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ABSTRACT
. Logicsl, algebraic, prograsming language, grammatical and
denotational formalisms are investigated with respect to their
applicability to formsl deta base specification. On applying each
formalism for the purpose that originally motivated its proposal.
it is shown that they all have a fundamentsl and well integrated
roie to play in different parts of the specification process. An
example is included to illustrate the methodological aspects.
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RESUND

Formalismos de  1dgica. dlgebra. linguagens de programagan,
cgramaticais @ denotscionais sat investigados quanto a sus
aplicabilidade pars especificagao formal de bancos de dados. Ao
aplicar cada formalismo com o fim que originalmente motivou sua
proposigan, mostra~se que todos eles tem um papel fundamental e
hem integrado a desempenhar ewm diferentes partes do processo de
gspecificacano. Um exemplo & dado para ilustrar os asspectos
metodelbgicos.
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especificagan de bancos de dados., restricoes de integridade,
1dgica, dlgebra. tipos abstrztos de dados, linguzgens de
programagan, gramdticas, mélodos denotacionais.



i. Introduction
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Different groups  of  researche~s have been using @ different
formaliems in connection with data basses. Here we shall consider

the use of formslisms with the following primary purpose: :

2 applications subjected to  integrituy

To  specify dats bhas
constraints
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Initislly. we would like to concentrate on the characteristics of
the data base application being specified, with no concern for

its eventusl computer implementation. Such concern would be
brought to the foreground after those characteristics are well
urnderstood. To guide the phase of inplementstion-oriented:

specification., the suxiliary purpose below wust also be served:

for adapting data
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To
baze applications io cosputing environmenis
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at snpects shouwid bz cove
specification process? A data bas
i rRE

=
peat

in this double~-purpose
paplication is first of all a
n. Secondly. there must be:
1

repository of time-varuing inforpatio

functions whereby the infornation will be used, i.e. interrogated

or changed. Thirdly, as we move towsrds an  inplementation. we

must provide a representalion for the <data base according to some

chosen data model, which invelves expressing how the information

will be structwed and the functions programmed. In - turn, +he
data model specificetion has suntactical and semantical aspects.

Although data bass theom
derived fron firsi-order 1
the particular needs of ds
sttempts to use algebe

s been largely influenced by concepls
g, either in pure form or adapted to
@ besze research, there have been many
" hich—-level programming latguage
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base concepts. One might claim that each formalism is powerful
enough to cover sany (or perhaps all) sspects listed. However it
seems more reasconshie to conjecture thet & single formalism will.

probably nol be egually convenient for all aspects. This
position, which we alse take. hss led to the notion of
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The major contribulion of the paper lies in selecting the correct
variation of each formaliss for each level of specification, in
the siyle of orgenizing the formalizms together into & coherent
conceptuysl  desion frasework and in  the formal notion  of
refinement binding the Jdifferent levels. Thus, contrarily to most. .
published literature, we neither limit ourselves to just one
formalism at just one level nor force the uwse of the sawme
formalism at different levels. which often creates distortions.
Finally. although the paper is not intended to be a» survey of the
areg, it may serve s & guide to different approasches to data
base theory.

We divide the design process into three levels of specification.
Before embarking on their rigorous characterization., we explore



them informally in section 2. where the overly siwplified example
to be wused  as illustration is slse introduced. In the rnewd
paragraphs we briefly say what are these levels of specification,
#s we indicate how the rest of the pasper is organized.

The first level. +the information level. characterizes the data
base by its information contents independently of how the
informstion will be used or represented. It gives a high-level
description of the set of consistent date base states and the set
of state transitions and typically involves & langusge to talk
about the dats base and a set of static constraints indicating
which states are considered consistent, and a set aof transition
constraints indicating in turn which transitions are scceptable.
In this paper. we will adopt an extension of first-order
languages. as described in section 3.

At  the second level. the functions level. we add to the
characterization of & data base & repertoire of functions,
establishing how we intend to use the information. These
functions indicate how the dats base will be queried or updated
and  depend on the applications the designer anticipates for the
data base. We will use in this paper an algebraic formalism
related to abstract data types. which is described in section 4.
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the data base with the help of & datz model. A representation of
the data base in terms of the dats structures supported by the
data model must be found and the functions defined at the second
level: must be mapped into procedures using 2 Data Manipulation
Language  (DML) associated with the model. The third level
therefore brings us . close to the implementation of the datz  base
application on top of & Data Base Management System (DBMS). "4
programming language, described in section 5, will be used to
specify ‘the -dats base at the third level. The suntax of the
language is given by & grammatical formalism, W-grammars, and its
semantics is described using & denotational formalism.

Each level of specification must be a refinement of the previous
one, in the sense that the second-level update functions must
preserve the first-level static and transition constraints, and
the third-level procedures defining second-level functions nust
satisfy the secomd-level equations. This is further discussed in
sections 4.3 and 5.3,

Section 6 contains the conclusions. The bibliography gives &
sample of the publications for each formalism. including both the
fundamentals and dats base research: also included are papers on
comp lementary specifications. ‘
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At the first level, we consider thast dats bases will contain
instances of facts. defined as positive assertions about the
application area. Usually, negative facts are not stored (such as
what courses are net taken by & student). A state is the
collection of facts that are true at & given instant of times
therefore, a state denotes the entire contents of the data base
at that instant. Blatic constraints are restrictions defined on
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states. A wvalid state is one that conforms to all specified

A transition is a state transformstion. A transition can be
denoted by & pair of states. Again we w#may want to impose
restrictions on transitions. Thus a valid transition., besides

being required to involve only valid states. must conform to the
declared transition constrainis.

We now begin to present the simple academic data base exaﬁbie to
be used throughout the discussion. Using the terminoclogy of the
first level. we have:

FACTS: - courses are offersd
- students take courses

STATIC CONSTRAINT: students can only be taking currently
of fered courses :

EXAMPLE OF A VALID STATE: ¢l is offered
c2 is offered
John takes cl

TRANSITION CONSTRAINT: the number of courses taken by a student
carinot drop to zero (during the academic
term)

EXAMPLE OF A VALID TRANSITION:

cl is offered | » cl is offered
c2 is offered : > c2 is offered
John takes ci John takes c?

Certain points not explicit in ouwr unrealistically simple example
must now be stressed. The first point is time. implicitly

involved in the transition constraint. which applies only during
the current academic term. Tiwe appears in many ways: simply as &
criterion to order states. as a duration., ss a dJate, etc. Next we
ohbserve that the size and complexity of reslistic dats bases make
their Jdirect specification in one piece an impracticable task.
flodularizatign is in order. Also, we must have ways to verify
properties of specifications, such  as consistency, non-
redundancy. etc., hoth within and across the various modules.

In an "intelligent" dats base, .one should be able to infer



certain facts, which then would not have to be stored. For

example, if we are confident that the current state of our
acsdemic date base is valid and that Jdohn takes ci. we  could
deduce that ¢l is offered, taking our static constraint as &
genersl law. Inference becomes more cowplex when states are
allowed to include alternative facts such as John takes ci or c2,
or  facts  with indeterminate values, such ss John Lakhes  some
course, whose name is presently unknown (an undefined value). '
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We now turn to the second level, where funcliions are introduced,
To each fact there correspods a guery funclion to check whether
or not the fact holds; update functions provide the wmeans to

effect transitions, taking states into stastes. Te indicate how &
new state is obtained from the current one. we shall zsserd the
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facts that become true and deny those that cease to be true.
Because of the:integrity constraints. the application of certain:
functions becomes dependent on pre=conditions.
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The choice of the set of functions is dictated by the needs of
the specific data base application that one can anticipste. In.
our example the guery functions will be:

is couwrse being offered?
is student taking course?

with the obvious meaning. The update functions will bes

initiate academic term: the data base is Tempty" (&1l facts
' false) -
of fer coursel sssert that the course is offered
cancel coursel if no student takes the course
then deny that the course is offered
enroll student in course: if the course is offered
then assert that the student takes the
‘ course
transfer student frowm coursel to courseZ:
if the student takes coursel
and does not take coursel
and coursed is offered ‘
then deny that the student takes coursel
and assert thal he takes coursel

Note that here no formal m@anfng is attached to words like
Yaesert’, "deny'", "if ... then"; they are used only to favor more
concise and structured natural language descriptions.

When we wsssociste application-oriented functions with actions
happening in  the real world, we are assuming that reality is
changed only when the corresponding functions succeed in updating
the dats base in the intended way. In other words, the segment of
interest of the real world is indistinguishable from the dats
base. It becomes physically impossible to performs an action that



vinlates some policy of the organization, evpressed &5 &
constraint. Also, we can automate certain actions, achieving the
so-called active systems. where actions can be triggered by the

occcurrence  of events (possibly involving stored facts, time.
etc.).

There may be wore than one way to design functions that
effectively preserve the declared constraints, which implies that
more than one second level specificastion would be compatible with
(and  therefore not entirely determined by) the first level
specification. Part of this freedom of choice comes from the
existence of different ways to combine pre-conditions and effects
and also to decide between actions initiated by users and
triggered actions. To discuss these possibilities we shall employ
the example below. '

cl is offered transfer - _ ¢l is offered
c? is offered c2 is offered

John takes cl - John takes cd

cancel

cancel’

c?2 is offered
John takes 2

With the present definition of the functions we could not execute’
cancel ¢l at the state where John tzkes this course., whereass the
use of cancel is legal st the state reached by transferring  John
to c2.  This suggests that, in order to make cancel applicable at
the first state shown, we might redefine cancel (see .  cancel’
above) by expanding its effects. thereby being able to weaken
its pre-conditions. o -

Besides redefining & function we may want to creste additional
ones. For instance, we might add an operation allowing a student
to drop & course, if it iz not the only eone that he is currently
taking. Finally. if we had both drop and trensfer functions. we
could achieve the wmodified effect of cancel” indiceted sbove
without redefining the function: we would merely add & trigger
causing either drop or transfer to be invoked for each student
taking cl. : ' ‘

The order of execution of operations. on the other hand, is not
entirely free because of the interplay of pre-conditions and
effects. In our example, enroll John in ¢l can only be executed
after offer cl has been executed. Functions whose effects are
necessary to fulfill pre-conditions of other functions entail
serial execution. On the contrary, offer cl and offer <2, for

Also  From the study of the intérplag of pre-conditions and
effects, one can conclude that different sequences of functions
carn accomplish the same net result. Calling a trace any sequence

of update functions starting at the initial empty state, the two



trasces:

offer ¢l . offer c2 . enroll John in cl .
transfer John from cl to c2 ., cancel cl

El_l"ld
offer c2 . enroll John in c2

lead to the same state and are in this sense eguivalent.  Traces

clearly provide an alternative way to denote the states that they
generate. ’ ' ‘
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To  run & data base application on & machine we must adapt’ the
data base application to the machine - environment.
Such environments involve file structures and facilities to
declare., access and wmenipulate them, usually constituting & Data
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This adaptatidh can be specified independently from actusl
machine details if we employ the abstract structure provided by
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some dats model. The current dat: models offer trees., graphs.

tables. etc. as abstract structures. To esch data model there
corresponds a. family of DBMSs.

our academic dats base by way of two tables, OFFERED and TAKES,
as shown below:

OFFERED TAKES -
C# S CH-
<1 Johri|cl
C2 a m . == w

nm n wow u n

Executing & query function will row correspond to  inspecting
tuples of the appropriate tables whereas, for an wpdate function.
certain tuples will be inserted, deleted or modified. For
instance. transferring John from ci to 2 involves (after an
inspection that would show the presence of tuple {(cl) in OFFERED.
the sbsence of (John.c2) from TAKES and the presence of (John.cl)
in TAKES) the deletion of (John,cl) from and the insertion of
{(John.c2) in TAKES.

