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We now consider n=2 and the definitions
stmple?{<p.g>) = null(p}; divect!(<p,q>) = g3
spiitt ! (<p,g=j="nit, ha(p)ry  split2!{<p,qe)=<tl{p).q>;

combine!{p,q) = cons [hd{n),a].

“Heve ni
Tist co

15 the empty Tist ¢
sisting solely of hdlpj).

Our axioms (B) and (R) then become

nuli{p} » g = append{p,qn)

I

. . d{pi) A e sp§Wa{t;
(hd{s},t) = oupwud(p c;]

mult{p} » [s=append{nil,

R CONS o

which hold because cons [hd{cons [hd{p).nil],t]=cons{hd{p),t)
and
’q ‘ ‘ it null{p)}
append( ‘

1 cons {hd{p),append|[tLip).ql} otherwise

With smal

nwtf(f <
7o

X

.

Anutl{p)rtenvth(nil)

b) < Yernqthip)

which also holds and (W) follows frow the finiteness of the
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Hence these definiticons make the data ftype pair of Tists
Tists into a reatization of P-5 and Lthe procedure sulution
so interpreted satisfies the outpul assertion
sofution{<p.qg») = wapendi{p,q).
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> (where puti{e,q) inserts

spliti{<p,gr) = <ti{p), put] .‘(V},q1,
i ve :n ordered tree);

a into 0 so ﬂ% to ¢
combinel{g) = g3
smaller?{<p,q>, <p',q'>} = length{p) < jength{p")

solves?(s,<p,a>} =+ 35 is the ordered tree wade up from the
glements of p and of q.

Then our axioms sre salisfied and we have a realization  of
the data ftype, where gensol interprets dinto an algorithm Lo
insert a seguence into an ovdered Tree and realisol into tree
sori.
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Our data types model the process of repreatedly decompesing
a problem into a fixed number n of subproblems until they
have direct scolutions. But for some problems, it may be more
convenient to allow the number of splits to vary at each sta
ge depending on the problem. We shall now show why this is
already included 1in the generalization scheme.

Indeed, we may view this process as follows
for each subproblem q of p (starting with p itself)

do if easy?(q) then halt

P —

else decompose q into subproblems

This constructs a problem-tree with p at the root and easy
problems as leaves. The latter are solved, by immediate!,and
these solutions climb up the sclution-tree towards a sotu~
tion for p.

Let 0 be the sort of original problems and T that of final
solutions. Also, suppose that decompose!{r) gives <the Tist

of subproblems into which r is decomposed and
c??mbupi(<t1,..,,tpb) cbtains a. solution for r from those

t]s.d.,tﬁ of its coemponent prohlems.,

Now interprelt P ana $ as consisting of trees of eiements from
0 and T, respectively. Also, take genevalivel{r} 2c the tree
conzisting only ¢f r and retrievel(s)=root{s). Let simple?{p)

mean that all the leaves of p satisfy easy? and siwmitarlty
extend the other predicates and operations to. trees to ch-

tain an 0-P-S-T data type. This will satisfy our axioms if
the probiem-decomposition process we started with does work.

Alternatively, we may view P as sequences of elements fronm
0 and similarly for S.

Notice that this viewpoint indicates that our 0-P-5-T data
type with one splitiand a unary combine! is already general
encugh,
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The process of decomposivg a prob
ta the level where they can be eustly solved and their solu-~
tions COﬂbﬁned has been Tormalily Gv<ur'hvd &5 “J]?ON%« e
regavyded daasﬁdudmu~rtmhz=f” as an {incompletely specificd)
“abstract data type. A general problem-decomposition procedu-
re manipulating these data was presented and enough semanti-
cat specification of the data type was then given so as 1t
guarantee the corrveciness of the procedure.

mointo subproblems dowh

The solution to a problew on a particular data type thus

would consist in defining on it special f»d?"di1t”‘ of the
pw_m1tive abstract operationsz so that the wLP‘)JvtaLx@m",of
Thﬂ nxiom: ntm hw?d, To put Tt succintly: UVUUT(S“‘OxVinq by
\ is thus equivalent to obtaining A
ibml’“atio of thu div%dewaﬂd~conquer data type on the pro-
blem domain. :

Since the abstract data type s just enough ;pﬁcifiwd, ot
can have meuny diverse realizations. This 15 indicated by the
various e amples, given to iliustrate the wioe d‘?11ﬁdbkll'V
of such Tramework.

This applicability is

s enhanced by its feature of being compa
tible with stepwise refinement. For instance, the mergesort
algorithm uses the gperation mevge. How, merging can be
viewed as a probler to bhe solved by 8 ﬁfﬂiVﬁf‘ﬁorrﬂ interprota-.
tion of our divide-and-conquer data type. A similar exampie

i

is the case of treesort with the opevation of insertion inte
an ordered treo, '
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