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ABSTRACT

A simple and straightforward procedure for the automatic
generation of partitions into tetrahedrons of three~dimensiocnal

starshaped domains is introduced. The method generalizes the
one previously proposed for the two-dimensional case. As in

that case, we consider the application of the method to the nu~
merical solution of one-phase Stefan problems,
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RESUMO

Nesta monografia introduz-se um processo simples e de fi-
cil implementagdo para a deragdo automdtica de particoes en
tetrahedros de dominios cuja fronteira possa ser expressa em
coordenadas esféricas. Esse método generaliza o que fora propos-
to anteriormente para o caso andlogo bidimensional. Como neste
Gltimo caso, considera-se a aplicacdo do método a resolugac numé
rica de problemas de Stefan unifésicos.
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1 - INTRODUCTION:

In the framework of the numerical solution of boundary
value problems with the finite element method, the generation of
the mesh, together with the underlying problems of obtaining op-
timal numbering of the nodes with respect to the matrix band
width, and the coordinates of the vertices of the elements, play
a crucial role.

In the case of three-dimensional rroblems, in general
the best approach iz the use of tetrahedral elements, dus to
their flexibility for matching irregular shapes of domains, be-
sides algebraic simplicity, in case curved boundaries are ap -
proximated by polyhedrons. However, except for very particular
cases such as parallelepipeds or cylinders, the problem of gene-
rating automatically the mesh and the associate data above, is a
delicate one, if not a challenging problem for Ffinite element
method users.

That is why many specialists have devoted themselves to
the solution of this problem, attempting to make their methodscf
generation of finite element meshes as general as possible. In
particular the work of A. GEORGE (see e.g. [ 4 J) is significant
in this respect. Very good surveys about this guestion can be
found in [12 J and [ 5 1.

In the latter work HERMELINE came up with a method that
provides a very interesting general solution, in the sense that,
if one knows the vertices which uniquely describe the boundary of
the polyhedron approximating the domain, then the cptimal
mesh in a given geometrical sense can be generated.Clearly enough ,
due to its generality, the implementation of his method is not
simple, and several parameters describing the mesh must be given
by the user.

In any case, it is generally admitted that the best so-
lutions should be those obtained with the sole knowledge of the
boundary of the domain, plus, of course, simple data describing
the degree of refinement of the mesh. Moreover, as cone should
point out, a convenient approach is the one based on a first sub-
division of the domain into subdomains consisting of macro-sim -
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plices , which are next partitioned into smaller simplices by
straighforward procedures. This mesh generation process is actu-
ally used in many finite element codes or systems, such as
MODULEF [ 8 7.

In this paper, a method allowing the automatic automatis
generation of tetrahedral meshes is proposed, which basically’
foeilows both principles above., However it is very simple to im. -
plement, as the only necessary input, besides the data which
uniquely define the boundary of the domain, is an integer para -
meter for specification of the desired degree of refinement of

the mesh.

The main limitation of the method is the fact that it
can only be applied to domains whose beundary can be axpressed
in spheric coordinates with a suitably chosen origin lying in
its interior. As pointed out. in [ 111, this is the case of the
very wide subclass of starshaped domains, called nonsigqular. In-
cidentally the method generalizes the one introduced by themaﬁ‘f
thor in [ 9 1, for the generation of triangular finite element
meshes applying to the same kind of domains,

Likewise the two-dimensional case, here again one can
easily generate families of partitions arbitrarily fine. Inci -
dentally, the regularity in the usual sense f 1 1 of the family
of partitions obtained with the method in twoe~dimensions wWas
studied in [11-1. It appeared in particular that the only con -
dition for satisfying this classical reguirement for convergence
of the finite element method, was the Lipschnitz continuity of the
function which describes the boundary in polar coordinates, with
respect to the polar angle. Although we do not treat this ques-
tion explicitely in this paper, one can quite naturally suppose
that the same result applies, if the function describing the
boundary of the domain is Lipschitz~continucus with respect to
the angular coordinates.

An outline of the paper is as follows: In Section 2 we
describe the generation of the mesh; in Section 3 we deal with
the problem of calculating the coordinates of a vertex of a certain
tetrahedron given its number, assuming that these numbers were
obtained in a systematic and optimal way; in Section 4 we briefiy
consider an application of the mesh generation method to the nu-



mexical solution of three-dimensional one-phase Stefan DYoo -,
blems, Finally we conclude in Section 5 with some important re -
marks, '

2 ~ DEFINITION OF THE PARTITION

We first consider a slight modifi cation of the usual
partition of a unit cube into tetrahedxons, based on its subdi-
vision into six macrotetrahedros.