One would expect & DBMS to handle constrasints in &t lesst one
of the following ways:

d« The constraint may be implicit in the data model. An example
is that relationzl +tables. by 'definition, do not admit
duplicate tuples. ,

b. The constraint may be declared. For exawmple, we may declare

that, certain columns of & table constitute & key. in which
case no two tuples with the ‘same values in such columns are



permitied.
€. The constraint mey be enforced proceduraliy. This can
be accomplished. among other ways, by restricting tuple-

update operations Lo be invoked only from within procedures
corresponding to the previousiy defined update functions. An
example is the description sbove of how transfer would be
executed on the OFFERED and TAKES tables.

Since strategy (a) is not enough and most DBMSs are weak in terms
of features to enable strategy (b), strategy <{(c). known as
encapsulation. becomes an important option and is assumed here. A
cheracteristic of encapsulation is that it does not prevent that
the execution of tuple-update operations viclate constraintss
however this occurs only st intermediate states. For exanmple,
when transferring John from ¢l teo c2, as we first delete
(John,c1) from TAKES the transition constraint is wviolated, bul
the wviolation is immediately corrected by the ensuing insertion

of (John.c2).

Similarly to the relationship between levels one and two, there
can be more than one third level specification compatible with &
second  level one, in the sense that all functions are correcily
reaslized. Here ‘the freedom results from the possibility of
choosing among different dats models and also from the various
ways whereby & dats base application can be structured within the
same data model. '

e oo R rn b e e s ey soes et i SiPe avi o ot et

We have investigated., in some detsil. the nature of what we want
to specify formally. In the introduction, five formaliswns were
mentioned. We now propose that each formalism be used essentially
for the purpose that originally motiveted its conception:

- with respect to data base zpplications :
. for the information level - logicsl formalism
. for the functions level - algebraic formalism
. for the representation level -~ programming language formalism

The basic formalism is logic. For a long time, first-order logic
has been regarded as & paradign of formalization.

The first 1level of specification charscterizes data bases by
their information contents. independently of how the information
will be used and also independently of representation. We did not
sge  any need to depasrt from logic at this level, where types of
fatts will quite naturally correspond teo predicaete symbols and
integrity constraints - to asioms. Yet. wWe note that
considerations, such as the presence of components of different
types and trensition constraints: may prescribe the use of many-
sorted first-order logic and temporal logic. rather than strict

first-order logic.

At the second level. we add to the characterization of & dats
base & repertoire of functions, establishing how we intend to use



the information. Repressntaetion considerations are still sbsent.
Algebraic formslisms have been conceived precisely to specify
objects by the collection of functions defined on them. Functions
Wwill' be defined vig uundstzonal -equations expressing  their
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inputZoutput properties.

At the third level we introduce representation, following & data
model . and  thus  pave the wsy to an eventual  computer
tomplementation. When indicating what kinds of information the
dats base will contain (at the first level) no thought is  given
to bhow it cowld be structured for efficient access. Similarly.
the functions defined (at the second level) take entire data base
states both as domzin and range, wheress, if the informstion were
organized,  inspections and chdngpa could be circumscribed to
swall parts of the dota base.  The formalisms that more directly
express compulting phenomens are programming langusges. With @ the
commands of @ programming language, functions can be programmed
as’  procedures. acting on dats structures containing the
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information. (see also [We2l, page 158, for three-level
specifications).

A programming Idngucgw to be employed for formsl JPECEFiCﬂtEBn

must, of course, be'a very high-level and theoretically sound
language., which excludes most languages coming with the currently

available DBﬂSs, ﬁmreﬁver, it must itself be formally specified,
srnd thus we have ' ‘

~ with respect to the language associsted with the data model
. for the syntactical aspects - grammatical formaslism
- for the semantical aspects - denotational formalism

bPaMMatlaul formalisms. thE |hdeed been created for specs?g:hg
syntax. . They describe it by way of production rules. Certain
"contex t»gansnttve" syntecticael &aspects have been misleadingly
labelled &5 belonging to. semantics., simply because of the
inability of formalisms, such &5 BNF. to cope with them. Here. we
shall use itwe-level grammars, whlch have enough power, for
instance,. to exclude _suniﬁctlc«llg commands thal manipulate

undeclared data structures.

Denotational formalisms purport to explain in wathematical terms
the semantics of computer-oriented constructs. They sometimes
slso cover "abstract syntax", resorting to BNF productions. Since
a fully COMPPQthbIVE treatment of syntax can be provided as
sndaCated in the prev;ous paragraphn we. can concentrute oh the

T e o e e o e o S e D e

We  should pass from one level to the mext in & construckive
manner,  and should also he able to verify, d?t@PdedSq that we
have done so in a correct wa, [.@., among . other requ:rements.‘

a. that the second-level functions preserve the first-level
integrity contraintss ‘

b. that the third-level  procedures. realize. the .second-level

o e e e e



functions.

The second requirement implies that & formal specification of the
language used at the third level zhould be available beforehand.



in this section we briefly indicste how a dats base can be
specified, at the information level, using a logical formalism.
We asssume Ffamiliarity with first-order logic at the level, <say.
gf [End, so that the presentstion of the formslism will be wvery
erse., : :

Te set up basic terminology and notstion, we recall that the
slphabet of & first-order language consists of: (1) a set of
logical symbols. which are the variables, the usual connectives
and quantifiers, the equality symbol (if necessary). ard
parenthesisi (2) & set of non-logical symbols, which are a set of
constant symbols snd. for each positive integer n. & set of n—-ary
predicate symbols and & set of n-ary function symbols. Tersms are
built from varishles, constants and function symbols using the
famitiar formstion rules. Well-formed formulas {(wffs) are
constructed out of terms. predicate symbols (including equality)
and connectives and guantifiers, again using the familiar
formation rules. & Litersl is either an atomic wff or a negsted
atomic wff. A ground ters is a term with no variables and,
likewise. a ground wff is & wff with no variables.

4 structure I for a first-order language L consists of & non-
enpty set D, the domein of I, and assigns to each constant ¢ of L
an  element of D, to each n-ary function symbol £ of L an n-ary
function I(f) ogver D, and to each n-ary predicate symbol p of L
an n-ary relation over D. A valuation of L for I is & function v
assigning to each variable of L an element of D. We use !1=I PLv]
to indicate that I satisfies P with v, and use !=1 P to indicate
that I satisfies P with any valuation v of L for I L[Enl. In the
last case, we say that P is valid in I. A ppdel of & set W of
wffs of L is & structure I of L such that all wffs in W are valid
in 1. We say that W logically implies a wff w iff w is valid in
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wiys defined on & first-order
§ axiom schewmes., the lpgicsl
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The first-order predicate calg
langusge consists of & set o©

axions, and two inference rules: modus ponens and generalization.

®i0 py is & pair T=(L.A), where L is =&
first-order lahgueage and A is a set of wffs of L. called the non-
logical or proper axioms of the theory. A model of the theory is
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an interpretation of L in which a1l axioms are valid.

& first-order sxigmatlic the

To conclude this brief refresher about first-order languages. We
say  that the language is many-sorted when each wvariable and
constant is assigned to & sort, each n-ary predicate siymbol p is
sesociated with an n-tuple of soris ST .enesTnx {Ti is the sort
of the i-th argument of p), and each n-ary function symbol is
associated with an  (ntiy-tuple of sorts <Tl,....Tn+ics (Ti
indicates the sort of the i~th argument, B<i<n+l, and Tntl,
calied the target sori. indicates the sort pf the resulll.
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Moreover, the formation rules of terms and wffs are changed so
that sorts are respected (for the details see [Enl).

At the information level. & dsts base can in principle be
adequately represented as a first-order theory Ti=(L1.41}, where
L1 is & first-order language used to talk about the data base and
Al is a set of non-logical axioms essentiaslly defining the set of
consistent dats buse states.

& wvery rich vein of research during the past years has centered
around special classes of first-order sentences that capture
important facts about dasts bases and yet have special properties
not shared by the full version of first-order logic. The various
classes of data dependencies offer the best example.

In another direction, variations of first-order logic have been
used to express data base concepts that. camnot be resdily
expressed by ordinary first-order languages. Aggregation
operations., such as SUM  and AVERAGE that map relations into
scalar objects, is one example. They require & special treatment
to aveid talking about higher-order functions of higher-order
logics L[CBI.

Another example is precisely the notion of transition constraints
that impose restrictions on data base state transitions and not
Jjust on datas base states. fMost of the research., with a8 few
notable exceptions. ignored this type of constraints, although
they are equally important and interesting. We now explain &
possible extension of first-order languages to cover aspects
related to transitions. The extension we describe is perhaps the
simplest qne and depends on the introduction of twe modal
operators. Other sets of wmodal operators can be adapted to
enhance the expressive power of the langusge. A different
approasch could also be tazken by selecting & wmany-sorted first-
order langusge with & special sort interpreted as time (see
LCF.CCF . MWJ,BADUWI For extensive discussions).

Given a (many-sorted) first-order language L. its ‘1lemporal
extension, LT, is defined as follows. The symbols of LT are those
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by <=7, The wodsl operator {3 of necessity is the dual of <* in
that it can be introduced by definition as P = -<&-P. The terms

of LT are those of L and the set of wffs of L is defined using
the familiar formation rules, plus one new rule:

it P is a wff of L or LT, then <P is also a wff of LT

The semantics of LT is defined as follows. A yniverse U for LT is
a pair (S,R). where § is a set of structures of L. all with the
same domain D (this restriction can be relaxed, but it simplifies
the treatment of quantifiers), and R is & binary relation over 5,
called the accessibility relstion. Given a wff P of LT, &
gstructure I in S and a valuation v over the cowmmon domain D, we
define +the notion that I satisfies P with v in U (dencted

Pe=li) PLvI) wusing rules identicsl to those of first-order
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languages., plus one additional rule:
I=UT (<3P)CvD i there is'J in § such that R(I.J) and I=UJ PLv]

A wff of LT without any modal operstor is called & static wff. A

fully temporal wff js conveniently viewed as consisting of static
subformulas to which wodal operstors have been applied.

The notions of wmodel, logicsl iﬁplicatian aryd theorg are as for
first-order languzges.

