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ABSTRACT

A convergence analysis for a piecewise quadratié finite
element method to solve vector biharmonic problems in R® in pri
mal variables is presented. The application to the equations of
the vector potential for the flow of incompressible viscous fluids
is focused. For -simplicity , only the particular case of stationary
stokesian flows is treated in detail, but it is showed that the

method applies as well to more complex flows of such fluids.

KEY-WORDS: Biharmonic, constant stress, convergence, finite ele

ments, incompressible, nonconforming, parametrized degrees of

freedom, three-dimensional, vector potential, viscous flows.

RESUMO:

Este artigo trata da analise de convergéncia de um méto-
do de elementos finitos quadréticos'para resolver problemas bihar
monicos vetoriais em dimensao tres. Viscu-se com esse estudo a
aplicacao ao caso das equagoes do potencial vetor associado ao éi
coamento de um fluido viscoso incompressivel. No interesse da con
cisao so o caso particular de escoamentos estacionarios Stokesianos
e considerado em detalhes, embora mostre-se que O meétodo  tambem

se aplica a escoamentos mais complexos desse tipo de fluldos.

PALAVRAS-CHAVES: Biharmdnicg, convergencia, elementos finitos .

escoamentos viscosos, graus de liberdade parametrados, incompres-—
sivel, nao conforme, potencial vetor, tensoes constantes, tridi -

mensional.
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

The finite element method as.a tool for solving the equa-
tions of viscous incompressible flow is nbwadays a well establis -
hed technique. Much pfogress has been made in the past two decades,
mainly due to the decive conceptual contributions of some authors,

most of which have concentrated their efforts on the primitive va
V riable formulation. This is particularly true of the case of three -
dimensional problems, for in the two-dimensional case both the
stream function-vorticity and the pure stream function formula =~
tions are also commonly in use, though much less extensively.

The stream function formulation is particularly attracti-
ve to specialists, since only one scalar variable appears in the
equations. However, the fact that it is a fourth order problem be
comes a drawback, because good finite element methods of solution
must necessarily have more complicated structures. The equivalent
formulation in three dimension space is the one expressed in terms
of the vector potential, which leads to vector biharmonic problems.
Although the unknown is a vector field in this case, it can still
be of practical interest, at least for low Reynolds number flows
?his is because there is one unknown less than in the primitive
variable case and, as we will recall later on, the three componen%s
of the vector potential only couple on the boundary of the flow
region. The main problem of this formulation is again the lack ©of
simple and efficient finite element methods of solution of 3D vec
tor biharmonic problems.

In a recent paper [12] the author studied a new family of
fiuite element methods to solve biharmonic problems in Iﬁ{ N=3,
This family consists of nonconforming piecewise quadratic functions
defined in N-simplices, and can be viewed as the N-dimensional ver
sion of the Morley triangle [8], since long known to be suitable
for the solution of fourth order problems in IR? . Similarly to that

‘triangle, this family corresponds to the simplest possible finite
element method to solve biharmonic problems in spaces of arbitrary

dimension, but its construction requires the use of parametrized

degrees of freedom introduced in [111].

In this paper we show that the member of this family for

N=3 is perfectly adapted to the numerical sclution of vector bi



harmonic problems in R®, related to the equations of the vector
potential for the flow of an incompressible viscous fluid, as

long as they are expressed in terms of the sole vector potential.

Although the method also works for much mofe general si
tuations, for the sake of simplicity a special emphasis is given
to the case of stationary stokesian flows in a bounded domain Q
of B?,-which is further assumed to be convex and to have a poly
hedral boundary I'. Moreover, we consider the case of a vector po

. - . .
tential Y whose tangencial components on I' vanish.

Under the above assumptions the equations for $ write
(see e.g. [u4])
pu
27 -
uA“YP curl f in Q
div) =0
(1.1) < |
- >
$Av =0
cur1$A3=3 :} on I'(l)
-

» + . .
where p is the kinematic viscosity, f stands for given volumetric

forces assumed to be in H(curi,Q),

H(curl,Q) = {E/Ee[ﬂkn)]3 , curlg efLZ (M1},

>
and V = (v;, V5, v;) represents the unit outer normal vector with

respect to T.

