# - QTY ‘

We also define the following IND over D (together with its ab-

breviation) that should have been introduced in the original example:

(d) ¥s¥p¥q(SP(s,p,q) = 9c 3t SUPPLIER(s,c,t))
~ SP{S#] < SUPPLIER[S#] i

This example will be used in Sectiom 3.2 to introduce our con-

straint definition language.
3. A Constraint Defipition Language

We describe in this section a comstraint definition language that
extends the QBE DDL [Z01, 2] to include XEIDs. In Section 3.1 we briefly
discuss the major characteristics of QBE that are relevant to this paper.
In Section 3.2 we then introduce our constraint definition language, 1il-

lustrating the basic features with examples.

[9]

3.1 - Query~by-Example

Query-by-Example (QBE) is a relatiomal query language of the family
of Relational Calculus [Co2Y. T formulate a query in QBE, the user . first
creates table gzﬁggg‘with the relation mnames and attributes he will use. Then,
the user fills these table frames with examples of possible answers to his
query. For example, referring to the database scheme at the end of Section 2,
the following query "list all part numbers supplied by some supplier located

in a city with status 10" would be formulated as:

| STATUS sp | s# | PH

SUPPLIER | S# | CITY L QTY

i ' :
: } :

s | .10 b s 1P

where all underscored letters act as variables (or examples) and where P. in~
dicates the desired answer. When some query involves a complex condition, it '
can be formulated with the help of a CONDIEION box. For example, the query

"list all cities with status less than 10 and greater than 5" would be for-

mulated as:

¢s T CITt STATUS COND I TLON
PP s s=(>5 and <10)
or, alternatively, as
¢S | CITY STATUS CONDT TION
P. s s>5
s <10

These two examples suffice to give an indication of the syntax of
QBE. We discuss here just two characteristics of the language. Eirst, QBE has
a unique bidimensional syntax, which gives users great freedom to formulate
queriéé, since table entries can be filled in the order users feel is the most
natural. Second, unlike SEQUEL [CBI or QUEL [HSW] or even Relatiomal Calculus
[Co2], variables range over table entries, not tuples. Hence, QBE is a domain-
oriented language [Pil. Our constraint definition language is based on these

two characteristics of QBE.

3.2 ~ Design-by-Example

We first introduce our constraint definition language by way of a
simple example. Then, we define the basic constructs of the language more
precisely and, fipally, we return to more examples. We construct the language

on top of the basic commands and conventions used in QBE.

Consider again the database scheme of Example 2.1:
D={SUPPLIER[S#, CITY, STATUS], SP[S#, P#, QIv]l}

together with the constraints

(a) ¥s¥cVt¥e'¥t' (SUPPLIER(s,c,t) A SUPPLIER(s,c',t') = c=¢c' A t=t')
(b) ¥s¥c¥t¥s'¥e' (SUPPLIER(s,c,t) A SUPPLIER(s',c,t’) = t¢=t')

(c) ¥s¥p¥q¥q' (SP(s,p,q) A SP(s,p,q') = q=q')

(d) ¥s¥p¥q(SP(s,p,q) = dc It SUPPLIER(s,c,t))

Constraints (a) and (c} actually say, respectively, that S# is a key of
SUPPLIER and S#, P# is a key of SP. Hence, they can be both defined using the
DDL of QBE [Z27. ‘

However, this is not the case with (b) and (d). Let us consider (d)
first. We propose to define (d) in much the same way as a query is specified
in QBE. The user would first invoke two table frames and fill these frames
with the relevant relation names and attributes (those that will not be used

can be omitted). In our running example, these operations would result in

1

sP st | SUPPLIER St |

{

| |
I.AlL ; . ,

i

The operator field of the first line.of the first frame is filled
with I.Al to indicate to the system that a new constraint, whose name is Al,
is now being defined. ‘The end of the definition of Al is indicated to the

system when the user presses ENTER.