Thus. to account for transition constraints, a data base is
specified st the informstion level by defining & theory
Ti=(L1.A1}, where L1 is a temporal extension of a (many-soried)
tirst-order language L and Al is & set of axioms. The non-logical
symhols of L1 describe the dats buse dsta structures and =11l
ardinary sywbols, such as "less than", used to express facts
about the dats base. Dataz bsse structures are represented by
special predicste suymbols. called db-predicate suymbols. The
aioms  in Al define static constraints, if they do not involve
modal pperators {i.g. are ataztic wffsl, or transition
constraints, otherwise. The semantics of the dats base is fixed
by selecting a universe U={(8.R) for Li. The structures in 5 play
the role of data base states amd the relation R over § is
interpreted s indicating that, if (1.4 is.in R,  then J_ is &
future state with respect to I. A structure I in.5 corresponds
to @ consistent state ifFf it is & wodel of Ti.

He note that the semsntics of 3 data base, as explained above. is
erly loosely fixed by the theory Ti, especially the relation R.
This situation is modified when the fumctions level (l.e..
algebraic) specification of the data base is fixed (section 4). -

[T AR M -

e are now in a position to present our exemple data base and
formslize it st the information level.

The example data base is defined by & theory Ti=(L1.Al), where L1
is & many-sorted temporal langusge with two sorts, course and
student. and two predicate symbols, offered;: of sort Zcourser,
and takes. of sort dstudent.courser. The intended interpretation
of affered(c) is that course ¢ is offered, and of takes(s.c) is
that stuwlent s taskes course c. The set Al of axioms consists of

two fornulas:
(1Y ~Fsdc(takes(s,.c)? A —offeredic))
{2 ~dede{ixttakes(s.c)y A <>(-dc takesi{s.c?))))

The {irst foreula formalizes the static constraint: Y& student
cannot s take a course thst is not being offered". The second
foresula formalizes the transition constraints "the rumber of
courses taken by a student cannot drop to zero" (i.e.. he cannot

he taking » course in (some) current state and no course in &
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future state).

To summarize; . formelisms based on logic are best viewed as tools
to describe data bases at the first level of specification since
the set of consistent data base states and the set of consistent
state transitions cen be formalized by sets of axioms.
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4. The functions level - the use of algebraic formalisms
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Recall thst the goal of & second level specification is to
define & set of query and update funcltions thal preserve the
static -and transition constraints listed at the first-level
specification, provided that only such functions be used (the
encapsylation strategy). This can be achieved by giving the dats
base applicstion an algebrsic specification CUF.DMWI. ‘

it  the Ffunctions level, a data base is still specified  as &
F§r5t~0rdew theory T2=(L2,A2). However, the similesrities with a
first-level specification fade out with & ¢loser look &t T2.

4.1. Blagesbraic formalisws

&n algebraic specification is a first—order theory T={L.A)., where
L is a mary-sorted first-order language and A is & set of axiows
obeying the following restrictions.

The gset of sorts of L sust include s Boglesn sort and &

T e #e wne S wan awe

desighated sart steste (aslse caslled sort-of-interest’. The

remaining sorts are caslled parameter sorts. The only predicate
symbols of L are equality suymbols of sort <s.sk, for each sort
5. For simplicity, and since no smbiguity arises. they are all
denoted by =7, We shall also use t # t7 as an  abbreviation for
~ % = t7. The parameter sorts of L are endowed with their own

o range sort. and not including Boolean as Jomain sort). which

have the effect of generating & set of ground terms called

False., and with Function symbols standing for th

b vw st o o

connectives, -, 4, V, ~*, = written in infix notation.

The language L may also have other function symbols as long as
state occurs as one of the Jdomain sorts and the range sort s

Boplesn or state. To simplify the notation, we assume thatl state
is always the last one in the list of domsin sorts. Thus, if f is
s n-ary function symbol in this group, it must have & sort of
the form “8lsenessii~i.state.sn+ls (recall that sn+l is the
target sort). If sn+l iz the sort stzte then §f is an update

function (intuitively., it maps states into stales according to
S0Me arguments?s otherwise, f is & guery function (it
interrogates the current state (according to some arguments) and
returns ‘s value). Let f be an n-ary query function. Whenever
termns of sorts other than state asre irrelevant, we will write

f(&) instead of Flil,..--tn~1,6).

&  ters of the form g(ti.....tn) where g is & query function and
ti..cestn contasin no cccurrences of update functions is called &
simple abservation. We will construct the language L2 to be
sufficiently rich with gueries so that states can be identified
by means of simple chservations. More precisely, if 6 and 67 are

state wvariables such that for all simple observaltions §f we have



f(6)=F(67), then &=6". This ohservebility condition is often

fulfilled by dats base applications due to their purpose.

The type of axiowms aliocwed in slgebraic specifications will be
conditionasl eguations. which are wffs of the form P -~k ¢ = 17
where P is a wff and t and L' are terms of the same sort s. If s
is state then we call the axiom an U-equation, otherwise we call
the axiom a Q-equation. Often term t7 is “sispler" than t and we
can  view sn axiom a8 & conditional term-rewriting rule. namely.
if condition ¢ is fulfilled then t can be rewritten as t7. This
operational interpretation has an intuitive appeal to it. which

can be convenientluy exploited.

An  slgebreic specification. being a theory, defines & set of
structures, the wmodels of the theory. (In the context of
algebrusic specifications. structures are called (many-sorted)
algebras.) fAs usual, we further restrict this set to be the set
of sll finitely generated algebras (i.e.. those in which every
element is the value of a variable-free term) which asre models of
the axioms. Thus we can esmploy the principle of structural
induction (on terms) as o proof rule.

We call an algebraic specification T = (L,A) sufficiently
complete i¥Ff for avery ground ters of the form q(tl....tn). where
g is a query function (with target sort s, say), there exisis &
parameter nasme p (of sort s) such that A != gltl,....tn) = p.
Intuitively, s sufficiently complete algebraic specification is
one enabling the evaluation of all gueries. :

Returning to the beginning of our discussion, we can concisely
say  that data base applications are specified st the functions
level by slgebraic specifications. The next section outlines in
general terns the wmethodeology to obtain  such data base
specifications. :
«2. Bbtaining & funciions level specification - an exawple

He now outline the methodology we employ to obtain an algebraic
specification T2=(L2,A2) of a data base application at the
functions level. . ‘

Consider again the dsts base spplication described at  tLhe
inforestion level by the theory Ti=(L1,A1) of section 3.2. For
simplicity, we take the parameter sorts of L2 as the sorts of Li.
Moreover. we correlate the db-predicete symbols of L1 describing
dats  base structures with query function symbols. So, L2 will
contain two query function symbols, offered and takes. of sorts
scourse,stete.Booleans apwl Latudent.course,state.Booleans,
respectively. The intended interpretation of offered{c.d). for

example, is that it is Trug iff ¢ is a course offered in state 6.

The wpdate function sywmbols (with their intended interpretation)
are: initiate of sort <state>, with initiate understood as  an

operation that initializes the datz bases affer of sort

Lrourse.state.stater,. where offer{(c.62=1{ indicatez that ¢ is
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added as & new course Lo state 6, creating state 17 cancel of

sort <course.state.stater, where cancel(c.8)=7 means the inverse
of the - previous operations enroll of ‘sort
“student .course.state,staster, where gnrollis.c.&)=1 creates a new

state ( by enrolling student 5 to course ¢ on state 63 transfer
of sart - <student.course.course.state.statex, with
transfer{(s,.c.c’.d8)={ understood as creating state € from state o

by transferring student s from course ¢ to course ¢’ .

Our task now is to write & set of conditional equations fros
which we can obtain the correct result of every gquery asnd. at the
same time, guarantee that consistency is always preserved. In
other words., for every guery function g, for #1l parameters p and
for all ground terms t of sort state. we should be able to derive
from the axioms the equality qip.t) = b where the Boclean value b
is the correct answer according to the given description. Now,
the set T of ground terms of sort state is the smallest set of

terns containing initiste and closed under sumbolic application

of the other update functions. Thus, we shall strive for. (-
equations of the form (perhaps with some condition?

gip.ui{p’.d)) = "simpler expression”

for all query functions g. update functions u and parameter lists
p- oand p’. & being a variable of sort state.

We start from the informal description of the operations. As .
slready mentioned the effect of each update function is changing
the state as ohserved by the query functions. As a first step. we
give & more structured description for each update function by
identifying its intended effects. preconditions for state change,
possible side effects. and simple chservations that are npt
affected.

The general ouilook of such & structured description by means of
effects for an update u is

¢ = ul(paraneters.,d)

intended effects: some simple observations q at state “give
_ specific values

pre-~conditions: come simple observations g’ at state 6 have

given values , ‘

side effects: some simple observations ¢ may have their values
~ altered by passing from state & to state €

not-affected: other simple observations q" maintain at state <

the value they had at state 6

or example, the informal description of the update fFunction
ancel would be structured as follows

i

¢ = cancel{c.é}

e e et e e i

it at state & =/
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intended effects: offered(c.?) = False

- — . s o Vst e e g ey

pre-conditions? Vs(takes{s.c.,d) = Falsge)
side-gffects! noie
not-affected: all other queries, including offered(c’,.)

with ¢ # ¢ T

As an example of the method, let us consider the update function
cancel. whose structured effects description has been given

Pl SRR PR

above. We shall examine in detail the case of the query pffered.

In other words, we want (conditional) equations enabling us to
derive the correct results of queries of the foras

o e bt 0 e e o S5 e o S

We shall divide :our task into two cases depending on the
comparison of ¢’ with c. : '

For  the -first case (c’ # ¢} the not-affected part of the
structured description tells that the value of offered(c’..) is

v . S > - o

T e o o aem v o s L o soen e s o s vy e

offered(c’ cancel(c.6)) = offered(c’.é)
We can put this into the form of & conditional equation

€7 # ¢ -> gffered(c’.cancel(c.6)) = offered(c”.é)

et o S oo o ot e s vy R v s STe s e

Notice +that the antecedent of the conditional equation does not
involve terms of sori ziate. only parameters. Also, the righthand

oo e S it

side of the conseguent is "simpler" than its lefthand side. for
the term & ic “simpler" tham the term cancel(c.8). Thus, we can

e

view this conditional equation as reducing the problem of
determining the value of offered(c’.cancel{c.6)) to the simpler

S - o e o g -

problem of determining offered(c’.é) in case ¢’ # C.