According to [4]1, system (1.1) has a unique solution and

. > >
the velocity field u=curly, together with a hydrostatic pressure
p uniquely defined UP to an additive constant, satisfy the Stokes

system, namely:

~
~uAZ + grad p = T
in Q
(1.2) divi = O
Z =0 . on T
e

(1) As pointed out in [4] both conditions imply that cuﬂl$ =0 on I\
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Incidentally, it may be convenient to rewrite system (1.1)
in the following form:

> _}\
HA%2Yy = curl fi} in @
divm = 0 ;
divA) = 0 T
(1.3) ivAyY = on
> o> >
Yyav =0

curl @Ag = 3

That (1.1) implies (1.3) is obvious. On the other hand ,
the equivalence of both formulations can be established as a conse
quence of the application of the divergence operator on both sides

of the first equation of (1.3). Indeed, this yields a scalar bi-

harmonic problem for div$ with homogeneous data and boundary con
ditions, which implies that div$=0 in the whole Q.

"An outline of the paper is as follows:

In Section 2 we study a variational form for system (1.3)
to be used in connection with the finite element method of solu
tion described in Section 3. In Section 4 we give a convergence
.analysis for this approximation method, and in Section 5 we briefly
consider its extension to the case of the Navier-Stokes equations,
among other problems. We conclude in Section & with some important

remarks.

2. A VARIATIONAL FORM FOR POLYHEDRAL DOMAINS

First of all we note that in writing system (1.3) we im

>
plicitly admit that Aye[H?(Q)]?®, an assumption which will be made
throughout the paper, together with @e[Ha(Q)]3. Both are reasona -

ble taking into account the assumed converxity of  (see [6] and

£51).

Let us now introduce the following space:
+
X = {¢/ $€[H2(Q)]3 ; $A3=3, cur1$A3=3 and div3=0 on T}.

X can be normed by the canonical semi-norm of H?(Q), namely



2,9 j=1 j=1 i 9% 9%,

.

N 3 3 27 2 1
(2.1 13 =(3 1 [%gx L% ys
0 J

. > > . .

where the notation x.y stands for the euclidean inner product of
> > . > .

two vectors or tensors x and y. Indeed, if |'¢'|2 =0 the field $ is

£ y -

linear in . Then the fact that Q is bounded , together with $A3=0

. . ->
on I'y implies that $ = 0.

Before giving the variational form to be used later on we

recall below a more natural one already comnsidered in [13].

Set ¥9,¢e[HZ(D)I® ,

;
(2.2) BD($,$) = u| . grad curl$ . grad cur1$ +
JD

1
+ U grad div$ . grad div$

‘D
where D is any open subset of @ with meas (D) # O, and pose ‘the
problem:
Find $eX such that
(2.3)
. - > e ->
aﬂ(—vr,d)) = (curlf,¢) VoeX
where the notation ( .». ) stands for the usual inner product of

L2(R). The facts that (2.3) has a unique solution $ andthatafmmlw
is the velocity field that satisfies the Stokes system (1.2) have been establis
hed in [13]. Usual arguments based on Green's formulae, also allow

to conclude that 3 solves system (1.3) or yet (1.1).
We shall now prove

Lemma 2.1: 1If the solution of (2.3) belongs to [H?®(Q)1® then it is

also the unique solution of

. Find $€X such that
(2.4)

a9($, 3) = (curi? ’ $) V$exb
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where for D c Q, meas (D)#0, and V$,$€[H2(D)]3 s

3 3 2 . 2
) > 9 {ﬁ 9 -‘;
(2.5) aD($,¢) = U.Z ,Z [ 9x. o0x. 9x. ox,
i=1j=1 i 1 1 J

D

Proof: The existence and uniqueness of a solution to (2.4) have
been established in [13]. Therefore if suffices to prove the fol

lowing result:

V$5X and V$eXn[H3(Q)]3 we have:

-> e s =

aﬂ($’¢) = aQ(W)q))

First of all we assume that the cartesian axes are orien
ted in such a way that vi#O, i=1,2,3 almost everywhere on T'. Next

we note that

(2.86) 5Q($ ,3) - aQ($, $) = U E Ai' . where
1<j<is3
3 0%y, 3%¢, %y, 324,
(2.7) A..=) [ i, v aJ - a1 _
1] k=21 Bxiaxk ij axk oxj Xy xi Xk
3%y, 24, 2y, 2.
vy 38%¢; 3%y 2%y :
ijBXk 3xi axk Bxi Bxk axi ng

Using integration by parts we obtain:

3 3%y, 3%y, 3¢ .
(2.8) “A.. = ) {l——st v, - —21 v.] i -
i3 k=1 BXiSXk ] ij Bxk 1 Bxk
2. . ' 2
S ENTL 5 VA S
- 0X.0%x, ] 9X. 0OX i ax
ik 3 k : k
T
Now we note that since $A3 = 6 on I' and ¢i€H2(Q) ,
i=1,2,3, for any unit tangential directions ? and-g with respect
to I', we have 3¢5/37 = 0 a.e. on T, where ¢5 = 3.; and 3v/9T deno

