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A family of simplicial finite element methods having the
simplest possible structure, is introduced to solve biharmonic
problems in RT, n23, using the primal variable. Athough the fami
ly 'is inspired in the MORLEY triangle for the two dimensional. ca
se, this element cannot be simply viewed as its member correspon-
ding to the value n=2. On the other hand equivalent convergence

results are proven to hold for this family of methods.

RESUMO

Uma familia de métodos de elementos finitos com a estru-
tura mais simples possivel para se resolver proglemas biharmoni -
cos em dimensao n, n23, @ introduzida. Cada membro da familia 25
"construido com base em fungaeslqpadraticas pof n~simplex, defini-
das com base em graus de liberdade nao classicos do tipo proposto
pelo -autor em artigos recentes. Embora se possa estabelecer uma
aﬁalogia entre os membros dessa familia e o elemento triéngular

quadratico devido a MORLEY, destinado a resqluggo do problema bi

i :
harmonico em dimensao dois, este ultimo nao pode ser visto como o

membro da familia para o valor n=2. Resultados de convergencia e

quivalentes aos que se aplicam aquele elemento sao demonstrados.

KEY-WORDS: biharmonic, convergence, finite elements, nonconfor -

ming, parametrized degrees of freedom.

PALAVRAS-CHAVE: biharmonico, convergencia, elementos finitos

graus de liberdade paramctrados, nao conforme.
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1 - INTRODUCTLON

Consider as a model the Dirichlet problem for the bihar

. n . e e
monic operator 1n an open set QcR with a-sufficiently smooth

boundary T.

( Find ¢ such that

K= f in.Q

(E) ] ¢ = %% = 0 on I', where
L

A is the laplacian operator, f is a given function and %% =

> > . . . ' cox )
= grad$¢.v, VvV denoting the unit outér normal vector with respect

to T.

By introducing a real parameter 0c[0,1) and assuming
fef(ﬂ), we may equivalently write equation (E) in the variatio

nal form:

Find ¢€H§GD such that
(P)

ag(§,9) = Sy £ ¥peHi(q)

where for an open set Dc} we define

n \2 : 2

N B Ci) Y
ap (4, OIDA¢Aw v 1m0 [ [ 9% 9%, 0%, 0X.
1,3=1 ‘D 1 ] -1 J

. + )
Hm(D) denoting the Sobolev space for melN , with the

standard norm H.H. and seminorm I.Im D

m,D s

rature (sce e,g,[11), W (Q) is defined by:

as defined in the lite

BE(@) = {p/pe(R), ¢ o= %ﬂ% - 0}



As it ig well-known, H? () can be noimed by the seminom
0 :

2,0

The finite element methods of solution that we consider

in this work are to be placed in the following framework:

Let T, be a partition of Q into n-simplices with maximal

edge length equal to h., We assume that {Thhl belongs to a regu

lar family of partitions in the sense given in [21].

Let also %1 be a finite dimensional space associated

with L in a way to be specified later on. We assume that the

restriction of every function of Vhtm each n-simplex RetT, belongs

to H? (K). By approximating the boundary conditions implicit in
HE(Q) for the functions of W], the approximate problem to solve
is:

Find ¢he Vh such that

(P.)

h :
ap b ,0,) = Lo fl ¥i ey

where ah(¢h’wh) =) aK(¢h’wh)
Ket

h
Now if one wiskes to have V. cH® (Q) (a _Za.), V must
h h™'Q h
consist in principle of functions of the Clclass. As it is

well-known, even in the two-dimensional case, the construction

of such spaces is difficult, and énly clfinite element methods,
that is, based on functions of theAClclass, having a rather com
plicated structure or high number of degrees of freedom pér ele
ment are known (see e,g.[2]). To the best of our knowledge, as

. . . 1,.. .
far as three or higher dimensions are concerned, no C=finite ele

ment methods have been proposed so far,
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This justifies the use of nonconforming methods, that is R

VH¢}f (), related to finite element with' a possibiy simple
structure. In this case a function of‘.Vh is of thetciclass only
at element level, but if certain minimum point-diffetentiability
requiremenﬁs are satisfied at interelement boundaires, one can

generate convergent sequences of approximate solutions.