Let the origin of the ﬂar+e$1an coordinates Rye Egy X3
be the center of the cube. Taking the coordinate axes parallel
to the edges of the cube, the latter is thereby subdivided into
eight equal cubes, each one corresponding tqban octant,

Let us alsc number these eights of cubes and octants ,
resoectlve*y by C and 5& . Where u is an integer triple subs -
cript u= (ul‘ “2’“3)' where.

" sign &xi}+l

o= - S"‘S__."
By 5 , l=is<3

X being any nonzerc value of the i~th coordinate of a point of éi

Now we refer to Figure 1, and we take as a model octant
&, with v=(1,1,1).

Let d be. the diagonal of ¢ which is alsc a diagonal -of.
Cv’ dl,qu and aB,be the three diagonals of the-ﬂacescﬁfcvintersef
ting at the origin, and d4, d5 and 66‘ be the three diagonals of:

the faces of C, intersecting at the order end of d.

As it is well-known, d, dl""’d6 subdiviﬂezcv into six ..
equal tetrahedrons, say, Tva’ where a=(al,a2,a3) corresponds to
a permutation of (1,2,3). The posgition of each Tv&'is jllustrated
in self-explanatory Figure 1 . Notice that o is assigned

in such a way that, for every point of T  ,one has X 2% Sx_ .
ve 1 %2 %3

Now, giwven an integer parameter p, pxl, we uniformly subdivide_cv
into p3 equal cubes, and next we join the vertices of these cubes

within each tetrahedron Tvé thrdugh segnents parallgl,to,its_six

edges, thereby generating a partition of‘cv intc 6p” equal tetra-
hedrons.
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Octant .5: corresponding to the positive values of the co-
ordinates Figure 1

Finally, taking the halves of the diagonals of € as a
starting point, we proced in the same way for the other seven
octants, thus generating a mesh Ffor the whole cube, consistingof
48p3-tetrahadronsq

Notice that the coordinates of the wvertices of all the

tetrahedrons of the partition are of the form

i i iy
2p "2 ' 2p

the iys being integers which satisfy - psi, <p. Mo§eover, it  is
possible to numbexr the vertices from one to (2pHl)” in a straight -
forward way, by numbering the vertices lying on each. face xlzil/Zp,
one by one for ilm - p up to p, in the standard way for squares ,

as shown in Figure 2 for the ilwth face.
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2
N+2p+1 N+d fpt+2.0ecdoeuen cedeaseses N+{2p+1)}
: : - > %,
N+2 N+ 2 p+3 sasefosaisaa nofpeansonr e N+29(2p+l)+2
TN NF2PF2 wvvoboavaoonceeennes N+2p (2p+1) +1

N = (i+p) (2p+1)°

Numbering of the vertices lying on plane Xy = il/2p
Figure 2

For the later convenience, we notice that the coordinates

of the vertices lying in tetrahedron‘Tuu can be written in the
form:
i
1 1 -2
X :("‘l) He— ﬂ = O l )
al u zp 2 4 I 'p
e 2 -m
(2.1) 1 x0t2 ={(=-1) 75 i 0s<msE
u - _
x, =(-1) 3 75‘ ; O<nsm
| 3 P

‘Let now @ be a starshaped domain whose boundary 3% is
given by an equation p=£(¢,¢) in spheric coordinates, having a
suitably chosen origin O in the interior of Q. For such a domain
we will apply a method for generating a partition into tetrahe -
drons, which is entirely analogous to the one described above
for the cube.



Again we first subdivide 0 into eight octants defined
by the three cartesian axes with origin {, associated with the
spheric coordinates, ILike in the case of the cube, we dencte
by t;u the part of 9 lying in cctant 6;, and we take as a
model the partition of ESV, v=(1,1,1) -‘defined in the follo-

wing way:

First we note that @g is characterized by

0<6< /2 and  0s¢<r/2,

Let 8y = 1/4 and ¢y = arc cos Y3/3.

Now referring to Figure 3, we subdivide é% into six
curved tetrahedrons 1 With o defined as before. Each tetrahedron is contained
v ’ ’

in one of the six trihedrons with vertex at the origin and
having one edge coinciding with the line given by
(G=BM R ¢=¢M), while another edge is contained in a coordinate

axis. The third edge is the bissector of the quadrant defined by
this axis itself and one of the two cother axes.

and Poa3 be the three vertices of ¥

praed

Let now Pval’ waZ

lying on 39Q.