. .. . . . >
tes the tangential derivative in the direction of 11 of a func -

tion U€H3/2(T), defined almost everywhere on I'. Thus if we take



-

> > 1 2 3
both nd equal to s = (s s s’ ) <m<ns<3
‘ o a 1 q . ( mn® Smn® Smn’o 1 , vhere
st = (8, v -8, v)/(v2 + v? )% , §.. being the Kronecker delta,
mn in’'m im n m n ij ‘

Ld —> - . . i N + - .
since V 1is piecewise constant with respect to S’ the following

equality holds for any k and £:

Ly 3¢ 9¢ 9 ,
k o2 £ 2 k a.e¢ on. T
(2.9) 2y O = * =ox, ) 7 Yk Tax, VR TEx :
k £ k
13 3 + .+
Taking into account that curl¢ = 0 on I, we get:
8¢£ - Yk 8¢£ Ve 3¢ a.e on Ta
(2.10) 9x 2v 9x MY 3%
K Z z K ‘k
Now taking (2.10) into (2.8) we obtain:
3
B 3 3wi Vi a¢j vj 8¢k
(2.11) A= )| Iy ) Gy~ Y v T, )
k=1 jp. ji k 3 j k k
RN Y 3\?1‘ s, zvi ey
sti Bxk v, 8xi S 2V 8Xk.

Set now in (2.10) $==$. Taking into account that grad wie[Hz(Q)]a,
i=1,2,3 and cur1$= 0 on ', it is possible to differentiate both

sides of (2.10) with respect to Sji and to write:

oY v | Y v oy
(2.12) 52 3 = - o o 5 - 2£ aa T
%ji *k Ve ji 2 Ve %%51 9%
£ =i or j, on every plane face of T , using again the assumption

that  is a polyhedron.

Now, if k#i and k#j the condition div $=O on I' allows us
ad 3¢i '3¢j
% -+ Sx.)'.NeXt we perform a
k i A
awk
ax

expressions into the just modified relatiom (2.11), for k=1,2 and 3.

to replace in (2.11) with -(

a similar substitution in (2.12) for , and we take the resulting

In so doing we obtain after some straightforward calcula-

tions:



AR B 9, s K7 3¢,

V., 9s. . 9x. 9%, 98. . 9x%. 9x. 1
J 1 J Jj1 J 1

On the other hand it can be easily verified that:

\Y \Y P
(2.14) AV - 3 av + 1 v
Vv V)

38,4 2 984, 9 98,3

for every sufficiently smooth function v defined on T. We may then

modify (2.13) for A34 accordinglly.

0, 20y
We may further replace T and . in the expressions
(2.13) for Any and A32 by using the :same argument as above with
k=2, :
After having performed these modifications, we sum up

with respect to i and j thereby obtéining:
¥ A,. = 0.
1<j<i<3z I

Finally recalling (2.6) the lemma is provédoq.e.d

3. THE FINITE ELEMENT APPROXIMATION

For the sake of clearness we first briefly recall the
scalar version of the finite element method studied in this paper.

A more detailed description of such a version can be found in [12]

Let then T, be a tetrahedrization of § respecting the

h
usual intersection rule for the finite element method and satisfying
U_ K = . We assume that T, belongs to a quasiuniform family of
KﬁTh h

tetrahedrizations of € in the usual sense, parametrized by h, the

maximum diameter of a tetrahedron of Th.

Let Si’ i=1,2,3,4 be the vertices of a tetrahedron KeTh,

Fi be the face opposite to Si and Gi be the barycenter of Fi'

We shall define a quadratic function ¢ over K by means of

the following set of ten degrees .of freedom:



- Di(¢) , the outer normal derivative of ¢ at Gi’ 1<ish,

- D,.(d) , the mean value of ¢ along the edge Sisj’ 1<i<jsy ,

that 1is

.. S = th .S,
DlJK?) [ ¢ ds/leng (Sl J)
S.S.
i
If we denote by Xi the barycentric coordinate of K with
respect to Si’ then the basis functions associated with these de

grees of freedom are respectively:

P; = (Ai- 52’- Azl )/w/].Li , 1<isgy
’ 4
PisT (}‘i”‘j )2 - Z(Aimj)— zkzi pk(y'ik+yjk), 1<i<j<u ,
k#1i,]
where Yﬁm = Dm(lﬁ), ism, <y, -
Now we define Vh to be the space of functions¢ defined in
%, whose restriction to each tetrahedron of Th is quadratic and

that satisfy the following conditions.