Now let us examine the case ¢’ = ¢. According to the structured
description, the value of offered(c.cancel{c.d)) will depend on
the precondition. If .the precondition holds then we have the
intended effect False. Otherwise the value remains ‘unchanged.
Thus, we have: :

e e % v % QPR el R4

False if VYs(takes(s.c.8)

e ew oo e W P ALY

affered(c,6) if Isttakesi(s,.c,86) = True)

of fered{c.cancel(c.d)) =

e —vn o o e P a-p~p .4

S0, we can write

=g ARy ot oy s e e
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True if {3z takes(s.c.é)}

1t
==t
"3
2
im

which can be 5|mp1|F|ed ‘o

n?fered(c cancel{c,d)) = True = ds (takes(s.c.6) = True)

e L T * e b e e o s o e =

I8 (takes(s.c,6) = True) - of fered(c,cancel(c.6)) = True
&nid
~ds cidkeqis €.8) = True) -» eoffered(c.cancel(c.é)) = False

Three remarks are in order. First, in nbnd;ning this Equathm we
used the static constraint (sssumed %o hold; we shall later have
to" verify that it does hold). Second, the antecedents of ‘the
above conditional equations do not involve quantification over
states. only over parameters, Third, we msy regard these

equations as reduc ing the probiem of deternining
offered(c.cancel(c,8)) to that of determining whether there
exists & qtudemt., such that takes{s.c.86) = Jrue. which may be

viewed as a problem somewhat simpler than the original one.
However we must be careful, for some other equation might reduce
the problem of determining takes(s.c.&) to that of determining

effered(c.é), thereby creating a. czrculmr;tg. This is the reason
whiy we later verify termination.

By applying the general methodology outlined above we obtzin the
following set of Q-equations for our example

l. offered(c.initiate) = False

2. takes(s,c.ipitiate) = Eélﬁﬁ

o gﬁigﬁggcc.gffgtic»$3> True

4o ¢ #F £f ~k offered(c, off er{c’y61) = offered(c,8)

de takes(s.ociypffer(c’.é82) = takes(s.C.8)

4. offered(c.cancel(c.6)) = Iggg = 35 {(takes(s.c.8) = Truel

7. € # 7 -x gffgfgg(c cancelic’ . .é)) = pffered{c.é)

8. tlakes(s,c.gancel(c’ .é?? = tahes{s.c.6}

9. offered(c.enroll{s.c Ta8)) = of fered(c,é)

18. takes(s, c.gm2911<5 c.63) = offered(c. 6}

1. s # 87 V ¢ # gl => thESkB caenroll{s’,c7,46)) =
takes(s.c.&)

12. offered(c.transfer(s.c’ 12077800 = offered(c.d)

13. takes(s.c’ transfer(s.c,c’,86)) = (offered{c’ .6y *
takes{s,c.é)) V ggtgg(a c 76

14. takes(s.c.transfer(s.c,c’.8)) = (-offered(c 6) v
takes(s, TL8Y) A ggggsis C,d) :

15. 8 # &7 U (c # ¢7 ¢ # c") - hakes{s.C,
transfer(s’.c’,c”7,8)) = takes(s.c,8)

4.3%. First to second level refinesents

B M e o e e e vice e ave e e AMA Mot Wae weee Wep M s TO4 LA o waes eas snen Do s b

The inforastion and functions level specifications of & dats base
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'

application sre bound by & notion of refinement we describe in
this section. '

Let Ti=(L1.A1) and T2=(LZ.A2) be the information and functions
level specifications of the data base application. Intuitively,
we say that T2 refines T1 iff 311 equations in A2 are sufficient
to guarantee that all updates preserve consistency with respect
to the static and transition constraints in Al. Although this
condition is on the surface simple, it creates some technical
difficulties to be formalized, mainly because the two languages.
L1 and L2, are of different tupes. In particular, wffs of L1 may
contain modalities. which are not part of L2.

For simplicity. we assume that every sort of L1 is a ° parameter
sort of L2 and every varizble of sort s is slso a veriable of L2.
O0f course L2 has two new sorts, state and Baolggﬂ» s well as new
variables ranging over them.

The nntion of re?inemenf is farmullg def;med by 5pecrfgtng an

PSR LA AR~ SR

of LZ with the following characteristics:

(1) for each n-ary db-predicate symbol r of sort D% R
of  Li, I(r) must be a term of L2 of sort Boolean and free

e e e e gt S

varisbles xl.....xn,y of sorts sl....,sn.state
(2) for each other n-ary predicate symbol p of sort {élﬁ...,sn}
of Li, I(p) wmust be a wff of L? with free wvariables
1~...~,n nF sorts sl,....80 0 ' i ’
(3 for each~¥uﬁction symnbol £ of sort <sl....,.sh.sn+l> of L1,
I¢f) must be & term of L2 of sort sn+l and free variasbles
¥lawwanitn of sorts sl.....81 -

In our running example. we might define an interpretation I that
assigns to the db-predicate symbol offered the term gffgggg(c é)
and to takes the term takes(s.c.é).

Thus.. the notion of interpretation defined above follows closely
the idea of first-order interpretation. The dJdifferences are
basically that some symbols of L1 are associated with terms of
sort Boglean of L2, &and not wffs of L2 as one would expect, and
the addition of new sorts (and varisbles). '

If t is & term of L2 with free variables xl.....xn of sorts
Sloweessn and tl..o...tn areée terns of L2 also of sorts sl.....sh,
let ~ tCti/xl.....tn/xnd  denote the term of L2 obtained by
replacing xi by ti, i=l.....1n.

Given an interpretstion I. we extend I to map wffe of L1 into
wffs of L2. However, in order to do so, we must extend L2 by
adding & predicate symbol F of sort t <state.stater. which will
stand for the reschability relation R of the semantics of L1l. The
extension of I is defined as follows:



(1) for any wif P of Li, I{(P) = (WsJ(s.P)), where s is a varisble
of sort state of L2 f :

The mapping J in turn maps psirs (3.F) where 8 is & variable of
L2 of sort state and P is a P% of Ll, into uffs of L2, J is

defined as follows:
(2) J{s.%) = %, if % is & varisble of L1

(3) J{s . Fltl,cvostmi} = I(?}EJ(ssti}/xi,,WW,J(ﬁptn)/xm],. i f is
a funclion symbol of L1

(4) He,pltlasonatndl) = X(p)EJf&,tl)ﬁmi,ua.yd(s,tm)fmnj, if p is
s predicate symbol of L1 {(other than & db-predicate symbol)

(3) Hs.ri{tl,...otn)) = IT(LIs,ti¥ %l cn.d(s, 000 /un. eyl =
Trye if r is @ db-predicate suymbol

(8) Je,~Py = ~Jig,P}
(7) J{s.P1 A P2y = Ns,PLl) & Ha.P2)

{(8) J(5,3uf)

#

Fu s P

i

(9 Ms. L3P} U7 {(Fig,s%) =» Ms”,P)}, where &’ is a varisble of
L2 of sord state not used before

(18) Js,<+P) = Fs"(Fl(g.s") » Js7 P, where ¢7 . is a variable of
L2 of sort state not used before

Thus, &t this point we know how to map wffs of L1 into wffs of

2. Therefore, we can check if indeed the axioms of T2 are
enough to gusrantees that all updatas of T2 preserve cansistancu.
More precaselg, we say that T2 is & ggggggg refinement . T1

under & given interpretation I iff for any axiom P of T1, I(P> s
a theorem of T2,

Az for first-order languwages. owr notion of interpretation can
alse be wsed to induce & mapping from structures of L2 into
universes of Li, which persits us to give an aliernative
(semantical) characterizstion of correct refinement. Indeed,
given sn interpretation I from LI into L3, we define a mapping A
from structures of L2, which must be finitely generated algebras
by assumpiion. into universes of Ll as follows.

let A be & structure . of L2 .and assume that A is Fimnitely
generated. Extend A ta sssign meaning to the preduCate symbol F
added ta L2 as follows

(e.e’) B A(F) iff there exists a ters t(8) of L2 of sort state.
whose only variable is 6 also of sort state: such that

A 2

1=A (L&) =6"elb.0' /67 ]

where &7 iz another variasble of sort staste. Intuwitively. 7 is F-
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related to e in & iff sowme trace canstructing‘e’ will pass by e
as an intermediate step.

Then, N{A)Y = (§.R) is the universe of L1 induced by A, where 5§ is
a set of structures for L1 differing only on the values of the
db-predicate symbols of L1 and R is a binary relation over 8. The
set § is defined by taking each element e in the domain of A of
sort state and constructing & structure E of L1 as follows:

(1) for  each sort s of L1, the domain of E of sort & iz the
domain of A of sort s :

(2) if f is & function symbol of L1 of sort <si,...;sh.sn+ll,
ECF) is the function defined by I{(f) in A. that is.

CECR) = {lalaiee.aanabd/ ACT(FI ) (al.u.e..and. = by

(3) if p is & predicate symbol of L1 of sort <sl.....sn>, E(p) is
the relation defined by I(p) in &, that iz,

E(p) = ACI(p))

(4) if r is a db-predicate symbol of LI of sort DX IO
E{r) is the relastion defined by I(r) and e, the element of
the domain of & of sort state sssociated with E, that is.
EGrY = {(al,cooand/ ACI(r) ¥ al, . 0an,e) = A(Trueld

The relation R s in turn defined as follows:

(3) (EE") is in R iff (e.e’) is in A(F) where e, e’  are the
elements of the domain of A& of sort state associsted with E
and E’, respectively,

We can ﬁrove orie bssic property of M. We say that a wff P of L1
is wyalid in & universe Us(5,R) of L1 iff P is valid in everuy

structure E in 8. Also. we call U a model of & set W of wffs iff
every wff in W is valid in U.

THEORER 4.1:

For  any wff P of LI and any structure A& of L2, P is valid in
R{AY 1 FF I(P) is valid in A.

As & consequence of this theorem. we have an alternstive
definition of correct refinement:

THEQOREM 4.21

T2 is a correct refinement of T1 under a given imterpretatibn'l
iff for any model A of T2, M(A) is a model of Tl, where M is
the mapping induced by I.

In addition to the sbove result, the notion of refinement alsc
has & secord semantic interpretation. Assume that T2 is & correct
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refinement of Ti1. Then., T2 in fact refines the seamantic
specification of the dats  base by explicitly defining the
reschability relation R in terms of the repeated application of
update operations (which is the meaning assigned to the function
symbol F). s '

4.4. Proof of correctness of the refinement - an example

Let T2=(L2.,82) be the_algebraét specification of the data base
application obtained in section 4.2, We must guarantee that T2
has the following properties?

- it is sufficiently complete and currect with respect to the
structured descriptions

~ it is & refinement of the first-level specification given in
section 3.7.

By construction our equations are already correct with respect to
the structured descr;ptsonu we proceed by prav;ng,

{a) sufficient completeness , , .
(b) static consistency, i.e. every reschable state is valid
() transition consistency

Parts (b) and (c) are equivalent to saying that the refinement is
correct.

e outline below how theae‘pruperties‘cén be proven.

(a) Bufficient gmalgkangg

He can view our set of Q-equations as & .system of wmutuslly
recursive equations’ defining the guery functions. From +this
viewpoint, sufficient completeness amounts to termination of this
system of recursive definitions. There are several criteria for
Lheckang termination of such term rewratnng systems. However, the
basic ides is checking the absence of circularity in these
de?initinnﬁ. This basic idea will do for cases simple as our
erample, as we now illustrate.