The definition of the constraint would continue by filling the rel-
evant table entries with variables (examples). Those rows that correspond. to

the right-hand side of XEID are indicated by placing C, the consequence oper-

ator ,in the command field. Thus, the final specification of the constraint

would look as follows:

SUPPLIER S# }

C. "8

The above example illustrates how we would specify an ¥EID whose consequents

are relational formulas., Consider now constraint (b) (the FD SUPPLIER: CITY -

-+ STATUS), which is an XEID whose right-hand side is an equality. D cope

with these XEIDs, we introduce the CONSEQUENCE box, so that constraint (b)

would be specified as follows:

SUPPLIER s# | CITY STATUS

1.A2

c t!

{0
[ns

CONSEQUENCE

t=t'

These two examples give the general flavor of Design-by-Example.

It should be clear that our comnstraint language follows quite closely the

major characteristics of QBE pointed out in Sectiom 3.1, We also observe that

there is a direct mapping of the basic notation of XEIDs and our language.

However, due to its bidimensional syntax, our language allows users greater

flexibility in formulating constraints. Moreover, quantifiers and conneciives

are left implicit, which alleviates the syntax.

Let D={R1[All,.h Tmg

an XEID F over D of the form Vxl.

formulated in our language as follows:

A, d,..., R[A ...
my n nl jain

A 1} be a database. In general,

..pr(PlAut.A Pr :>§y1°.a%yq(Q1A...AQs)) is

(i) for each P., if P, is of the form R, (u;,...,up), a table of the form

below is created:

A

kl

A
kmk

u

1

uﬂlk

By convention, if u. is not used elsewhere in the XEID, the corresponding

column may be omitted or uj may be replaced by a blank;

(ii) for each Qi’ if Qi if of the form Rk(ul,une,umk),'a'tablefofithe:form below

is created

C. u u

(The same convention as in (i) applies here). Otherwise, Qi is of the
form u=v and a line of the form below is inserted in the CONSEQUENCE

box:

CONSEQUENCE

Finally, the operator field of the first line of the first table

is filled with insert comstraint operator, I.<name>, indicating the name of

the constraint being defined (<name> follows the same conventions as table
names in QBE)}.

This concludes the description of the general case.

We now exhibit other examples of XEIDs defined in our language.
Let E={EMP[NAME, SKILLS, PROJ, MGR], NP[NAME, PROJ], PM[PROJ, MGR]} be a
database. Then the MVD EMP: NAME -+ SKILLS | PROJ, MGR would be defined

as:

EMP NAME | SKILLS PROJ E

|

I.A3

=T =]
to
=)

k=]

C. : 5! i p.

If we wanted to enforce that a manager must also be an employee, we would

write
EMP NAME f MGR
T.A4 f m
C. m

As indicated by the attributes, we may assume that NP and PM are
redundant in the sense that if NP(n,p) and PM(p,m) holds then there is s

such that EMP(n,s,p,m) also holds. This is expressed as follows:

NP | NAME. | PROJ ~ PM_ | PROJ | MGR f

u

it

p

o
I
e
o

EMP .| NAME | PROJ { MGR
]

C. | =n L.

note: following our conventicns, we left out the SKILLS column of EMP.

This concludes the description of the core of the constraint de-
finition language. The next section discusses a dictionary facility to store

and maintain comstraints.
4. A Dictionary Facility to Manage Constraints

Since the description of a database may involve a large number of
XEIDs, just cataloguing all constraints may be time-consuming. Tthus, we in-
troduce a constraint dictionary facility that helps the DEA in this task. We
first describe the dictionary structure and then we introduce commands to

catalogue and maintain constraints.