-~ The derivative of ¢ in a given normal direction to any face
common totwo tetrahedrons of Th is continuous at the barycen

ter of this face.

- The mean values at a given edge of Th of the restrictions of

¢ to the tetrahedrons intersecting at this edge coincide.

Remark 3.1: It 1is interesting to recall [12] that both conditions
imply the continuity of gradd at the barycenter of the faces of Tﬁ
This is because the tangential derivatives of ¢ at the barycenter

of.any face of a tetrahedron depend linearly on the mean values
over the edges of this face. More specifically, it is easy to pro
ve that if QPSj and S, are the vertices of Ke T, belonging to a

k h
given face with barycenter G then:

D, .(¢) - D .(¢)
3o (c) = 2 ki ki

dTij Length(SiSj)

i,j,k distinct




-> . . . .
where T F is the unit tangential vector of the face oriented
o

i
from Sj t Si' We refer to Figure 3.1 for an illustration. O

Tangential directions of face %_%2%

Figure 3.1

We are now ready to define a discrete analogue Xh of X

based on the finite element space Vh' Noticing that a field of X

satisfies three types of boundary conditions, we define Xh to be
/ ,
v

the space of fields $ whose cartesian components belong to h

h
and are such that their respective degrees of freedom attached to

faces or edges lying on T are related in the following way:

(i) The discrete analogue of ¢A3 = 0 on I':

The mean value of any tangential component of $h with respect
to T' over every boundary edge of Th vanishes;

> >
(ii) The discrete analogue of curl¢av =0 on T:

The normal derivative at the barycenter of a boundary fa-
ce of Th'of any tangential component.of $h with respect to this fa
ce, is a linear combination of the mean values of the normal com-—
ponent of $h over the three edges of this face. The . coefficients
of this linear combination depend only on the lenght of these three

edges and on the tangential direction itself.

(iii) The discrete analogue of div$ = 0 on I:

- - -
The normal derivative of the normal component of ¢h with
respect to any boundary face of Th vanishes at the barycenter of

this face. [J

It is important to stress the fact that properties (ii)
are consistent with Remark 3.1 and property (i). For this reason

property (ii) and property (iii) actually mean that at the barvcen
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3> > > )
ter of boundary faces curl¢hAv = 0 and d1v$h = 0,
Moreover Remark 3.1 together with property (i) imply that at the

respectively .

. > > ->
same points curl¢h.v = 0 too.

Now we equip [Vh]3 with the discrete H’ ~seminorm, namely:

. 27 27
- ] { 9 (gh . 9 (t)h ]lé
(3.1) llﬁJ‘z ho t ’2 .z. 0x,9x%, 9x,9x,
’ KeT, i,j=1 Jg 177 177

It is actually possible to prove:

Lemma 3.1: The seminorm I.]E n given by (3.1) is a norm for Xy
>

Proof:. If $heXh ‘and l[thZ n - 0 then $h is a linear field in
B >

every tetrahedron of KeTh. The continuity of the normalcmrivaﬁves
at the barycenter and of the mean values over the edges of every
face of Th for fields of [thaimplies that $h is continuous ( .see
e.g. [12]) over the whole . Moreover, since three distinct mean

values of the tangetial components of $h with respect to the boun-

-~

. > >
dary faces of Th vanish, we must have ¢hAv = 0 on I'. The bounded -~

R ) R >
ness of § implies in turm that $h = 0onI'. q.e.d.

Now we pose the discrete analogue'of problem (2.4) Dbased

on space Xh:
Find @hexh such that

(3.2)

[

ah($h,$h) (curl”f*,zﬁh)" ' v?ﬁhexh

where

|
o~1
Q
~
<y
=
S
=g
~

(3.3)  a, (G, 8,)
for which we can prove:

Theorem 3.1, Problem (3.2) has a unique solution

Proof: According to Lemma 3.1 if suffices to establish the coerci
veness of the bilinear form a, over Xh with respect to norm H.||2 B
b

Recalling (2.5) and (3.1) we have indeed:
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> > - :
> i » . . .
ah(cbh ’gh) - u || d)h”Z,h Vd”heyh q e d
Space X, has appropriate approximation properties with

h
respect to sufficiently smooth fields of X. More specifically, if

- _ ’ -5
£EX0[H3(Q)J3 we may define Wh¢,-the field of X, that interpolates

h
-5
¢ at all the degrees of freedom of this space, except for the nor

mal derivatives of the tangential components of $ at the barycen
ter of faces lying on I'. This is because, according to Remark 3.1,
these are necessarily linear combinations of three mean values of
the normal component of nh$, that is of a, as specified in proper
ty (ii) of Xh'

Nevertheless the following approximation property holds.