We refer to the work of LASCAUX & LESAINT[S] for . the
description and study of a number of nonconforming finite ele

ment methods for the biharmonic equation in [R¥. Among these .
the simplest possible element, namely the MORLEY triangle [6] ,
was considered, Since the methods that we study in this work

have a close relation to it, we briefly recall below the defi

nition of this element:

- The restriction of every function of Vh to a triangle of T

is a (complete) quadratic function;

- The .degrees of freedom used to define a function of.Vh in

each triangle are:

- Its values at the vertices;
- The values of its outer normal derivative at the mid-

points of the. edges.,

- The degrees of freedom of every function of Vh-coihcides for
vertices or edges belonging to two or more elements;
- Function of Vh at a vertex S or its normal derivative at the

mid-point of an edge ¢ vanish wherever S or both ends of e

belong to T.

The sequence {@h}h_of solutions of (Ph),computed- with



this element converges to ¢ in the discrete H’-norm ]le h (see .
s
(5), Sec.2), with order h, provided that ¢ is sufficient smooth.

For the proof we refer to [5] in case I is a polygon or to £71]

in the general case.

The n~dimensional analogue of Morley's element for n=23
to be presented in this work gives rise to equivalent convergen
ce results, but it must be constructed with the help of special

degrees of freedom called parémetrized, first introduced in [817].

2. THE NEW ELEMENTS WITH MAIN PROPERTIES

In order to ayoid non essentialldifficulties, we assume
that § is a hyperpolyhedron of R™ , n=3. We égll the (n-1)- faces
of a simplex its n+l faces of dimension n-1. We denote by ki
the barycentric coordinate of a simplex related to vertex Si and

by Fi the (n-1)-face opposite to S:s i=1,2,...,n-1. Let also Gi

be the barycenter of F,-

The family of finite elements, or yet the corresponding

space Vh’ is defined as follows:

(i ) The restriction of a function vth to every simplex of
Ty is a (complete) quadratic function.
(ii) The degrees of freedom used to define a funtion of Vh

over each simplex are:
a) D.(v), the outer normal derivative with respect to F
i

at Gi’ i =1,2,...,n+1;



b) D..(v), a functional associated with the edgé eij of
1] . ’
the simplex with ends Si and mid-point Mij,lsi<jén+1,

given by:

" D..(v) = uv(M.,.) + (1~ Yy S vds/length(e, .)
lJ() uo ( i ( M. » g i

Me R being a fixed parameter depending only on n.

(i1i) The local degrees of freedom above of every function of
Vh coincide for (n-1) faces or edges belonging to two or

more elements of T respectively;

h’

( iv) The degrees of freedom of both types above of every func
tion of Vh'vanish, whenever the corresponding (n~1)-face

or edge lie on T.

Let P2 be the (n;2)~ dimensional space consisting of
polynomials defined in an n-simplex, of degree less than or e’
qual to two. In order to ﬁrove that the above set of (n;2) de
grees of freedom 1is Pz—ﬁnisolvent for a given choice of \, it
suffices to exhibit the corresponding basis functions. Before
doing this however, we should take into consideration dne of
the basic conditions for convergence of ounrmethod, that will
lead precisély to thé determination of the value of u.

Indeed, the gradient of a function‘of %{ should be
continupus.{resp. vanish) at the barycenter of every internal

(*)

(resp. boundary) (n-1)-face of partition T, .« Since the outer
normal derivative already satisfies this requiriment by construc

tion, the element Fhould be such that the tangential derivatives

(*) This is usually called the ratch-test, for the case of a
first order nonconformiyg mcthod.. '
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v of UGVh in mutually orthogonal directions T
BTk

W k= 1,2,...,0-1

of the (n-1)-face, satisfy the same requirement at its barycen -
ter. Taking into account that our element is nonconforming, this
condition will be fullfilled if we establish that these (n-1) de
rivatives depend only on the degrees of freedom attached to the
(n-1)~-face under consideration. This will be a consequence of

the following Lemma leading to the choice of u.