We consider a graph whose nodes are the terms occurring in  the
equations disregarding their paramelers. For esch equation with
term t8 on its lefthand side and th..,1tﬂ on its righthand side
we draw directed edges from the node correspondtng to t6 to those
corresponding to ti..,..tn. For instance. equations 6 and 7 will,
contribute the following partial graph

ocffered.cancel &

The graph for our example will have 12 nodes and 14 edges., It is
saﬁu to check thut it hﬂS ha cgcles.
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Since this graph has no cycles it corresponds to a well-founded
relation on ground gueries. Therefore, the recursive definitions
do terminate. :
() Every reschable state is valid

ot = e N e e woe hen o aa v e Ve R ety s e wman e e e e

Consider the set ¥ of all valid states, i.e. the set defined by

VYeWs (takes(s.c.6) = True -» offeredic.6) = True)
The set G of reachable staztes ie the least set of states
containing the vaslue of initiste and closed under all the other

update functions. So in order to show that the static constraint
is satisfied at the functions 1level, i.e., G C V, it suffices to
show that V contains initiate and is closed under all the other
update functions.

Clearly, by equation 2, initiate is in V. To show that V is
" closed wunder applications of cancel. we have to check thst
cancel(c’.é) € V whenever 6 € V. For this purpose we have to show
that for all courses ¢ and students g if ﬁgkgg(n c.cancellc’.6))

= True then offered(c.cancelic’ &) = Trye. UWe consider 1Lwo
anas!

Then, by equations 7 and &, we have

OTpred(c &3

gffered(c.cancel{c’.6))

takes{s,c.cancel{c” ﬂﬁ))

i

=

ar

m

1

-~

z,n

n
0~

Now®

whence, as 6 € U, we have the desired implication.

9?€§£2'<cs£a!§§l<6’»é)> = True

1R

de” takes(s’.c.6) = True

uggests CDH“!dEPIﬂQ two subcases sccording to the value of
»C.8). First, in case tahes(s.c.é) = T#uga theh

-«.........._. e S L

Is” takes(s’.c.&) = True. so

e e e o oar o

On the other hand, if takes(s.c.6) = False. then, by equation &
we obtain

takes(e.c.cancel(c.6)) = takes(s, cué) = Fglse

o

Therefore, the implication alwsys holds and we can  conclude

CdﬁCEl\C B E U,
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By proceeding similarly with the other update functions and
invoking the appropriate equations we check the closure of VU,
whence 6 € V.

Notice that we have illustrated with our example & perfectly
generastl method to show that the functions level of a dats base
zpplication given by an algebraic specification sastisfies the
declared static constraints. Namely, by invoking the equations
show that the set of all valid states is closed under a1l  update
functions (including constants), which can be done syntactically.
s wbove. ' '

{c} Transition consistency

Be Ure Tohe et e van B taes S M B M e S g e ¥ T e ot

The +transition constrazint of our example (see section 3.2) s
logicalily equivalent to
Ysbe [D(takesi(s.c) ~» (3’ takes(s.c’))]

p

which can be rewritten, by applying the notion of refinement as -
PER{VSYeYHLIF (6B, 48) ~+ [takes(s,c.é) = Truye -

- True) 11y

SH]
o]
"
f“
ar
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]
Lo ]
-
u
-3
~
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where F corresponds to the accessibility relation.

We shall first check

WebcWaltakes(s.c.6) = True -+ 3¢’ takes(s.c’.u(é)) = Truel

for each update function u other than initiate.

We illustrate this checking with the case of cancel. For this
purpose, notice that, by equation & ‘
takes(s.c”.cangel(c”,8)) = takes(s.c7.6).

S0, if takes(s,c.&) = True then there exists ¢’ = ¢ such that
takes(s.c’ ;cancel(c”.d)) = True.

e g popag PR

The case of affer is entirely similar. For the update functions

enrgll  and transfer the checking can be perforaed by breaking

into cases depending on the comparison of the values of the
parameters.

Thus we have that every single-update transition gbegs the”
transition constraint. It follows readily, by induction. that
every transition (effected by » sequence of updates) also obeys
the transition constraint.
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S. The &epresentation'{ev&l - the uze of a programming lgaguﬁgg

e e e K s e o ol o B0 e S e sl e e mee e e i e S0 e e s PR LA AL LRSS £1.4

s Sy e e e s e o woe

As the name indicates, the representation phase, the last phase
of the specification process. provides a representation of the
obijects of the data base and a description of the functions using
some appropriate language. However., since we remain at  the
specification level, the representation of the objects shouwld be
based on abstract dats structures., such s those underlying the
current data models. =nd the functions should be programmed &s
procedures written in & programming langusge supporting the dats
structures of the dats model. Moreover. the programming language
should be simple and theoreticslly sound and wust be Formally
specified so as to permit verifying if the procedures indeed
realize the functions.

We note that, by specifying s language associated with a datas
model, we &re ih a sense providing a formal specification of
the data model itself. ' :

S.1. Programming language formzlism

This section describes the syntex and sesantics of what we call a
data base schema at the representstion level. The language to be
used. RPR. is based on an extension of the concept of regular
programs over relations described in [CBJ. to which the reader is
referred for a fuller discussion. .

-

5.1.1. Syntax - the use of & grammstical formalism

o

Briefly. the syntax of & Jdats base schema is defined as follouws.
et L be & many-sorted first-order language with. a set of
distinguished constants. cslled scelar progrem variables. IFf P is
s wff of L with free varisbles xi,....xm. then we call an
expression of the form {0, ... und/P> 5 relational term of type
Z81l,enen8iF, if si is the type of xi.

A data base schema. has the fallowing €0rmat:

schema SCL 3 OPL end-schema
SCL is & list of statements of the form R(Al....,An) where R is a
predicate symbol of L and Al.....An are unary predicate symbols

of L such that., if <sl.....snx is the sort of R, then Ai has sort
h predicate symbol R in 8CL " is

“gir, for each i = l,....n. Eac

called a relation name or relatipnal program verisble, OPL is &
liat of operation declarations of  the  form
"aroc I{Yl,....Yn) = &% where I it an operation identifier. Yi is
gither & scalar or a relational program variable. and 8 is a
statement, called the operation body.

The set of statements (based on L, is defined inductively as
follows:
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(1) For any scalar program variable x of L and any variable-fres
ters t of L of the same type as ¥, the expression » Is= ¢

T v e e e S e B e S S L R e

(2) For any relational program variszble R of L and anuy relational
tera F  of the same type as R, the expression R = F is a

e S ot vt e i rae s oot vivw aw Some ok e 1 boot 4iae ik M e s s s ey Wi owe e e s

(3) For any closed wff P of L, P7?7 is & test statement.

PR A A

-

(4) For amy statements p and g, the expressions (p U q), {p & g’
and p% are statements called the union of p and gq. the

We way also introduce some familiar constructs by definition as
follows:

i

(3) if F then r else s (R?25p)y U {~P738)

(PPip) U ~P7

#

(&Y if P then r

(7) while P do r {P?iri®;-P7 U -P7?

R |

(&) insert Rl .sw-xn) = R 2= {{yl vaaayntd/Riyl.uarund V
! : (yl=nl & ... ~ uyn=xn)l}

(9) delete Rixlices-xn) = R = {{uyl, . ynmd/ /ROyl e ynd) A
={yl=ul & ... A yn=undr

If we uwse only the constructs in (3) to (9} in lieu of (3) and
{4) we obtain the set of deterministic programs.

The formal definition of the syntax of data base schewmas is given
using W-grammars (see also [FVC1). UW-grammars (as also other
comparable. formelisms. such as atiribute grammars. and affiy
grammars) go beyomd BNF  im that they can express., context-
sensitive restrictions (e.g. . that all relational progran
varisbles in the OPL part of & schema have been declared in the
8CL part). and can be used to build compiler generators. A
correspondence between W-grammars and logic has been established
in [Hel.

A W-grammsr (s an &-tuple 6 = (M,S,T.z . MT.H,RM,RH) . where

- M is & finite .set of metanotions- (which are denoted by
sequences of capital letters);

- & is & finite set of

~notions (which aré;denm@gﬂ{bg; SEOUBNCES
of lower-case letters '

3
b B

- T is a finite set of terminals (which are denoted by sequences

by indicated special suymbolsl;

i

= in 8+ is the start symbol;
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-~ M7 £ 8 is & selt of ‘metaterninalss
- H C MU S is a set of huypernotionss

- RM C Mx (MUMDSE is a finite zet of wmetarulegs (which are
written as X6 11 X1 X2 ... Xm . ’

-~ RH CHx (HUTT=# is » set of hyperrules (which are written in

the fors B ¢ 2l . M2 . see & HPN &)

3

».

notes:
(1) Sets M, § and T are pairwise disjoints

(2) Metarules with the same left-hand side may be combined using
slashes to separate the right-hand side alternatives; the same
convention also applies to hyperrules. The null sequente 5
denoted by “§&7.

By applying metarules just like ordinary contexti-free rules, onhe
can  .generate from & metanotion X sequences of metaterminals
called metaproductions of X. In this paper. the language

generated by a wmetanotion X LEX) . consists of all

metaproductions derived from X by such production rules.

Consider & hyperrule %8 1 x1 , ... - xk . . Since each x®i is
arn element of (M U 8)+, it may contain occurrences of X. By
taking & wmetaproduction y of X and consistently replacing each

oCouwrrence of X in the hyperrule by y we obtain & new rule

wB ¢ w1t . wm2T . ... . wk? . . If we perform this process of
uniform replacement on atl metanotions occurring in the
hyperrule we - aobtsin. the context~free production rule
7 R o T Lt 4 where each ®i" is & sequence

without metanotions. The language generated by & hupernotion h.
L(h). consists of all sequences of terminals derived from h bu
such production rules and the language generated by the W-grammar

6 is L(z).