Theorem 3.2: If wh$exh is the interpolate of $eXn[H3(Q)]3 defi ~

ned as above, then we have:

(3.3)  N1-mdll, . = cn [y

where I.l3 Q denotes the standard semi-norm of H®(Q) and C deno -
b

tes a constant independent of h.

Proof: Let %ﬁ be the [W}]a—interpolant of %. Standard approxima-

tion results allow us to prove (sce e.g. [2]):

> >,
! : - <
(3.1) o -dyll, s cnlely g
i Ié il
Let us now estimate ¢h Wh¢ 2,h
First we note that by construction all the degrees of
freedom of the Di.-type coincide for $h and wh$. Moreover all

the degrees of freedom of $h and WH@ of the Di-type coincide, as
i

long as they are not attached to faces lying on T,

As for the normal derivative at the barycenter of a face

of a tetrahedron Keﬁ} lying on T', we can assert the following:

For simplicity let us first assume. that Th is such that

KnT' contains at most one face of K, ¥KeT In this case we may choose

he



the local numbering of the vertices of K to be such that Sl’SZ and

r

. . K . = .
S3 are the vertices of its face F4 lying on T'. Let v, be the unit

outer normal vector with respect to FE and'Gi be the barycenter

of this face. We further denote by Di and Dij the degrees of freedom
of types Qi and+Dij respectively 1if related to tetraﬁedron}i

Finally for a field v defined in K we set:

> > . d -
vij = . Tij , T#3, an v, = VeV, .

In so doing we have:

K _ K Lo
(3.5) Dh(ﬂh¢v) = D4(¢hv> 0
This is due to the fact that div$=0 on I', which implies
K _ »K _ N A
that D4(¢hv) ,D4(¢v) 0, and to property (iii) of Xh.

On the other hand, from property (ii) of Xh and Remark

3.1 we gef:

D,. (¢, ) = D, ($. )
(3.6) DN(w. ¢,,) = 2 =k BV jk by , i,i,k dis
4 "h71i] length (Sisj) tinct’,

whereas
K .
Notice that the latter value differs in principle from
. . .

Let then pf be the basis function related to the normal

- . . *
derivative at GE for a tetrahedron KETh , where

T; = {K/KeTh and area (KnT) # 0}.

Then we have VKéTg
> K ' K > K
(3.8) (G- 8 = (0D, (o) = D (M6 )T T + D (6 -

K
4

. > K > -+ . .
kﬂh¢0)] OK} Pus Ty and Ox being two Fnlt or-

D
- K

; -> > >

thogonal vectors in the plane of Fi, and for a field v, Qr= U.TK
> .

and Vg = U.UK.
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From the assumption that {Th}h is quasiuniform, we can

readily establish that there exists a constant C such that:

e r K K
(3.9) Nmé-61* =<c 3§ {lp,l ¥ ID, (¢..) -
h hz,h KGT;: 4 2,k 1<53<i<3 47715 '

Kr 2
- T ¢. .
D, ( h¢13)l }
The same assumption on {Th}h’ together with standard ar-—

guments, allow us also to conclude that there exists another cons

tant C for which

K *
(3.20) 1l p, Il < Ch ¥ReT[ .

2
2,K
Let us now turn our attention to the §ther term in (3.9),
. K K '
S . - D ..
that is, 1D4(¢13) 4(Wh(blj)l
N '/' . R __)_
Recalling (3.6) and taking into account that curl% =0 on

' we have:

K K
(3.11) D4(¢ij) - DA(Wh¢ij) = JK(¢v)

where
DY (9 )-D. (6 ) 3¢
(3.12) I (b)) = jk*7v ik "v . _*_2_“_(pK)
v length(S.S.) oT, . A
i%j ij
where i,j,k are distinct and J¢  is a continuous linear func

tional defined on H®(Q), according to the Sobolev Embedding Theorem

(see e.g. [11]).