Let also o . and ¢ be the angular coordinates of P .AS &
vai vai vad
be

reference we set 3vulzeM an6”¢val=¢M Mo, and we let Pvmz

the point which lies on the X, ~axis. An illustration of the lo-
cation of these points is qive% in Figure 4 for T , o=(2,3,1)

vao
X

Illustration of the six sectors of @v for v=(1,1,1)

H
i

Figure 3
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Now we considexr homotetical reductions Q£ of ¢ with
origin O and ratii L/p, 4£-1,2,...,p.

For each sector =« , the vertices of the partitian_axe

the points plmn, 0<l<p, Osm<f, Osn=m defined as follows:

First we have pV=s S p LEA N

Next, for fixed £ and mxl we have:

Prove '
Let MON be the angle with vertex at the origin, whose
edges” pass respectively through points M and N. we call M the
left end and N the right end of the angle.

Now, 1f P is a point of 3q, we further define Pg-to be
the point £p/p.

Let then Mf? and . N£ be the intersections:of the polar
% f
radii which subdivide pﬂ Y pﬂ and pt *"”5?3‘? into £ equal
: Sve2s vad vo 2 "ol .

angles, numbered from u=0 up to m={, from the left to the right..
end. '

. Lon
Points Pv

which subdivide
n=0 up to n=m, from the,left end to the right end.

will be the intersections of the pelar radii
gm iz into »m equal angles, numbered from

Finally we construct the partition of the whole domain
by applying the technique just described in an analogous way to the

other seven coctants, This means that for each octant u we de -

fine .the associate six sectors .Tua . in such a way that X
Ha : 1

contains cone edge of T for .each u, and one face of the same

Ho
sector lies on the plahe X, = 0. Similarly ?ﬁﬂl ¥p and ¥o o,
is taken to be the Poi%t of 30 whose angular coordinates

ares
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and we let P a2 Lie on the x, Taxis.
oy .
Next we determine the vertices of the tetrahedrons in
the same way as described above for LI

Once we know.-the vertices of.the partition, some jelelh
bilities remain on how to form the tetrahedrons within e=ach sec-
toxr T“a. We choose the following way, which yields compatibility
at sector interfaces, as seen later.

First we refer to the partition of the unit cube.

Now, recalling the expression (2.1) of the cooxdinates
of the wvertices of that partition, we can readily establish &
one to one correspondence between these and the vertices of the
partition of Q@ given above. More specifically, this means +that

point Pﬁ?n corresponds to the point of the cube, whose cartesian

coordinates are given by (2.1). Hence, if we assign to the Pﬁfn s
the same number as the one of the corresponding point of the cube,
we can denerate the tetrahedroqs of the partition of @ by simply
defining their’ edges to be the segments whose ends have the same
pairs of numbers as those for the edges of the tetrahedrons, lying

in the unit .cube.

Clearly enough, in this way we also cbtain for @ a parti-
tion consisting of 48p3 tetrahedrons‘ These can ObVlouﬂly be
numbered in.:the same way as we do for the cube, that is to say .
the number of a tetrahedron for O is the same as for the cube, if
the numbers of their four vertices coincide.

Finally we note that the faces of tétrahedrons, which
lie on plane sector:interfaces form the same pattern as the trian-
gulation of a sector in the two-dimensional case, as 131ustrated

in Figure 5 for p=4.



Traces of the tetrahedrons over sector interfaces

Figure 5

3 ~ CALCULATING THE COORDINATES OF THE VERTICES

With the procedure described in the previous section
we get as abyproduct a straightforward procedure for calcula -
ting the coordinates of a vertex of the partition, given its
number, say k, 1lsks (2 p+l)3. Indeed, all that we have to do is
to determine ﬁ,&;ﬂ,m and n such that Pfﬂn corresponds to the

given number, in the following way:

First we can readily determine three integers k,.k, and
k3 such that lsk,<2p+l, i=1,2,3, and: '

K=k g+ (2p+1) (ky=1)+(2p+1) % (k ~1)

In so deoing, the values of ﬁl,ué“and uy are given by:

oy (i |
ui~N ( p+1) , Wwhere

N (x)=sup {n/neN, nsx}.