4.1 - The Dictionmary of Constraints

Constraints will be maintained in much the same way as stored queries

are kept in the QBE system. The dictionary of constraints them consists of:

(a) a file to store constraints, whose organization is totally transparent to
users; (b) a system table CONSTRAINT, with attributes ANTECEDENT, CONSEQUENT,
NAME, COMMENTS and USERID, which resembles the system tables of QBE,

The CONSTRAINT table contains the names of relations that participate
in an antecedent of an XEID, the names of the relations that participate in the
consequent of an XEID or an indication that the CONSEQUENCE box is used to
specify the consequent, the name of the XEID, a column for comments and a column®
USERID tp;idéntify the specific database to which the XEID refers. The CON- -
STRAINT table is automatically updated whemever a new constraint is defined,

except for the COMMENTS field, which .is updated manually.

Thus, after the examples in Section 3.2 have been defined, the CON-

STRAINT table will contain:

10

CONSTRAINT | ANTECEDENT | CONSEQUENT | NAME | COMMENTS . | USERID
sp SUPPLIER Al [sP.S# is sub of D
‘ SUPPLIER, S#
SUPPLIER | C. A2 CITY>STATUS
EMP S EMP A3 NAME->>SKILLS
EMP i EMP A4 manager is an
; employee
NP | EMP A5 - E
PM . EMP A6 - E

Information may be retrieved from this table in the same way as
it is retrieved from any table. But other operations on the dictiomary are

also provided, as discussed in the next section.

4.2 - Operations on the Dictionary of Constraints

We discuss in this section how to display, delete and modify con-—
straints stored in the dictionary. Note that no explicit insertionm operation

is necessary, as discussed in Section 3.2.

As already mentioned, the CONSTRAINT table may be queried as any
other table, Thus, returning to the example at the end of Section 4.1, the

following query

CONSTRAINT } ANTECEDENT | NAME | USERID

EMP P. P.

produces an output table showing the names of XEIDs where EMP occurs in . an

antecedent:

CONSTRAINT | NAME | USERID

A3
A4

B display constraint Ai’ the user would enter in input mode the print con-

straint operator, P.CONSTR.Ai, in the COMMAND box. Thus, assuming that the

user has USERID E, to display constraints A3 and A4, the user would enter

COMMAND

P.CONSTR.A3

11

which results in

EMP . NAME . SEKILLG& |, PROJ
o B
3 8!
C. n s P
and
COMMAND
P.CONSTR . A4
which produces
SUPPLIER s# CITY STATUS CONSEQUENCE
c | t
: £ =t
c t

The print constraint operator alse offers the option of sequential-
ly scanning the constraint file. After displaying a constraint, the system
displays a message "PRESS ENTER T SEE MORE"; if the user presses ENTER the
next constraint on the comnstraint file is displayed (the order of comstraints
in the comstraint file has no significance). B stop displaying constraints,
the user should return to input state via COMMAND box and the QBE standard

comand P.*,

To delete constraint A the user simply enters D.CONSTR. A in the
COMMAND box. The execution of a delere eperation automatically updates the
CONSTRAINT table.

Updates on comstraints stored in the dictionary follow the same
philosophy. To modify constraint Ai’ the user énters UQCONSER,Ai in the COM-
MAND box. Constraint A, is then displayed on the screen to be edited by the
user. The new version of A, then replaces the old version when the user presses
ENTER.

For example, suppose that the user wants to modlfy Lons?rnlnt Ab to

mean that S#, CIEY + STATUS (and not CITY=STATUS). He then enterb

COMMAND

U.CONSTR. AL

which results in

SUPPL IER s# CITY STATUS ; CONSEQUENCE
c £ ¢ =t
c rf
The user would then edit the screen to
SUPPL IER s# ‘ CITY STATUS CONSEQUENCE
|
5 . | c t —
s i c t'

and press ENTER.

This concludes our description of the dictionary operations. The
next section turns to the topic of checking if a set of XEIDs captures the

intended semantics of the enterprise.

5. Experimenting with a Database Description

We address in this section the problem of verifying if a set of
XEIDs captures the intended semantics of the‘entarprise.i Our approach is
not to verify if a given set of XEIDs is logically equivalent to another
formal description of the enterprise. Rather, we sketch tools to check if
a database description has certain characteristics. Section 5.1 introduces
a new feature of the language to express logical inference. Section 5.2

discusses a design tool based on the idea of experimenting with test data.