Whenever possible:; a W-grammar will be de?inéd.bg»ekhibitihg Jjust
its mets and hyperrules, leaving implicit the other elements of
the grammar. ‘ '

We now turn to the definition of the syntax of RPR. To simplify
the discussion., we assume that we are given s many-sorted first-
ordeér - language L whose syntax is defined by & W-gramaar GL with
the following metanotions: ‘

- U such that L{V). iz the set of variables of L:

~ P such that L(P) is the set of predicate symbols of L3

-~ R such that L{R} is é set oF;distiﬁguished prédiCate symbols of

e ian o eias e e ween e et et e dren Wade oo S



28

- F such that L(F) is the set of funclion symbaols of Li

- X such that LX) is & set of distinguished constants
function symbols) of L (these will be celled scalar p

9 3{'
i oo

by
=W

"~
e 73

Vi oy e Al B e e D

~ 7 such that L(T) is the set of terms of L3 ,
= W such that L(W) is the sel of wffs of L;

and, for esch w in LK) snd each list 2 of wvariables. the
hypernotions below (These are ceses of what is called & predicate
in the W-grammar terminology. We say that & predicate succeeds if
through the applicstion of appropriate production rules, it

eventually vanishes {(i.e. the symbol & is generasted); otherwise a
blird alley situation is resched.):

- "where w is closed” such that Liwhere w is closed) is (&% If w
is & closed wiff, and @ otherwises

~ Tuhere {%/wy is well formed’ such that L{where {f/w} is well
Formed) = {&F if & is & 1list of all varisbles that occur free
in wand is € otherwiser

and. for each n-ary relationesl program variable R snd for each
list AlianazfAn of unary predicate symbols. = the following
hypernotion: : ‘

- "where dl,....0n natches »° such that L{where Al.....08n matches
RY is &Y. if Ai is of sort <Tirx, 1<iin. and R is of sort
LTl eewattiz, and is @ otherwisers

and, for each n-ary program variable R, each relational term E
arvd =ach list of schemes SCL, the following hypernotion:

-~ *where E pelational progran variables are in 8CL7 such that
L{where E relationsl program variables are in 8CL) is {&¥. If
each program variable appearing in £ slso appears (i.e. has
been declared in SCL. and is B otherwises for- the
transformation of the hypernotion into (&), the ggﬂgﬂgi”
predicate ‘where ... contains ... 7 [Ped will be applied” tao
check if each relational program variable R encountered in E is
contained in SCL (notice & similar application of the same
general predicate in the “last hyperrule of the UW-grammar
below)3 :

and. for each term t <(relational or not) and each program
variable ¢ (relational or scalsr), the following hypernotions:

~ *where t is ground’ such that L{where t is grounﬁ) = {&F, if t
is a ground term,. and @ otherwise. ‘

-~ "where + agrees with 7 such that Liwherse t agrees with ) s
{&F if t and x are of the szme type and B otherwise.
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This concludes what we sssume sbout the W-grawmmar GL. .The W-
grammar defining the syntax of data base schemas ie shown below
(the start symbol is p, the first hyperrule to be invoked being
indicated by *~x7"),

e St i Wt A ate e o e W i vt mane B g 2o aa

Cinherited from W-granwmer GL}
Auxiliary objects
/&
for easch i = 1,...p

x/

T oz 1100 o0 b Ik /% iderntifiers _ ®/
E sy VL /W3 . /% relational terms ®/
Y 2 X' PR * /% generic program variable #/
Fods TV E . /¥ generic term #®/
YL 2 Y YLt g . A% tist of generic veriables =/
FLOoss FFL Y & . /¥ ligt of generic terms ®/
1% IS U V] SO A € /% list of variasbles #/

P A o o~ DR Bol.od 0.

...... SLR00IDA-%3DOURAE Rules
context-free aspects of the syntax of RPR

/

Q I schema SCL 5 OPL end-schems . /7% schema declaration %/
SCL 2 RL 3 5CL ! RL . : /% list of schemes =/
RL =2 R{(FL) . 7% schemes definition - =/
PL 2 P 3 PL P, 7% list of sttributes - #/
OPL 22 OF 3 OFL 1 OF , /¥ 1list of operations %/
OF i proc I (FL) = § . /% operation declaration #/
S 881808 1 &8s /% statements */

W? 8 X 2= T VR = E
Huperrules

DR RPN e SR I SR AL 4 6. ol

(inherited from 6L essentially to define closed wffs and

relational terms) , :

¢ W . where W is closed . /% L(c) ig the set of all
b closed wffs e/

g ¢  Ti,  where T is ground . /% L(g) is the set of all
: ground (variable-free) terms =/
Programming Language Rules
& pia repr:Q where Q@ defined .
CSE -

terminal representation of programs -
metaterminals are enclosed in guotes
B/
repr- schemsa SCL 7 OPL end-schema 3
“"schems" , repr SCL . ;" , repr OPL ., “end-schema® .

B - 7% further. rules enclosing
. suyntacticasl objects

“ within guotes ¥/
repr & @ 0§ .
/¥

checking procedure declarations and other statements
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x/
where schema SCL 3 OPL end~schems defined :
‘ ‘where S5CL defined: .
- where <8CL> OPL defined .
where RIPLI SCL defined : where PL matches R,
where 8CL defined .

where <8CL> proc I (YL) = § 7 0OPL defined

where <SCL> § defined where «<8CL> DPL defined .
where <SCL» & Jdefined & . P : o
where <5CL> 81 5 82 defined where <8CL> 51 defined |
where <SCL> 82 defined .
where <5CL> 81 defined .
where “SCL» £§2 defined .
where <S8SCL» S defined where <50Lx 8 defined .
where <SCL> W? Jdefined where W is closed .

where W relationsl program variables are in SCL .
whereg “8SCL> X = T defined 1 where T agrees with X .

where 7 is ground .
where <8CL> R = E defined : where E agrees with R
where HCL contains R .-
where E relahiﬂnul program variables are in SCL .

~a

28 KR -3

v

where <SCL> 81 U &2 defined

s #m

9.1.2. Semantics - the use of 2 -_lgng.ts.t._rgﬂszl formalism
Again., let us briefly discuss the semantics of date base schemas
before giving - the formal definitions.

Let L be the underlying many-sorted first-order language. For &
given structure & of L and a given non-logical symbol s of L., let
A(s) denote the value of s in A. Likewise. let A{t) be the value
of a variable-free term t of L in & and let A(F) be the relation
denoted by F, if F is & relational term.

pASAL SO L

& universe U for L is a set of structures of L satisfying three
conditions: c
¢i)d ary  two structures in U differ only on the values of the
. scalar or relationsl program variabless
(ii) for any A in U, any scalar program veriable »  and  any
element e of the domain of the sort of x. there is B in U
“such that A and B differ only on the value of %, which is
e in By B
(iiit) for any & in U, any relstional program variasble R of sorti
(s1,..0.,81) and any n-ary retation + € Dsl x ... x Dsn,
where Dai is the domain of sort si, there is B in U such
that & and B differ only or the value of R. which is r in
B - »

These conditions guasrantee that, for example. if the value of
ts changed to e, the resulting structure is in U, that is, the
universe is closed wnder assignwent, so to speak. Note that, by
(i3 all structures in U have the same domain and the same value
on all symbols. scept on the scalar and relational program
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variables,

For & fixed universe U of L, the mesning of statements is given

by & function m assigning to esach ststement in RPR & binary
relation in U as follows: :

(1) mGei=t) = {(A,B)Y / B is equal to A, except that B = ALY

(2) miR:={{xi,vausnny / F¥) = {{A.B) / B is equal to A, except
that B{(R) is the n-ary relstion defined by P in AX

(3 m(P?)y = {{A,A) / P is true in AY

(4) mip U g = m(p) U m(a) (union of hoth birary relations)

{8) mipsq} = m(p) . m{g) (composition of both binary relations)

(6) mipx) = (mi{pl)y® (reflexive-transitive closure of mip))

The weaning of procedure declarations is given by a function  k
assigning to each procedure declaration o of the forws
proc I(Yl.....Ym) = 8 & function from Dsl % ... x Dsm into  the
set of all binary relations over the universe. where Dsi is tLhe
domain of type si and Yi is of type si. The function k is defined
s follows:

(7) k(dy = § iff for any (cl,....cm) in Dsl . ... x Dosn,
flcl,wowscm) is the set of &11 pairs (AB) in il
such that (ALci/Yi.....cw/Yul,.B) is in m{5).

We nrow sketch a formal defimition of the semantics of dats base
schemas using the denotational approach. A& certain familiarity
with this approsch at the level of. e.g. [Pal, is assumed.

The semantics will be specified by defining functions that assign
to  each element in a set of suyntacticasl objects. called &
suntactical domain. & value taken from & semantic domain.

Each suntacticsl domain will coincide with the language
aszociated with a non-terminal of the HW-grammar introduced in
section S.3.1. For example, the langusge sssociated with V is the
domain of varisbles. The table below lists &ll syntactical
domains of interest. By convention, N ¢ 8§ indicates that § is the
‘name  of the syntasctical domain asscciated with the non-terminal
N that - is., of the language L(N) sssociated with N by the W~
grammar.

S Syntactical domaing

First-Order Domains

V. Var variables

P % Pred predicate symbols

F 1 Func function suymbols

T2 Term terns ,

g ¢ G-term , variasble-free {(ground) ternss

W s W well-formed formulas {(wffs)

¢ 1 C-wff closed wffs
Progranming-Language Domains

DP: Oper operations

S 1 Stmt statements
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X T S-var scalar prugram verisbles
R & R-var relati snal nrogram variables
E ! R~tera relationsl teres
I @ Iden identifiers
Auxiliary Domains
Y 1 G-var generic variables
F i G-ternm gengric tersas
VLt L~var list of variables

The semantic domains abe'ﬁafim@d in the newt table. . %Qme cumments
come in order before introducing the tsble. uhmugh” The notation
v @ & +ihiz time indicates that v is a8 wvariable  {(of the

metatheory) taking velues from the set §. As wsual in the
denctational: approsch. T and | indicate ’overdelermined” and
‘undetermified’, respectively. The set 8T consists of states or

functions assljnfng & scalar velug to each scalar program
variable  and relstion to each relztional program variable.
PeqPﬁLt:ng their LUpes. ‘

Sewantic Domaing
t TR = {frue.Falsel truth values
wi o Dsi s domain of values for type si
including T and |
s 3 8T & universe of states

The semantic funciions are just five and zre defined in  the
sequel. We have functions m and k. ss discussed before, which are
defined in terms of three other functiohs tzken from firstrorder
logic. We have & function A thal is & structuwe with domsin
Psl.c..Dsm for the underlying first-order langusge L (with sortis
sliwwassm), ‘except that A does not assign meaning to the scalar
or relational progras  variables {(which are distinguished
constants aﬂd'predicaﬁe symbols of the lsnguage). These objects
have their meaning fixed by & state. Or, putting it differentliy.
a state s togtth&r with A deternine & structure Al(s) for - L. He
have & function I which, for each such structure Als). acts as
the tinterpretatfan of the closed . fmrmulds and variable-free

terms of L based on Als). Finally., we have a function-J whichs
for each 5tructuwe Als). assigns & relmtaon pver the appropriate
domains to each relational term.