Next, setting ij=]kj—l~pf , 1l<j<3, we determine o by
simply ordering the igs in such'a way that:

%2 %3

iaﬁl
"1

s

Finally we set £=i ., m=i_ and n=i_ .
. ®1 %2 “3



1c.

Now all that ig left to do is to apply the angle subdi-
vision process described in the previous sedtiqn, in ordex to
obtain the spheric coordinates of the vertex, and hence its
cartesian coordinates, aceording to the following calculations:

Let M and N be two points whose angular coordinates are
' R
{614¢l) and (82,@2) respectively. Let g be the angle MON and
By=r8/d, B,=(q~n)B/q, qzx20,

Now, if x,y and z are the components of th?«gnit vector
in the direction of the line lying on the plane of MON, which sub-
divides g into 1 and g-4 equal parts, counted from the left and
from the right ends respectively,. then. they satisfy the follo -
wing equations:

alx+bly+ciz=dl

'a2x+b2y+czz=d2
22 +‘y2 +_22 = 1

Where d=¢ R., C.=s . 0., =C ind., ., a,= . N ==k
e icossl, = Sin¢1‘ b1 OséiSlpei*’ &y cos¢lcosel,1 1,2

The first two equations express the fact that point
(x,y,2) lies on the surfaces of both.cones with vertex at the
origin, with axes OMl and OMZ’ and whose half angles are 31 and
B,r respectively.

Noticing that there is only one point which lies simul-
taneoiisly on the surface of the unit ball and on these two sur~
faces, the system of equations above has ohly one easy-to-com -
pute solution,

Finally, given x,y,z we compute associate values of ¢
and ¢, from which we get p=L£(6,¢)/p, and thus X%, and Hae

4~ APPLICATION TO THE SOLUTION OF STEFAN PROBLEMS

In [10 ] an algorithm for solving two-dimensional one
phase Stefan problems using thevautomatib'txiahgulatien process
studied in [ 11 ], was proposed. We consider in this section an
analogous version of that algorithm for the three-dimensional
case, using the method for tetrahedral mesh generationm described
in sections 2 and 3.
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As a model we take the following three~dimensicnal one
phase Stefan problem:

We assume that a given medium exists in two phases one and
two at time t=0, and let u(x,t) be its temperature at point =x
and time t. We alsoc assume that in one of the phases, say ohe ,
the medlum is at temperature U, for t=0 and that it cccupples a
domain Qg= Qﬁ-nl , where o and Qlavaanﬂy connected open sets whose
respective boundariesvroand Fl can be expressed in spherical coordinates
with origin lying in the interior of Ql' We assume that in phase
two the medium initially occuppies the region ﬂk3~90, and that
it is at the temperature of change of phase, namely u=0.

Let @(t) be the domain occuppied by phase one at time = t
and T (t) be the interface between phases one and two, with T'{0)=T,.
Now, if we apply heat sources on Pl, in such a way that the tem-
perature is caused to be equal to a given function g(x,t} %Xefll
and ¥t, u satisfies the heat equation, namely:

#
ou

Tt
u(x,O)zuo(x) in @

~ Au=0 in Q(t)x]J0,»f

(4.1)

Fho

ul(x,t)=0 ¥xer(t) and ulx,tl=g ¥xely, ¥tell,«f
S :

Moreover, at the free boundary I (t), the so-called Stefan
condition holds, namely:

ad
4,2 v V = el
t4.2) POV (kb ot
where ¢ is a function such that:
b(x,t) =0  if xer(t)
¢ (x,t) <0 if xeQ(t)vuQ
¢ (x,t) =0 if x#@(t)uﬂl

Like in [10-} it is convenient to write ¢ in the form

(4.3) "_Q";D"‘S(,e:‘i’tt)



Notice that, since u=0 on T (t), we can. express Yu:only

in terms of 23u/dp and s for p=s(6,¢,t). More specifically we
have

u L b8 2u

Wrey 00 PP r(y
(4.4)

pu _ _ 3s 2u

¥ ppey 20 2P pqey

Hence, taking (4.3) and (4.4) into (4,2), after simple
calculations, the Stefan condition becomes:

2s ) 1 38, 2 L 238 4,24 3u
R - E2 = 1 e 22 5 =
(4.5 ot L1+t s gind 96 yoo s 9¢ 3

dp/p_‘g (e Q f\‘.’

Now we define the discrete analogue of (4.1}-(4.5) using
the automatic tetrahedral mesh generator. In order to avoid rones-
sential difficulties, we assume that ry is reduced to a point
namely, the origin of ceoordinates.