5.1 -~ The Inference Operator

Suppose that we want to experiment with a set F of XEIDs. Omne
possibility is to check if F implies a new XEID F that we believe must be
true about any database state that satisfies F. We assume that F is the
set of constraints stored in the dictionary under the current USERID. So,
it suffices to define F. This is done exactly as in Section 3.2, except

that the insert constraint operator is replaced by the logical consequence

operator, L. (no name need be given, since F will not be stored).

13

For example, let D%{Rl[ABC], RQEDEJ} be a database. To check if
F logically implies F, where F = {R}[AB] = Rﬁ[DE],Rl[AC] [Rz[DEJQRZ: o b
and F is ¥a¥b¥c (Rl(a,b,c) = b=c), the user would enter F (in a fresh dic~

tionary):

(a}
Ry A | B R, | D E
I‘al, a b C. a b
(b)
Ry At C R, | D E
I.az a c C. a c
(c)
R, |D| B | cowsequmce
]
I.a3 a b [| b=c
and’ then enter F:
(d)
13 1
Ry B f C J | CONSEQUENCE |
: 2 i ?
L b E c E i b =c

The system will answer "true" or "false" im the communicztion area

at the botton of the screen.

The reader is imvited to verify that indeed F logically implies ¥,

but this should be clear from our choice of variables in the above example.

It should be noted that the inference capability has serious limi-
tations. First, the decision problem for EIDs, which are a spéciéi'EQSe of
XEIDs, is undecidable [CLM]. Hence, we cannot allow the 1ogicai'ébhééQuence
operator to be used with any set F of XEIDs. In fact, we do not'QQéﬁ: know
if the decision problem is soivable for much éimpler classes of dependencies,

such as EMVDs [SW 1, or FDs in the presence of INDs [CFPJ.

However, we know that there is a polynomial decision procedure for

MVDs [Sal. Thus, the logical consequence operator can be efficiently supported

at least when F and F are MVDs.

We conclude this section by observing that the idea of validating
a set F of XEIDs using logical inference can be generalized through the con—
cept of an Armstrong database state [Fa3] for F, that is, a database state
that satisfies all logical consequences of F and no other dependency. This
concept was used im [8M] to devise a practical database design tool, quite in

the spirit of the Design-by-Hxample system.
5.2 - Experimenting with Test Data

A second possibility to experiment with a set F os XEIDs would be
to use test data. That is, the user defines a database state I by filling
table frames with test data and then asks the system to verify if I satisfies
F. The system should reply with YES of NO and, in the later case, indicate

which XEIDs in F are not satisfied by T.

We suggest to improve this idea as follows. Instead of just indi-
cating which XEIDs in F are not satisfied by I, the system would also indi-
cate why they are false. The following example helps understand this sug-—
gestion. Consider again the database scheme of Section 5.1, D = {RIEABC],
szDE]} , with constraints F = {leABl = RZ{DE], R1[AC] < RZEDE], RZ:D~>E}0
A user would enter with test data by invoking table frame and filling in
table and attribute names as usual. Then, he would £fill in entries with test

data; a test operator T. placed in the operator field of the first table in~

dicates that it contains test data:

R A B

1 C

{
E
|

T. a b c

The system would then reply that the database state I just defined violates
some constraint, say, Rl[AB] = R2[DE]. Prompted by the user, the system would

then start to transform I into a comsistent state in successive stages:

(a)

- to satisfy Rl[AB] [= RZ[DE]

fomnd
i

(b)
Ry D E - to satisfy Rl[AC] c RZEDE]
o a b
a c
(c)
CONSEQUENCE ! - to satisfy R,t D> E
b =c !

The last step deserves some comment. Instead of actually'renaming ¢ to b
{(or b to ¢}, the system would inform the user that b=c must hold via the

consequence box.

The approach we advocate in this section becomes interesting in
the following scenario. Suppose that the application being modelled already
exists, automated or not. Hence, the database designer has at his disposal
real data. He can then start a series of tests using a sample database state

constructed from available data.