Now let R be the usual reference tetrahedron and §. be its
i

vertex corresponding to Si with §4 = (0,0,0). If §‘is the linear
mapping such that F(R) = K, we set $v=¢vo F and we define

-~

J: B2 (K) »IRto be the continuous linear functional giVen by:



~14—

e . 3$v(@)
. =z - Y, 3 - ﬁ‘ ¢ ’ - e i ],k 1is~-
(3.13) TG 2 [fjk(»\)) LGNNI T » 1.k d
ij
tinct, where ﬁij(ﬁ) is the mean valuec of a function ¥ over §i§j ,
“ oy - K . N
G, = J 1(G') and T.. is the unit vector aloung 5.5..
b 4 1] J 1
In so doing we have:
j($v)
L =
(3.14) J(¢v) length (S5,S.)
1]
Now we note that j($v) = 0 whenever $v is a quadratic
function. Thus from the Bramble-Hilbert Lemma (see e.g. 21 we

get:

(3.15)  J( ) = ¢ 3|

From standard estimates we further obtain

(3.16) 13G 1= ¢ n g1, o

Combining (3.14) and (3.16) we get

(3.11) 131 = ot e, o

2+
4
|

Finally, taking into account (3.9)v(3.12) and (3.17) we

conclude that there is a constant C independent of h such that
- >
- <
13, - i,y < cnibl o s
which together with (3.4) implies (3.3).

Except for additional complications in the notation, the
above analysis can be applied to the case where one or more tetra-

hedrons of Th'have two or three faces on I'. Hence the Lemma is

proved. q.e.d.

Remark 3.2: 1In purely viscous flow the stress rates are given 1in
terms of the second otder derivatives of the vector potential. This

suggests that we refer to the present element as the constant stress

finite element. []
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L. CONVERGENCE ANALYSIS

Since Xh¢)h according to well-known results (see e.g.
. . . : —)— 3
[31), the error in the approximation of ﬁ by wh can be estimated

using the inequality:

inf || % -¢, 1 +

(4.1) (1% - Pl , 2,h
1 ghehh

.1
2,h 7 {

( —l)- -+ Yy - 1 ‘g ->
'ah y,¢h, (curlf, ¢h)l}

+ _sup
-—?.
ghexh oy Ty

The first term on the right hand side can be estimated using

Theorem 3.2, that is:

-5
£ C hly]

(w.2)  _inf WG-G 1L, 1,

ope¥y

In order to estimate the second term we need some techni-
cal lemmas. For convenience, we summarize previous regularity - as

sumptions by writing:

Vew = {§/3ex, $erH3LQN®, Adeln?(0)7°}.

Lemma 4.1: If the solution $ of problem (2.4) belongs to W then
.‘* .
Vo €Xy
1 > > > > o i >
3y gl (0, 6) = (eurlf, ¢33 = ] (b (§,8) + c (3,3 )]
. U h h h K h K h
KeT
h
where

(4.4) bR($’$) = [ 8§%£l£~ cu11$ - Acurl%.(gAvK>]
oK
and
3 ow, o .
(4.5) e (P, 8 = 12__ ( grad *5;?“ - grad *“SE%“
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dK being the boundary of K and §< being the unit outer normal vec

tor with respect to 9K.

Proof: Recalling (2.2) and (2.5) it is éasy to derive

> > . - - > >
! = )
(4.6)  a, (b, ) = ul Z‘ de s ) + e C P, 9]
Ke'T
h
where
> - - -
| = 1 o ” PO
(4.7) dK( U] ,$h) [ grad curl&.grad cu;léh
K

Using Green's formulae, and by interchanging the operators

A and curl, we get

¢

' >
> 5 P T > > >
(4.8) dK( ﬁ ,&h) ”%%Elm—_ . curl(,bh Acurlw.(¢hAvK)

K
Jag. oK

[

> >
- Acurl curly . ¢, .

h
K

From the well-known identity

RS .
grad divy - Ay

B

>
curl curly

. . . 2 > )
and taking into account that divy = 0 and u A $ = curlf in Q ,

the broof is completed. q.e.d.

Lemma 4.2:; Under the same assumption of Lemma 4.1 we have:

fE~1

(4.9) ¢ ($, 3 )y = grad grad ¥ .grad$ = grad v grad$
L K h & v h j=1 ij hj
9K oK

where Uy = $.

» 3 ._). . i v
Proof: Since divy = 0 in  we may write
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\ .
c (3 S ) = 5 crad *Ejﬁ;_ rad Eihi -
K Y S SO & 9 & X%,
1,3=1 1
i#] K
3 [ 3 8¢
3 oY, B
- z grad ) _r grad :f—li—
. i=1 Ox ¢
3=tk i#]
or yet
. 3¢
: 3Y, o oy hj
¢ (P ) = y {[grad ——r—.grad : grad s——. grad -
K > Yh . i X %
1,31=1
it g
Using integration by parts we get:
Y,
oY . i .
- _ ) i - grad ——=. gradd, .v. .]
cK(w ,%h) = 'Z' { [grad —SET—.grad¢hj vki g axi hj ki
i#3 ]
49K
_ 3. Iy, .
Replacing again =~ ) 2t with —-J-, we obtain:
.5, 9x. - 0X;
i#] 1 J
s ; e | ‘hat is (4.9) 1
CK($’¢h) = '). ) [ grad —5a grad ¢hj Vi; o that is (4.9). q.e.d.
1,3=1 ]
49K

We are now ready to estimate the terms by and cx in (4.3)
in the classical way for nonconforming elements. In this respect
we give below two lemmas whose proofs have been shortened, as they
follow standard arguments developped in full detail in [7] and

ri121].