Lemma 1 Let the(g) parametrized degrees of freedom of type b)

attached to an (n-1) - face F of a simplex vanish, for a quadra-
. . . . > yn-1 .

tic function p. Then if {7, } is an orthonormal set

k™ k=1

of directions in the hyperplane of F, and G is the barycenter of

F, we have.

or (¢) =0 for k = 1;2, «..,n-1, provided u = 4-12/n.

Proof: First we notice that any polynominal p€P2 defined in an
n-simplex is of the form:

n+l - n n+i

p = .E ai%_ + Z Z Bijki%j where ui,BijelR.

Without loss of generality we will prove the lemma for

face En+1' Notice that the restriction r(p) of p over Fn+1 is of

form

n-1 n
D) Bish M

r(p)
Poodi=1 =i+ M

it
o~
JEES

it

Now, since p/ei.

o, At o, A+ BLL AL AL
j iM% A %_ A % we have

J %



1 1 u ..
(1) Dij[p] = i(qf-% Yy + ( A YB..= 0, 1<i<j<n

12 ij
according to our assumptions.

) = a[r(g)](c

>

. . 9p - _
Noticing that ==—(G__, Y. ae) s k=1,2, ,n-1,
k k
and that ki(Gn+1) = 1/n, i=1,2, ...n, we have:
) n BAi Ty nil % Bki Bkj
2y 22 (¢ ) = a, v ot = ' B..( + oa)
9T n+l izl S j=i+1 I 9Ty 9Ty
Bki 9A.
Now we multiply both sides of (1) by 2(5?—~%§?i) and we sum
: _ k
up with respect to i and j.
I, n 9A,
Taking into account that ——b = - ) 3 s, wWe obtain:
T . 31
k j=1 k
i
§ Bki 1 AU hil\'g‘ 5 Bkj
(n-2) O,=— + (F + =) B..( + =) = 0
g 13Tk 3” 6 121 j=i+r b BTk BTk
Finally, recalling (2), it is readily seen that él>—~—(G ) =0
aTk n+l
for k=1,2, ..., n-1, if u = 4-12/n, qg.e.d.
Now for the value of U the canonical basis functions p;, as-
sociated with Di(°5’ i=1,2, ...,n+1 and P associated with

Dij(')’ 1<i<j<n+1l are given by.:

R I L EEV RN

‘ : nt+l

z = [- LY - "
(4) Py [ 2(ki+kj) + n(Ai+>j?. 2kzl pk(Yik*wj
k#i, ]

i
vhere Yﬁm = Dﬁ(lf), 1<m, Lsn+1,

Finally we can prove the following crucial result:

k)]/(n-—?_)



Lemma 2: Let ”'HZ h be the seminorm of H?(R) + Vh given by
s
| ‘ ) 2 1/2

sy i, o=t yoolvlr )

’ KeT 2,K

h

Thenlhlb N is a norm for the space %1, namely ~ the

space defined exactly in the same manner as'%l, except that the

normal derivatives at the barycenters of boundary (n-i)-faces do

not necessarily vanish.

Proof. It suffices to established that for wevh

I

ll, , =0 = % =0

In this case Y is a linear function over each simplex of
Th.
. . n . . .

The continuity of (2) linearly independent func'tionals
of the form b) and of one normal derivative on every face of Ty
implies that ¢ is the same linear function in every simplex of
Th.

Finally, since the same linearly independent functionals

applied to ¥ vanish on at least two distinct (n-1)-faces of I', we

must have YP=0. q.e.d.