One of these tests would necessarily be to check if the sample
database state is consistent. We went further and proposed a tool that would
inform, when the sample state is_inconéistent, which changes are necessary
to restore consistency. We believe that this type of information helps locate
where the database specification does not agree with the semantics of real
data. (Obviously, the sample state may fail to be comsistent just because the

sampling process ignored certain data relationships).

Naturally, the approach described in this'section also works when
real data is not easily available. In this case, the database designer would
have the additional burden of generating a sample database state that cor-—

responds to a real world situation.

This concludes the necessarily sketchy presentation of the wval-
idation tools that, together with the constraiot definition language, con-

stitute Design-by~Example.

6. Conclusions

We described in this paper a constraint definition language capable

of expressing, in a uniformlyayﬁaggﬁg Qﬁ@gjggpendencies found in the litera-

.
K,

A F1le

——T

16

ture. The language has a straightforward syntax in the style of QBE, and
requires no training in logical notation. We have also described dictiomary
facilities to store constraints, again trying to stay close to the stand-

ard QBE system,

Besides the constraint language, the Design-by-Example system
coptains tools to validate a database design. We just sketched three of
these tools, using the concepts of logical inference, Armstrong database

and test data.

To summarize, the Design-by-Example system consists of a language
to document the semantics of a database and tools to check if the database
semantics indeed corresponds to the intended semantics of the enterprise.

We believe that such system will be useful in the early stages of the design
of a database where emphasis is placed on semantic modelling of the enter—

prise.

Finally, it should be clear that this paper documents just the
early stages of the design of Design~by~Example. Further work is needed to
consolidate the constraint language and the dictionary interface, before an
actual implementation takes place; The validation tools based on logieal in-
ference (see Section 5.1) depend on existing algorithms, if we restrict our-—
selves to the familiar dependencies, such as FDs and MVDs. However, if - we
want to include also INDs, for example, considerable work is still needed.
On the other hand, the wvalidation tool based on test data may be feasible
to implement for the full class of XEIDs, depending on the degree of sophis-

tication.

17

REFERENCES

CABU]

[Ar]

[BHF]

[CR]

[CFP]

rcmM)

[Cel]

[Co2]

[Da]

[En]

[Fall]

[Fa2]

[Fa3]

A.V.Aho, C.Beeri and J.D.Ullman, "The Theory of Mbins in Relational
Databases", ACM - TODS, Vol.4, N? 3, Sep. 1979.

W.W.Armstrong, "Dependency Structures of Data Base Relationships",

Proc. IFIP 74, North Holland, 1974.

C.Beeri, R.Fagin and J.H.Howard, "4 Complete Axiomatization for
Functional and Multivalued Dependencies in Database Relations",
Proc. ACM ~ SIGMOD Int. Conf. Management of Data, Tronto, Canada,
1977.

D.D.Chamberiin and R.F.Boyce, "SEQUEL: A Struectiire English Query
Language”; Proc. 1974 ACM - SIGMOD Workshop on Data Description,

Access and Control, 1974.

M.A.Casanova, R.Fagin and C.Papadimitriou, "Inclusion Dependencies
and their Interactions with Functional Dependencies", Conf.Principles

of Database Systems, Los Angeles, Calif. Mar. 1982.

'A.K.Chandra, H.R.Lewis and Johann A. Makowsky, "Embedded Implicational

Dependencies and their Inference Problem, Report RC8757, IBM Research

Lab, Yorktown Heights, N.Y., Mar. 1981.

E.F.Codd, "A Relational Model of Data for Large Shared Data Bases’,
Comm. ACM, Vol.l13, NO 6, Jun. 1970.

E.F.Codd, "Relational Completeness of Data Base Sublanguages", Data
Base Systems, Courant Computer Science Simposia Series, Vol.6,Englewood

Cliffs, N.J., Prentice~Hall, 1972.