Lemma 4.3: Under the assumptions of Lemma 4.1 there exists C such
that

10) 8 7 A 07 7
R A N 2 N Y R [ Lk A A

b

where | . HC Q denotes the standard norm of HK(Q), LeN
£,
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Proof: Estimate (4.10) is a direct consequence of the continuity

properties of Xh together with (i) and (ii). Indeed, the former

>
states that curl@h
ces of the tetrahedrons and (ii) that it vanishes at the barycen-

is continuous at the barycenter of the inner fa

ter of boundary faces. This allows us to apply the same analysis

as in [7)] for the Morley triangle, to the first term of bK'

> o . -

Moreover, the mean values of ¢\AvK over the edges of 1nner faces
{

coincide, and (i) states that theyvanish if the edge lies on T.

In this way the analysis given in [12] Lemma 3 applies to - the

second term of by too, which leads to (4.10). O

Lemma 4.4: Under the assumption of Lemma 4.1, there exists C such
that
’ . > > > > >
4.1 C | < 4
(w.11)  § e (0 s con 1Dy o 1oyl g ¥, X,
KeT
/h
Proof: We fivrst recall (4.9) and letting F be an arbitrary face

of 3K, we can write:

CK(E ’gh) = ) grad gradwv.grad$h , or yet
FcoK Jp .

oY

.gradd, + grad-

O'K h'J K

V)

.grado +
ht

NV .g
+ grad 3V °rad¢hv]
. -> - .
where, like in Theorem 3.2, Tg and Tg are two suitable orthogo -
nal unit vectors in the plane of F, in such a way that they form ,
. > . .
together with vg, a local system of carteslan axes, for which
grad v = ( %g s %% v %B ) for every dixfferentiable function Ve
K Kk oY%

. ‘>‘ . L 3
The assumption that velH® (2)]% implies the concidence of
the traces of second order derivatives of Y a.e. on both sides of
2 - . 3 . -> v »
F if this is an inner face. Furthermore, the gradient of ¢h is

continous at the barycenter of such-faces.

As for the boundary -faces F we note the following:
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2 2
3 v, ] vy, ' . »
s o = 55 5v- - 0 a-e., since divp =0 on I' and
kR TkVk
BWO BwT _
30 T et 0 on I' ;
X K
3¢kv
avl = 0 at the barycenter of F, according to property (iii)
K
of X,

3¢ 09 3¢ 3¢
ho ht o ho ' ht 0 at the barycenter of F, according
BUK aoK aTK BTF

to property (i) of Xh and to Remark 3.1.

Therefore we can once more apply the standard arguments
. that we mentioned before, more specifically those developed in

[7] for the Morley element, thereby obtaining (4.11). q.e.d. 0

Finally as a consequence of Lemmas 4.1, 4.3 and 4.4 we ha

ve

Theorem 4.1: Under the assumption that the solution of problem

(2.4) belongs to W, the solution $ of the approximate problem (3.2)

satisfies:
w.12) [T =Tyl o5 cn ClEDly o + 1801], o3 L

Notice that error estimate (4.12) is completely analogoué
to the one that holds for the approximation by this finite element

method of scalar biharmonic problems in R, as derived in [12].

5. EXTENSION TO MORE GENERAL VISCOUS FLOW PROBLEMS

The application of the finite element method and the ex
tension of the analysis given in this paper to the case of unsteady
stokesian flows, follows classical procedures, except for inequali

ties of the Friedrichs—Poincare type (see below) that have to be

.

established for space X On the other hand, for the case of nons-

h
tokesian flows, even if stationary, the situation is mor¢ complex.
Just to have a clear look at this questions we sketch in this Sec-
tion a "would be" proof for this case. In other words, we give a
series of assumptions taht neced to be verified if one wishes to obtain an es-
timate of the type (4.12) for the case of the steady Navier-Stokes equations

expressed in terms of the vector potential with zero tangencial components,
namely



2 T > > .
WA Y + curl(curlyegrad)curly = curl £ in-§
(5.13<divy = Adiv) = 00
e - on T
curlyav = YAy = 0

We may writwe equation (5.1) in variational form given in

(43, namely

>
(Find YeX such that

i
H
'