As an immediate consequence of Lemma 2, form a, is coer

, h
cive over %1 nqrmed with H'”Z,h‘
Since VhC Vh’ problem (Ph) admite a.unique solution ¢h. Notice
‘that ||, - is also a norm for H?*(Q).
2,h 0



3. CONVERGENCE RESULTS

According_to the celebrated Strang's inequality [10] for

nonconforming methods applied to problem (P) approximated by (PhL

we have
1 . e
6) ¢ - ¢h”2,h = —‘—1—_~6*T {[(n_2)0+2]q)_1€nvf Il ". \Pth,h +
‘h™ "h
la, (&, ¥, ) - Low, |
+ sup h h 2 *h }
Since

(7) ing ] o=y |

beVy

< {0 . 3 . K c _a ] -
2n S Chlq)]?),Q if ¢eH” (), accordgng to standard ap

proximation results [2

105

, first order convergence of ¢h to ¢

in the |le p morm will be demonstrated, if we prove the fol
: H .

lowing estimate:

(®) Tap (b)) = £uyl < ehlllplly o+ 1 eoll, Tyl

which is known to hold for Morley's -triangle [5], if Q is

polygon.

In our case we have

(9) ah(¢ ,Wh) - &szh = E;(¢ ,wh) + Ei(¢ ;%}), where

(10) g (o, w V-0 3—/59;-,.1;) dt
h Kg’th dK gy D

and

(*)

C denotes, as usual, any constant, independent of h.



(11)

(11)

10

. Y 2
ECo, W= § Lo f a6 ar v -0 [0 2
h KeTy ' v S AVERY AV I
n—1 324
+ ) +~ﬁ' = v dt}
k=1 3K
BIk v ark
where *—— denotes the outer normal derivative with respect
5ok P
V
to, 9K, the boundary of simplex K, and %JK- the derivative in
, ' T, -
the k-th orthonormal direction TK of 9K, the set {zkyn-i
- k kK k=1

being defined face by face.

Thanks to Lemma 1, the bound

2 <
can be proven to hold using the same arguments as in [5] for

Morley's element.

Therefore we confine ourselves here to proving the following

Lemma 3: If ApeH?(Q) we have:

(12)

Proof: Let F be an (n-1)-face of a simplex K and 7

E, (¢, ). < cullao]] |lv]l VeV
2,Q 2,h

) 2

F be the opera -

tor

NF: .P2 - Pl(F)

p 'n'F(p)

such that

Dij[ﬂF(p)]

]

Dij(p) for n given pairs (i,j) i#j associated with

the, indices of the vertices Si of K belonging to F, 1<i<n+1 ,

where Pl(F).denotes the space of linear functions defined on F.
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Because of (iii) and (iv), we can write

(13) E! - - , L
E (4 v) ) I g“K‘[Wh T (0 ) TdT o VY eV
KeTh Fcak v
Indeed, the assumption A¢peH?*(Q) implies the coincidence of
gé%~€f (F) on both sides of F, if F is anvinternal (n-1)-

Vv
face, by the Trace Theorem.

. , F
Set now for a given kgTh, IK: HY(K) x P2 + R

T (n,8) = fnlemm ()l Feak.

Let E be the unit reference n-simplex (see e.g.[2]) such
that F(K) = K, F being an affine invertible mapping from

R™ onto R™.

Let 9=ve¥  for every function v defined in K, and define
L: H'(R)%x P, » R by

-~ A . o~ -~ A ~ ~—1

L, &) = 5 ﬂ[€~ﬁ?(5)] dT, where F =g ~(F),

9 ing the-space of polynomials of degree less than or equal

to two defined in K.

Noticing that ﬂF(E) =.wf(g) we have:
¥ - A - .
L (n,£) < 3ﬁ§—12~meas<F> L(R,8)  Vnen! (k) Veer,

or yet, following standard estimates:

(14) 1,8 <c vt LG, D) Vnet® (K) Vier,

On the other hand, since Pé is a finite dimensional space

using the Trace Theorem we have:
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F
po . LEE) | .
!lLK|!= SUF { © and also |iL|[{ e
cH
neH (k) ”ﬂﬂl’K EH, «
EePz
Now we notice that-i(ﬁ, E) = 0 whenever E is a linear function.

