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erical solution by the

problems related to incompres-

L the representative case of
A ot of o veh works on rhis have been car -

ried out, as it is wo Lo be an essential step . fowvards

solving nonlinear viscous £flow {eee e.g.[1] aund [2]) .

Iw particular, the so-calied YyxQ  approximation, consisting
o BPI

plecewise jsoparvametric bilimnear velaclty and counstant pressure,
appears Lo be very atfractive, dus to its simplicity and low

computational cost, compared te other admissible methods. As “
matter of fact, many authors have devoted themselves to the stu~

methad {see e.g. ['33

£

dy of the mathematical propert
and [4] ) and to its iwplementation (see evg. £53 and [61, and
reference therain) .

Actually, ithe 9 ~Q‘ method is known to be efficient 1in
many cases. However, as E as existence and convergencs of  ita
elecity-pressure solutions are ceonceyaed, some difficulties

“checker~hoard™ pressure phenomenon

arrise, such as the so-called
L531. Another drawhack of this discrevization has been recently

pointed out in [73.

A wvery clear and alumidatﬁmg analysis of these ques -
tions has been given by PITEERANTA in [47, where proofs for the
following convergence resulis can be found. If the domain is a

rectangle which is partitigned into 3 wvoiform MxW rectangular grid

with M and N avern, an J(h) comvargence of the veloeity in the

Ho~Sobolev norm is guaranteed, provided the sxact solurien is

0 .
smooth, whereas the L -norwm convergence of the pressure cawn oaly

choigue iy used. At this

be expected if some kind of amothing te

poing it is important to stress the foet that all the above men~

C-'?

tioned limitations are related to the nse of a specific rectan ~
gular grid. As we show in this paper,; ancther construction of

"

gquadrangular grids can coupletely ovarcome thig difficuley,
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the mapping of a bilinear

c
field defined on @ unit sguare K, by the bilinear field which

maps in turn Komto R.VWe de & pressure ﬁf‘Qh as constant func-

tions over each K, X . Bt not necessarily continucug alang

element intarfaces.

2.7, LBB~Condition

& ) . ;
Let & be the space of those pressuves that arve constant

ovey .
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problem {see e.g. [123).

f being an ar
Netice that 1.5-2 5 s g 2, whege © I8 an arbitrary small
positive real number. In this way Lemua 3 also holds, but now we

have BxG(hZWS} whﬂvh jmplies the walldity of the folinwimg error
estimates for (P )= (Pi): 1f v < udioye 8% () and per® L0y, 1452

we have
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(3.2l p-p Il s c [ L+
0

For more details omn this case we refer to [12]. Let us
here just mentioen that in some important particulay cases one

can preve the validity of the LRA~condition with Bh independent

of h evern with T # I by a direct method, as follows:
L
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