WeoFirst approximate g u{0} by a polyhedron Qg s Whose
boundary Ph has Lrlangvlar faces. For a given pzl, the vertices
0 o

of rh ‘are precisely the intersections with r, of the lines de -
fineﬁ by o= erQZ and ¢ ¢Pmn_,v%u,q . O=m=p ,sznSm.

Let us number the vertices of Pg from one to 24p2+2, and
let sg be the radial coordinate of the j~th vertﬁg, which we de-—
note by Pj. This vertex is characterized by its angular coordi -
nates ej and ¢j.

Remark: Each pair of angles (epmn ' ¢pmn)ﬁ is obviously associ~
ated with one value of j. Two br nore such palrs will correspond

to the same vertex number in case it lies at sector interfaces.

0
Next we construct the partition of N using. . the method

of section 2. This conetruction is obv1ously possible,since the
fact that Q¢ is starshaped implies that Qh is also starshaped.,
Incidentally, a representation of Ph in spheric coordinates

pzsg(6,¢) can be obtained if we procede as follows:
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0
First we number the faces of Ty from one up to 4892, Next
we define a 48p2x3 array R, whose k-th line cdnt%ins the number 3.
<

1s<4 24p2+2 of the vertices of the k~th face of rho Now we consi-
ﬂgr that sg varies linearly wmth xl,x and x3 over each face of
? and that sg ;¢ )ws ’ l<3<24p +2 .

- Since sy 0(6,4) does not have a simple expression, in or-
dexr to calculate the ccoordinate of a vertex szn 0f the partition®
of Qh , we must determine the number k of the face at which the:
line defined by o= ez " and ¢*¢£mn :uﬁfmsects rh. This face, can
be determined by means of the followxng calculations:

Let T, be the tetrahedron whose vertices are the origin
and Pji, 'i= R(k,i}, 1sis3(refer to Figure 6). Taking O to be
the folrth vertex of Ty rlet A be the volume coordinateés of Tk
associated with the so~def1ned local numbering of its vertices,
1<i<4. Let P be the point (x,y,z) where:

x :sin¢zmn cos Lmn
Ho ue

¥ ==s:m¢£mIl sineZJ n
uo Ha

z =cos¢ 1 |
(8

k, will be any number such that for tetrahedron Tk= we have.
0

li(x,y,z)zo for #=1,2 and 3.

P
Polky, 1)

2)

4 Tetrahedron»Tk

kowth boundary face associated with vertex Eﬁgn

Figure 6
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For the later convenience, we store the k’s in an array
S of dimension (Zp+l) . More specifically, S{(J) is the number of

the boundary face intersected by the line o=9 ¢:¢J ; where 9

J 7 J
and ¢J are the angular coordinates of the J-th vertex of the

2><3

arrays XS, such that X (k 1) is the xs-coordinate of the i-th
vertex of the k-th face, lss<3,

partition. Tt is also useful to introduce three auxiliary 48p

Now, given At>0, assume that we know starshaped approxi -

Qg and rg of Q(NAt)and T (Nat) respectively which are no-

thing but pelyhedrons with triangular faces, whose j-th vertex

mations

lies on the same radius as the j-th vertex of ﬁ;, YN, N=1,2:...

Let sj be the radial coordinate of the j-th vertex of rg. In
an entirely analogous way as we did for T% and Qg, we define the
equation (e 4} of rg, and we construct the partition of ﬂ§

into 48p tetrahedrons.

Now we calculate continucus piecewise linear approxima -~
tions ug of ulx,NAt), associatedwith the vertices of Qg by:

o AtAN)u = MNu§ -1

with ug(O) = g(NAt) ,

The generic terms of matrices A and M are respectively

given by,
) ¢Nﬁ¢§ﬁl
- N . N 7% N
A3 = J g batTey f g At %
2 f
h h
N N
m = [ ¢, o,
i3 Qg i 73

where ¢f is the piecewise linear basis function for the i-th
vertex of the partition of @§° The second term in the expression
of aij corresponds to the velocity matrix introduced by MORT [ 6 1,
in the study of an analogous algorithm for one-dimensicnal problems.