The folilowing notational conventions will be used. If o is @
syntactical object and ¥ is a semantic function, then Fﬂol will

denote the wvalue of “o aﬁsagned by 1 0if frA-(B->C) is &
sgnantic function, o is in & and g is in 8, then we use fLolg to
denote the value assigned to o and q by £ if s a state, i is
a scalar program variable of ﬁnrt t and b is an element of the
dosmain of t. then slb/x1 is the state that is egual to s. except

that the value of ¥ is by 1ik awt%&,,sfr/RJ denotes the state that
is eqgual to s, “cepa that the value of & relational progran
variable R is a relation r over the correct domeine. Finally;, if
& and B are binary relations. them & . B, A U B and A% denote the
conpasition of A to B, the union of & and B and the reflexive aﬂdg
transitive closure of A e%pertrvrlgT Tand xAy  denotes &
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paivr in A.
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Kk @ Oper -» (U Dz - P{S8Tx 8T)) ,
where s=(sil,....sij) ranges over the set of all sequences
of types ard Ds indicates Dsilx...xDsij.  and where PL)
denotes the powerset of C©
Stmbt->P(STHET)
Pred U Func -» (U P(Ds) U U Ds - Dsi)
(same remark as above) ‘
I : G-Term U C-WfF -» 8T ->» (U Dsi U TR U U P(Ds))
{(same remark as above)
J 1 R-Tern -> 8T -> U P{(Ds)
{(same remark as above)

Dz
ke 53
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-"for each s in 81, s U A is a structure for L. the
underlying many-sorted first-order language
-~ for each s in 6T, s U A induces an interpretation for L.
which fixes the value of Ifals when & is in G-Term U
C-Wf¥f
-~ JIE¥s = {{(dil.....di) € Dsjlu...xDsji /
L TEWCdi/vl,eewadi/Zvills = truel
with E = (vl ,uu..vi)/WY, where W has free variasbles
Vliieaasvi and vi ie of sort sji. :
Programming Language Eguations
mESL 7 520 = wmES1 . mIS2T
wES1 U 828 = mlS1Y U nESZEN
mE8=0 = {(mESR)=
r nEW?E g iff r = g and ILWlIr = True
r mEX:=Tl q iff g PrLIETRr/X]
r wERI=E} q iff g rLJEERr/R]
kEproc T(Yl,.e.:¥Ym)=50 = {((cl..a..cm) . CC:B)) €
(Dsilv...xDsim) x (UxU) /
(CLcl/Yl.awusCti/Ym1,B) B ollS3F
where Yi is of sort si

4 H

5.2. Obtaining a representation level specification - an example
As we . did when passing from level 1 to level 2 of the
specification of our example data base application, we pass from
level 2 to level 3 by first using & constructive and systematic
strategys at s later stage we shall prove the passage correct.

Obtaining the third level specification means to express. in . the
programming language introduced in the previous saction both the
kinds of predicates to be used. under the guise of relations, and
the query and update functions that will act upon thes. The query
functions are trivially introduced, by noting that the language
allaws logical-valued expressions of the form R{t), which yield
True if t is in R, and False otherwise.



in order to obtain in a constructive manner procedures that
inplement the desired update functions. we first correlate Lhe
four parts of our structured (semi-formal) description of wupdate
functions with the semantice of the statements of the programming
Language. The parts of the structured description are:

c&. intended effects

. pre-~conditions

¢. side-effects

de not-affected elements

In turn, the mzin steslements of the programming language arel

1. assighnment
2. test
- which can be put together in & procedure body by

3. composition
A union
5. iteration

From the semantic defimnitions, one readily sees that, in the
simpler cases. an updete function f will follow the patiern:

proc f{x) = (pre-conditions?; effects: side-effects) U
~pre-conditions?

or, wusing the if-then constructs

pirac F{x) =
if pre-conditions
then (effeciss
side-effects}

The assignment statement is the only wey to achieve effects and
side-effects, since it zlone can wodify any values in & states
moreover. all other values in the stste are not affected.
Relational assignment cen be specislized to the insert and
detete statements, which handle & single tuple. From the
definition of those statements,. it iz clesr that, afiter inserting
& tuple t in a relation R, R{L) is true regardless of the
situation at the previous state, and that if { is deleted from R
then R(t) is false independently agasin of the previous state; in
both cases nothing else is affected, i.e. except for the value of
R(t) the new and the previous states are identical.

We look again &t the structured description of the function
cancel: '

T = cancel(c.é2
intended ‘ef fects: off
pre-conditions: —~3s (

side-effecis: none

gred(c.¥) = False
takes(s.c.8), = Trye?

d
€
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not-affected: all other queries, including offered(c’..) with
¢’ ¥

Using the pasttern above., we are led to writes

proc cancel(c) =
if —Fs TAKES(s.c)
then delete OFFERED(C)

More complex updates may require {(possibly nested) tests and
iterations. The latter are useful. in particular, 1o check &
universally-quantified pre-condition., Explicitly quantified pre-
conditions and the general form of assignment lead to & wmore
“set-oriented" style of programming. whereas the use of iteration
and insert/delete statements favors a "tuple-oriented” style.

The. complete programming language specification for the example
is given below:

schems

OFFERED(Studentsls
TAKES (Students.,Courses) s

proc initiste() =
{TAKES = 83
OFFERED := 8)

proc offeri{c) =
insert OFFERED(c)

proc cancel{c)
if ~3s TﬁKES(&.c)
then delete OQFFERED{cC)

proc enroll(s.c) =
if OFFERED(c)
then insert TQKES(E,C)’

proc transfer{s.c.c’) = :
if TAKES(s,c) » ~TAKES(s.c*) »~ OFFERED(c”)
then (delete TAKES(s.c);
insert TAKES(s.c7 )2

end schewms

S.3. Second to third level refinenents

We repeat in this section the exercise of section 4.3, this time.
qhawlng what it means for a representation level specification of
& data base ﬂpp1:Cdta o to be a refinement of a functions Tlevel
specification of the sawme applicastion. '

Let T2 = (L2,42) and T2 be the functions and representation level
specifications of the same dates base applicstion. Then, the



36

operations defired by procedures in T3 must satisfy all equations
in AZ. Again. we must face the fact that T2 and T3 use different
formalisms so we do wnot have a notiorn of interpreéetation readily
avsilable. |

Recall that T3 uses @ programming language, which is  in  turn
based on a first-order language. ssy. L3,

For simplicity. we zssume that every parameter sort of L2 is &
sort of L3 and every varizble of seort s of L2 is also a variable
of L3. For simplicity we assume thet every pasrameter sort of L2
is & sort of L3 and every variable of sort s of L2 is also &
variable of L3. o

The'notion of refinement is asgain formaily defined by specifying
& mapping ¥ from the non—-logical symbols of L2 inte non-logical
symbols of L3, wffs of L3I and procedure declarstions of T3. The
mapping K must satisfy the following requirenentss

(1) for each n-ary update funcltion symbol u of L2 of sort
“8laaewssh-l.state.atatesr, Kiud is E procedure
declaration proc U(yl,...,yn-1) = § in T3 such that yi is of

sort si., for i = l,....0"1.

(2) for each n-zry query function symbol g of L2 of sort
61 senessn-i.ctate.Booleansr. K{q) is & wff of L3 with free

Frha P oot R et

(32 for each n-ary function suymbol £ of L2 of sort
“8li....8n.Bopleans, except those in () and those

representing logicsl connectives. K(f) is & wff of L3 with
free varishles dl ... .xn of sorts sl.....80 .

(4)  for gach n-ary function symbol £ of L2 of aopi
“Blamenssn.sntlix,  with s+l not eqgual to Boolean or
state. K(f) = ¢

note: the requirement in (4) could be generalized to K(f) being &
wff of L3 with free variables xl.....un.y of sorts sl....,sn+l.
it we could force the wff XK(f) to define & function as for first-
order interpretationsd,

We now pause for a comment from our ?nrmal?s&g department.

If the resder remembers section 4.2, the next natural step would
be to extend X to map wffs of L2 into wffs of L3, However. L3 is
not powerful enough to permit ws to carry on such xtension. In
order to do so. we would need a full programming legic, such as
Dynamic Logic (& separate paper will explore this possibility).To

circumvent this difficulty, we adopt & semantic definition of

correct refinement. R ' ' o S
Thus, using an interpretation K, we define a mapping N from

finitely generated universes of L3 into finitely generated
structures of L?Z, defined as follows..
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Let U be a finitely generated universe of L3. That is, U is & set
of structures of L3I differing only on the relation names
declared in T3 and on the scalar program variables of L3 such
that U is generated by the procedures declared in T3. We =lso
assume that each procedure p declared in T3 is deterministic.
Thus, if p has parameters of sorts sl.....sn, then the semantic
pquations associate with p & function

hEpl: Dsl ¢ ... 3t Denow U~ U

Now. N(U) is a structure & of L2 defined as follows. Let E he any
structure of L3 in U2

(1) The domain of A of each parameter sort s coincides with the
domzin of E of sort s (this is well-defined because every
paraneter sort of L2 is also a sort of L3. by assumption.
and two structures in U have the same domains).

The domsin of sort state is U itself, the domsin of sort Boolean
is {true.falsek; :

(2y if w is an n-ary wpdate function sumbol of L2, AW =
KEKCu) 85

(3) if g is an n-ary query function symbol of L2, A(gq) is the
function defined by Kig), that is, ’ : .

Al = {lal,ee.san-1,E.true)/ E 1= K¢ lal/utaa. . an-1/xn-113
U {alsvensan-1.E.falee)/ E 1# Kigplal/nl, ..o an-1/nn-13%

(42 if £ is an n-ary function symbol of L2 of sort
“8l,....5n3B00leans. except the query function symbols arud
those representing logical connectives. Alg) s the
function defined by Kig), that is.

Atg) = {lal..easan,true)/ E 1= KOg)lal/xl ... an/xnll
U €{aiseamsan.false)/ E ¥ K{@lal/xdl, ..o an/xnly

ol of L? of sart <sl..ees8r.8ntl> with
an or state., A(F) = E(K{F))

(3 if f is a function symb
s+l not equal to boole

(6) if ¢ is a constant of L2. Alc) = E(K(c))

0

o

(7Y if

i
13

———

ic the equality symbol of L2 of sort <s.s.Bpole

N

A=) = {(al.a2.true)/ E 1= al = a2% U {(al,a2.falsed
E = gl # &3} ' L

(&) if f is a - function symbol of L2 of sort
<Bopolesn.Boolean.Booleans or <Boglean.Booleans standing for
one of the logical conmectives, A(f) ie a representation of

the truth table of the connective

We can prove that., since U is a finitely generated universe of
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L3, Ny is & finitely generated structure of L2.

Since it is not ppssible to map wffs of L2 into wffs of sowse
formal tangu.ge connected to T3, theorem 4.1 hss no counterpart
here. ‘

Now, using N, we precisely characterize when 73 is a correct
refinesent of T2,

Def:n:tlan - We say thai %7 iz @ correct refinement of T2, under
& given interpretation K, iff for every finitely- generated
universe U of L3, N(A} is & model of T2.

This concludes our discussion about second to third level
refinements. '

S.4. Proof of correciness of the refinement in Bxample

- o v

1

On anslysing the constructive strategy (section 5.32) we . observe
that the semi-formal considerstions that resulted in the
algebraic equations of the second level were used but not the
egquations themselves. Similarly, pur  understanding of the
gsemantice of the prograssing language constructs described
denotationally wae used but, sgain. the formsl denotationasl
description does not appear directiy in the process. Finally, we
insisted on writing the specification strictly as imposed by the
syntacticsl description of the languasge, withoul however making
explicit wsage of the grammar productions. The formal machinery
is necessary,. - and thereby justified., when we proceed to the
veritfication of correctness. to be developed in the sequel.

We have to wverify that the representztion level is & correct
refinement of the functions level. This amounte to checking.
basically, that the procedures define update functions satisfying
the equations of the algebraic &peci??udtion‘ once the
syntactical correciness of the programming language speclrtcﬁtxan
is ascertained.