C.J.Date, "An Introduction tc Database Systems'", Addison Wesley, 1981,
H.B.Enderton, "A Mathematical Introeduction to Logic™, Académic Press,
1972.

R.Fagin, "Multivalued Dependencies and a New Normal Form for Relational

Databases", ACM - TODS, N¢2, Vol. 3, Sep. 1977.

R.Fagin, "A Normal Form for Relational Databases that is based on

Domains and Keys, ACM - DS, Vol. 6, Ne3, Sep. 1981.

R.Fagin, "Horn Clauses and Database Dependencies", Proc. ACM ~ SIGACT

Symp. Theory of Computing, 1980,

[FMUY]

[cJl
[HSW]

[MMs]

[Pi]

[Re]

[8a]

[SAC]

fsMl

[SU]

[SW]

Lwy]

[YP]

[Za]

18

R.Fagin, D.Maier, J.D.Ullman and M.Yannakakis, "Tools for Template

Dependencies”, IBM Report RJ3033, San Jose, Calif., May 1980.
J.Grant and B.E. Jacobs, 'On Generalized Dependencies', to appear.

G.D.Held, M.R.Stonebraker and E.Wong, "INGRES -~ A Relational Data
base System", Proc. NCC&4, 1975,

D.Maier, A.Mendelzon and Y.Sagiv, "Testing Implications of Data

Dependencies™, ACM -~ TODS, Vol.4, N9 4, Dec. 1979.
? b4

A. Pirote, "High Level Data Base Query Languages', Advances in Data
Base Theory, Vol. 1, ed. H. Gallaire, J.Minker and J.M. Nicolas ,
Plenum Press, N.Y., 1978.

P.Reisner, "Human Factors Studies of Database Query Languages: A
Survey and Assessment', Report RJ3070, IBM Research Lab., San Jose,
Calif., Mar. 1981,

Y.Sagiv, "An Algorithm for Inferring Multivalued Dependencies that
works also for a Subclass of Propositional Logic", VIVCDCS-R-79-954,

Dept. Computer Science, Univ. Illinois, Urbana, Jn. 1979.

P.G.Salinger, M,M.Astrahan, D.D.Chamberlin, R.A.Lorie and T.G.Price,
"Access Path Selection in a Relational Database Management System",

Report RJ2429, IBM Research Léb;, San Jose, Calif., Aug. 1979.

A.M.Silva and M.A.Melkanoff, "A Method for Helping Discover the
Dependencies of a Relation"”, Advances in Data Base Theory, Vol. 1,

ed. H.Gallaire, J.Minker and J.M.Nicolas, Plenun Press, N.Y., 1978,

F.Sadri and J.D.Ullman, "A Complete Axiomatization for a Large Class
of Dependencies in Relational Databases", 1980 ACM Symp. Theory of
Computing, 1980.

Y.Sagiv and S.Walecka, "Subset Dependencies as an Alternative to
Embedded Multivalued Dependencies", Tech. Rep. UIUCDCS-R-79-980 ,

Dept. Comp. Science, University of Illinois, 1979.

E.Wong and K.Youssefi, "Decomposition -~ A Strategy for Query Pro-
cessing", ACM - TODS, Vol. 1, N? 3, Sep. 1976.

M.Yannakakis and C.Papadimitriou, "Algebraic Dependencies', Proc.

21st. IEEE Symp. Found. Computer Science, 1980.

C. Zaniolo, "Analysis and Design of Relational Schemata for Database
Systems", Ph.D. Dissertation, Tech. Rep. UCLA-ENG-7669, U.California,
Los Angeles, Calif., Jul. 1978,

19

LZ11 MM, Zloof, "Query-by-Exzample”, Proc. National Computer Conference,
AFIPS Press, Vol. 44, 1975.

[Z2] M.M. Zloof, "Security and Integrity whithin the Query-by-Example Data
Base Management Language", Report RC6982, IBM Research Lab., Yorktown
Heights, N.Y., Feb. 1978,