The boundary rg can be determined at each time step, if one
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'

nows. the increment As? of the radius s?fl, in the fixed di-
ection (ﬂue., .) . This 1ncrement is cbtalned by means of the
following discretization of (4. 5):

LJ

> , ' 2.
A Fi ash(e,:i))} : (ash(ﬁfif o
(4.6) - —Lo=d14+ [L__8 Ay * % 4 h
Ve AL N Y s N - g{&
{Sh(at‘i’l Smif)):] h (Sh(eﬂ?)):} h "
FZ s )

The notation { | };}ftands for an averaqlng process in the

neighborhood of the j-th vertex, defined as follows:

First we let é% be the set of faces K K of Th such that K
contains vertex Pj uat M denote the cardinal of ?{

ash s

( 55 is the mean value of —wL given by:
" d.b

38 08

(353 ) = é b3 J 5@2 ds/area (K)

Y 43,n i ke, ‘x

BS
with an analogous definition for ( —= T ) .
-3,

Similarly'we can evaluate the denominétors of (4.6) by

sg sing d8 /area(K)

N
. I { ds / area(K)
My My xeff, Jx P

Remark: The_purposé of the latter averaging'is to avoid the sin
aularity occurring in the first denominator for ¢=0.
Except for this restriction, at other verticdes one may

simply set:

N N . . _ N
(s}, , = s, and 5. sing) = s, sin¢g,. _
"“h’3,h 3 A h 3,h J ] g

UNIVERSIDRRE  GATGLICA
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Let us now turn to the problem of calculating the radial

derivative of uN at. points Pj'

h
We have three different situations:

1St) m=p, n=m, or n=0

Aéug
3p . i
version of the algorithm [ 10 1, and we have to distinguish two

In this case is obtained like in the two-dimensional

cases:

Case l: The vertex is not an end of the curved boundary of the
plane sector associated with the above values of m and
n. We calculate the derivate using triangle of type K
shown in Figure 7a below, according to Formula (4.7).

N N
s, 3 uh(Pj) - uh(Q)

Calculation of the radial derivate of uﬁ

Figure 7

Case 2: The vertex is an end of this curve, in which case we use
again (4.7) in connection with triangle K'ghown in Figu-

re Ta.

2nd) O<m<p and n #m



17.

In this case, noticing that the polar radius associated with

the boundary vertex intersects the interior of the face whose
verticés are ?p ~1,m, 1 Y Pﬁgl pm =len and Pp ~1,m-1,n0- 1 assuming
PjEPﬁin ' and referrvng te Figure 7b, the radlal derivative can

be readily computed by (4.7}.

Finally we remark that the above algorithm seems to be par-
ticularly suitable for the numerical simulation of ice melting
processes above the ground, starting from a small portion of
water, where the heat sources are applied, as illustrated in
Figure 8. Indeed with simple adaptations one can use our scheme
in order to plot therevolution of the water-ice interface through
laxrge regions of ice"at;uoc, without taking into account the ice
region itself in the calculations. £
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A case where the. use of the'algorithm-is recommended

Figﬁre_ 8

5 - CONCLUDING REMARKS

1) Some problems may arise when using the mesh generation pro
cess described in this paper, if the boundary of the domain
has locally large Lipschitz constants with respect to
8 and ¢. In particular in [11 ] one can find hints on how
to remedy an eventual “"inside out turning® of the elements.

2) In a forthcoming paper we will deal with the problem of
numbering the nodes for any finite element method, in con-
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nection with the partition that we consider in this pa -
per. Mcore specifically we will give procedures for opti-
mal and automatic numbering of the nodes.

Likewise in the two-dimensional case, the feasability of
the algorithm for solving one phase Stefan problems trea
ted in this paper depends on the fact that the domain re-
mains: gtarshaped at every time step. Notice that = . this
will be the case, provided the increment Asg is positi-
ve for every j and N, If g is nonnegative,this will be the
consequence of the validity of a discrete maximum prin -

‘ciple, in connection with the partition of Qﬁ (see e.q.

[[3 1). Although in the analagous continuous case {(4.1)
the fact that the domain remains starshaped for every
time t was proved by FRIEDMAN [ 2 ], we can only conjec-
ture that if the Lipschitz constant of the initial boun-
dary FO is sufficiently small, the above mentioned dis -~
cret maximum principle does hold, and therefore the same
result applies,

Finally we note that the adaptations of the algorithm
of Section 4 to the case where Iy is not reduced to a
point, can be carried out in the same way as fox the
two-dimensional case [ 10 ]J. This simply means that one
reduces and subdivides into egual parts,the segment of
each polar radius lying between T, and FE, instead of
the polar radius of rg itself,
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