In order to wverify +that the above progranming language
specification is syntactically correct we have to guarantee that
it can be generated by the W-grammar in section 4.1. Bince p is
the start symbol, we have to check thst the specification is, so
to speak,. of the formnm - »

repr Q@ , where R Jdefined
In view of the metarule for Q. this amounts to

(#) _repr schewms SCL 5 OFL end-schems .
where schems SCL 5 OPL end-schema defined

Now. wusing the metarule for SQL'iage{har with the rules inherited
from the underlying grammar BL we can generate the following
wetaproduction of &CL
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OFFERED(S) . TAKES(S.C)

Similarly. using the metarules for OPL. 0P and § together with
rules inherited from GL we can generate the following
metaproduction of OPL

proc initiate() = ... ieeneonnnnnad
proc transfer(s,c.c?) =
(CTAKES(s.,c) A -TAKES{s,c’) ~ OFFERED(c’)17? ;
LTAKES = {(yl.y2)/TAKES(yi,.y2) A ~{yl=s ~ y2=c)} ;
TAKES = {(yl.y2)/TAKES(yl,y2) ¥ (yl=s A y2=c’)31) U
(~LTAKES(s.c) A~ -TAKES(s.c’) ~ OFFERED(c™)1)?

We can now uniformly replace each occurrence of SCL and OPL  in
(#) by the corresponding metaproduction. Then spplication of the
"repr"  programming language hyperrules will convert the “repr"
part of (%) into terminals.

It remsins to check that the "where" part (a predicate) of (=)
reduces to &. This amounts to checking thst each wff used in &
test. such as TAKES(s.c) ~ -TAKES(s.c’) ~ OFFERED(c?) is indeed
closed and that the lefthand and righthand sides of the
assignments have the same types, besides checking that all
relational program variables in OPL are indeed declared in SCL.

Thus, the predicate succeeds and we generate & sequence of
terminal symbols, which becomes our programsming language
specification upon  application of the definitions aof the
constructs if ... then. insert, etc. ;

Therefore. we have ascertsined the syntacticsl correctness of our
specification.

We now outline how we can verify that the representation level
specification T3 (section 5.2) is a correct refinement of the
functions level specification T2=(L2,A2) {(section 4.2) under the
interpretation K defined below:

K{pffered) = OFFERED(c)
K{takes) = TAKES(s.c) :
K{uw} = U, where u is an update function and U is the

homonym procedure
Let L3 be the underlying IangQage of T3.

Intuitively, given a universe U for T3, the interpretation K
induces & finitely generated structure & for L2. At this point,
it suffices to clarify that esch element p of the domain of the
sort state of A will be in fact & structure in U. From now on, we
will refer to such elements sinply as States and use Ba s Pavnws
with subscripts if necessary, to denote them (the reasder must.
therefore bear in wmind that etates are structures of LI).

Morcover. the domain of sort state of & is finitely generated by
construction. That is. each element p of the domain of sort state
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of A is the valuwe of & Lterm of 12, which is schematically of tLhe
farm:

undun=1{. i {ufilauadd

where - ul  is the updste functionm symbol initiate of L2 and ui
@ith | = leee.srts are also update function suymbols of L2
Intuitively, since the dets buse application is encapsulated by
the gquery and update functions., the current date base state can
be represented by such terms, indiceting the operations used thus
far. : : :

To prove that T3 is & correct refinement of T2 ampunts Lo proving
that ssch of the conditional eguations in A2 is (universally)
valid in G. Now, since & is finitely generated and in view of the
previous discussion. we can in fact do en induction on the length
of the terss corresponding to each element of the domain States
of sort state of 6. That is. for each P in A2, we will prave by
induction on n that P iz valid in & when the varisble & receives
ae value some state which is in tura the valus of a terms ur i3

oo oo erom aaom

The basis is triviel. 8o assume that esch P in A2 is valid in &
when the state varizble & receives ass value some state p s R is
the value of = ters wun—ilun-2¢,..{initiate)...3} of L2, Ue will

AR )

show that this result holds when we ceonsider terms of leagih n.

Now., tet g be an element of States and assume that g is the valup
of & ters unfun-i{...(initiate)...)) of LI,

As an example. consider eguation 6. namely

o - . v = — v - e b vap on im

(1) offered(c.cancel{c.6)) = true = 3s (iskes(s.c.8) = True?

This equation is (universally) valid in A when & is valuated as p
i£f the following condition holds (from mow on. C will denote the
domain of sorit course of A, T will denote the domain of sorit
student of A and § will denote the dowmsin of sort state of @A),

where q is the state that the duts base will reasch upon
spplicstion of the procedure te cancel course C st state p:

ILOFFEREDC(c g = I1E3s TAKES(s.c)lp.
where {(p,q) € kicancel(c”)E{(c)

Let us consider the procedure for the update cancel. By means of
the semantic squations together with the definition of the
constructs if .. then snd delete, we obiain, for each s in tha
dowmain of 8. ‘ ' ' ’ '
kiproc cancelde) = if ~3s TAKES(s.c) then

delete OFFERED(c2B{C?

#

i

mE i f ?%5 TAKES(s,c) then delete OFFERED{C)I -

{{p.g) & (Ul /I03s TAKES(s,.c¥dpi= False and



41 -

q = pl{x € C/ILOFFERED(:XIp = True and
TExlp # TEcIpX/0FFEREDIDY U
{(p.q) € (Us)/I03s TAKES(s,c)lp = True
arnd q = pl

In view of the form of the expression above giving the meaning of
procedure cancel. it is natural to divide this verificstion into
two cases, sccording to the value of IE3ds TAKES(s.c)lp.

Case 1: IE3s TAKES(s.c)¥p = False
Then (p,q) € mLif ~3s TAKES(s.c) then delete OFFERED(c) Y

g 5B Jh-R g N

iff q = pb{x 8 C/IEOFFERED(:)1p = True and
Ifxlp # IBcIp¥/OFFERED]

Thus IEOFFERED(c)1q = False = IE3s TAKES(s.c)lp.
Case 2: If3s TAKES(s,c)lp = True

Then (p.q) €& mlif —-3s TAKES(s.c) then delete OFFEREDC(CY3
iff g =p

Hence IEOFFERED(c)Nq = ITEOFFERED(c)ip

Let i be the state denoted by the term uifui-1
(«-ulinitiate)e..d. For i = B.e...n (hence rn-1 = p and rn =

e ik s avoe meee e s o

q). By the induction hypothesis. each equation P in A2 is valid
in A when 6 is valuasted as ri and ¢ is valusted as b, Fforn i =
B.oneah~1. (We use & != PCb/c.ri/éd to indicate this condition.?

Let wus proceed in & backward direction to examine the various

M e S e S ke o o taon Sare Sy St o oy ore

possibilities for each wi, for ang b’, b" € € and t, t7 € T
(1) if ui is initiate then, by equation 2.

LA AR S

A 1= (takes(s.c.initiate) = False)lt/s.b/cl

P-A- AN~ Tt e e e ot o

(2) if ui is offer then, by equation I,

(3) if uwi is cancel then. by equation &,

PR R ]

res(s,C.enrolli{s.c.é)) = offered(c.6))lt/s . b/c.ri-1/81
and by equation (11), if ¢ # 7 and b # b7z

oll{s’,c’.8)) =
t/s,t’fa’,bfc,b’!c’,hiwl/d]

v e STy o e
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A I= ((takes(s,c.transfer(s’ c”.c".6)) = True =
offeredic,8) = True V takes(s.c.d)) = Irug}
E4/s.T /s .b/c, b fe’ b /e ,ri-1/&)

The batkward profess wees (1¥-(5) repeatediy.  In many Cases: we
are sinply led €0 exanine & previous state, “since the expression
used says that ¢ is offered after the applicstion of an wi if it
was offered at ri-i. However this process cannot reéach- initiate.
where ¢ would not be offered, contrarily to the condition of case
2. We can verify thait the only way to fulfill this .condition.
rewritten as

B 1= (ds takesi(s.c.8)})lb/c.rn-1/61
is either by enrolling & in ¢ or by transferring s to o, in any
case in @ state ri-i where ¢ is offered. Noresaver by eguations 9
and 12, ¢ will still be offered after any of the two operations
is wpplied. Hencg, we conclwldd that

{&6r there ewists i % n such that
Trugiib/c,rj &3 Iff

Trugdlbs/c,rn~-1/47
Trug)lb/c.rj/él

i

A ot= (Fs (Lakes(s.o.6)
& t= (ds (lakegs(s.0.8?

amd & t= (gffered(c.&

7 H

Let k be the maximuam such j. Bo. we have that
G ot= (3s takes(s.c.6) = Truerib/o.rk/é1 and
A = (gffered(c.6) = Truellib/ocirk /81,

B AN SR 4 e o e 1

Now, we can proceed in s forward direction to show that indesed

v She b an Ao Sy o v s whom (U0 Shor A 08 ot A

6 1= (offered(c.6) = Trugdibic.rn-1/61.
since the only way to reach frow rj & state where ¢ 1s no longer
affered is by cancelling c. which fails as long as there s &
student taking ¢ (here we are using, among others, equation 6.
the very equation that we are about to prove; this is legitimate
hecause we are assuming by hypothesis its validity up to state
ri-1y.

Hence

IEOFFERED(c)Ng = ILOFFERED(c)3p

This ends the inductive step for equation &.

Proceeding similarly we can then veri%g that all the equations of

the operations level are satisfied by our specification of the
representation level. .
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6. Conclusions

in spite of marked differences in notstion., the five formalisms
discussed in this paper have a characteristic in common: they are
#ll related to logic.

The one to one correspondence between db-predicate symbols (first
levely. query functions (second level) and relations names (third
level) provided & certain uniformity that facilitated going
through the different notstions. This coincidence. although not &
mandatory design decision, proved to be convenient. We note in
passing thast it argues for the "naturalness" of the retastional
model.

fine  of the more significant differences across the three levels
of specification is the treatment of statles. States are
implicitly described by their properties at the information
level. They are explicit parameters at the furctions level. 6t
the representation level they are defined in tersms of the value
of the entire collection of data base relations; each statement
mentions only the relations that it affects. Intermediate states
may be considered as an gperational (machine-like) aspect of the
representation level, resulting from the execution of single
statements.

The justification for the third level of specification is to lead
Lo implementation on the current machines, mostly conforming to &
von Neumann architecture. Yet there have been attempts to achieve
executable programs written inm logical languages {(e.g. PROLOGY or
algebrsic languasges (g.g. 084y, Alsg progremming  languages
intended originally for specification may be given & compiler or
Cinterpreter (e.g. TAXIS). In many cases the intention is only to
provide running specifications for testing purposes
{prototyping’). but  future developuents may lead to systems that

o done ovin —

perforn efficiently in & production environment.

We believe that the discussion and the example substantiate  the
claim that each formalism plays indeed some relevant role in the
formal specification of dats bases, especially when used for the
objective that originally motivated its proposal.
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