(5.2) < n ( Aﬁuﬁg + J (curi&.grad)curlw.curl$ = (%,curlg) ¥3€X
IEY) 0

or equivalently, if @ is a polyhedron, and using integration by

parts:

Find ﬁeX such that .
(5-3) CZQ(ELT,.(E) + @Q(ﬁja;ﬁag) = (Cur1¥s$) V$€X

where for D < Q, meas (D) # 0

(5.8) e, 0,8 =0 e @,0,8 - e E,9,HI/2
(5.5) éD(f, $, $) = {D (cuflg.grad)curlﬁ.curlg VE,¢,¢€[H2(D)]3.
The discrete problem corresponding to (5.3) would be:
-5
Find whexh such that
(5‘6) - > > > ->
ah(wh,¢h) + eh(wh,%],¢h) = (curl%é@1) V&hexh
where
> = e
(5.7) e (0,8 = Loe G by
h

The fact that (5.6) is a well-posed problem is assumeéz).

(2) We réfef to [14] for a well-posedness analysis of discrete
problems of the same type.
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‘Now following [14] we derive a bound similar to (4.1) for

problem (5.6), that is:

> > ‘l
eh(‘ﬁ"l”‘bh) - eh(q}h’wh’gh)f

‘—> >
(s.8)  l¥-9,. 1, . < c| sup -
K IERIPYN
N 2, @, 0p)re, (1,3, )- Cetirf gh)i
+ inf ” ‘l"‘bh”z’h + gup - ; $ : :
X, LINRSN Heplly 4
1

The second and third terms on the right hand side of (5.8 )
can be treated by the standard arguments already mentioned in Sec
tion 4. On the other hand, the analysis for the first term is mo
re complicated and we have to derive several estimates.

First of all, like in [14], page 217, the boundedness of o

h
in the following sense is needed.

-

(5.9) eh(gh’—l’bh’a\h) < e |l gh“g,h” ﬁj”z,hllz ||2,h Vgh’$1’$h€}(+xh :

E being independent of h.

Next, we need a discrete Poincare inequality of the type:

> -

(5.10) ll qbh”(),ﬂ = Ci Il¢hlb,h Vgﬁth
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Moreover, recalling [12] Lemma 1, in order to derive
(5.10) it is convenient to use regularity results for.the solu

. . . . .
tion w of the following vector Poisson equation:

- Ay =3 in ®
- -
3AG = 0

) N on T
=0

; divw

for any g given in [L2(Q)1%®, together with the estimates

5.11 w < W
( ) ?112,9 < C b Avlly g
> >
5 C
(5.12) !w!1,9 < Cyll AVl o
5.13) 1wl <c, | w
(s ) Y10,0 4' Ii,ﬂ
- s - 5 3 > > > -
YweM = {v / velH2 ()1}, vAv = 0 and divvo = 0 on T }.

/

Finally we have to make the following assumption on the

data % and u:

2 ->
ue > C |l curls IIO’Q

where C = ClEf

We conjecture that the assumptions (5.8)%(5.13) are true
but they surely deserve a careful analysis. Moreover we need some

further regularity hypothesis on $, namely_curlae[wz’s/z(ﬂ)]3.

6. MISCELLANEOUS REMARKS

Another issue that is worth to be discussed, is the appli
cation of this method to the case of nonpolyhedral domains, even if
still simply connected and convex. There are basically two ques

tions to be adressed in this context:

-~ Is bilinear form Ay still applicable to this case or, as proba -

bly not, would &h (the form defined like a, but based On_aD ins-
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tead of aD) yield well-posed discrete problems in Xh ?

~ What implications the shift of Xh—boundéry conditions from the
boundary of Q to the one of Qh = U X yould have in the conver -
KeT
h

gence analysis of Section 4 ?

Both questions cannot be answered with simple arguments
and deserve a careful study. Therefore their appropriate answer 1s

left for future work.

Nevertheless we conclude with an optimistic remark concer
ning both the application and the implementation of this method to

the vector potential equations, at least for linear cases.

Irrespective of the kind of domain, in practice it is pos
sible to reduce this coupled vector problem to a finite sequence
of scalar inhomogeneous biharmonic problems in IR® . This can . be
achieved by applying a technique suggested to the author by QUARTA
PELLE [10], similar to the one proposed inm [9] for second order
vector problems. The resulting uncoupling of the vector = boundary
conditions allows us to use only the scalar version of our finite
element [12] to solve this sequence of problems, whose number is
Ol (dim Vh)z/g]. Some computer tests using such a technique are now

under way and they should be the objéct of a forthcoming paper.
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