fore, from the Bramble-~Hilbert Lemma [2] there exists C>0

-~

that T(M, £) < ¢TI N AN, 181 . VReE'(R), VEeP, ,
) 1,K 2. K 2

4 ’

Using standard estimates we get

M < e ™™ 201 and |E] _< ch ®/2%2 g
1,K 1,K " 2,K 2,K

which yields, taking(l4) into account:

Therg

such

F 1 )
Ly, &) = Chllnlll’Klalz,K ¥neh' (K), -¥EeP,.
Thus setting n = g?adﬁ¢.3K, 3? being the restriction of B8
to F, & = wﬁ, and summing up over FcdK we get
I, 28y —wp () ldT < chlboll, 19l o ¥Ret, .,
Fcdk F a\)K s ) 1
which by summation over ReT, yields (12), realling (13). q.e.d.
Now taking into account (6)%(12), we have:
Theorem 1: If the solution ¢ of (P) is such that ¢eH’(Q) and
is

AbeH?(Q) then the approximate solution ¢h of (Ph)’ when W\

the space defined in Section 2, satisfies:

(15) " o=y il, y < ChLILGIL v lagll, 7.
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CONCLUDING REMARKS

)

From (4) it is seen that Morley's element cannot be direc-
tly viewed as a member of this family for n=2, since such
a member is not defined. However after some algebraic mani
pulations, this element becomes a member of the family. Mo
re specificélly, we take U=-2 and we combine the basis
functions, in such a way that the Dij(v)‘s equal to Ev(Si)+

+ U(Sj)]/Z for n=2, are transformed into functional values

at the vertices of the triangle.

Parametrized degrees of freedom of- type blprove again in

this work to be a powerful tool to define n~dimensional ver
sions of conforming or nonconforming triangular finite ele
ment methods that work. This technique had already appeared

to be useful for 3D fluid flow problems [8].

Error estimate (15) also applies to other biharmonic pro
bléms in a hyperpolyhedron §:

This is particularly the case of .the following one:

A*¢ =-f din Q, felI? (Q)

¢=40Ap = O on T

Indeed, we still can write(E) in the equivalent variatio -

nal form (P) obtained from(P) by replacing HZ(Q)‘by the
‘ 0

space HZ(Q){WHJ(Q). We can_also approximate (P) by (ﬁh) R

where (?h) is obtained by replacing in (Ph)’ V.. by v

h h'

Problem (§h> is still well posed and the whole convergence

analysis given in this paper gpplies to its solution ¢1
: !

Moreover if f is convex we have



4th)
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H ¢-d>hll < Ch [H«:bll3 + ]

- gt N ENg g

because in this case || Adll < CIIA2¢|B
b

2,0 o = ClElly o s

according to well-known results (see. e.g.[Ul).

The finite element method presented in this paper for n=3
or 4 is suitable for the solution of the following . time

dependent problem:

32 .
EE% - £% = f in 2 x (0,T)
¢ = %ﬁ =0 on T' x (0,T)
—~ \) '
(E) 9
$(x,0) = ¢O(x) in @
2 (x,00 =0 (x)  in @

L
T being a given time, and f, $o and-‘%b1 being given functions.
More specifically we can partition the domain O%(0,T) into
tetrahedrons or 4-simplices, according to the number of spa-
ce variables (two or three respectively), and then discretize.(ﬁ) by
means of the usual space-time finite element technique.
Here the structure of the space—éime test functions is the
one describéd in this paper, and the initial conditions
can be approximated in a straightforward way.

Notice that if there are two space variables (n=3) ,
eqpatioﬁ (E)(hmérﬂms the vibrations of a clamped plate

represented by Q.

Another possible application of the element presented in

this work is the solution of the Stokes problem in R?® in
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potential vector formulation. Such arproblem described
in detail in [3] involvesl fhe bihawmonic operator, but
its approximate soiution using the vector version of
our element for n=3 cannot be studied as a trivial ex

tension of the scalar case treated here. That is why it

will be the subject of a forthcoming paper [9].
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