Series: Moncgrafias em Ciéncia da Computacao, 03/88

TOWARDS A TABLEAU-BASED INTUITIONISTIC THEOREM PROVER
by
Oliver Bittel

Paulo Sergio C. de Alencar

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO

ARQUES DE SAO VICENTE, 225 — CEP 22453

RIO DE JANEIRO — BRASIL



PUC/RJ -~ DUEPARTAMENTO DE INVORMATICA

Servies: Monografias em Ciéncia da Computaciao, 03/88

Editor: Paulo Augusto Silva Veloso April, 1988

TOWARDS A TABLEAU-BASED INTUITIONISTIC THEOREM PROVER *
by

Oliver RBittel**

Paulo Sérgio C. de Alencar***

* This work has been partially sponsored by FINEP.

* %

GMD - Karlsruhe, Germany

*%%* On leave of absence from the University of Brasilia, Brasil.



In charge of publications:

Rosane Teles Lins Castilho

PUC/RJ-Depto. de Informatica

Assessoria de Biblioteca, Documentagdo e Informacio
Rua Marquds de Sdo Vicente, 225 - Gavea

22453 - Rio de Janeiro, RJ BRASIL



ADSTRACT

A proof procedure for the first-order intuitionistic logic

which is based on an improved version of the . intuitionistic
Beth tableau calculus is presented. It also treats treats the

probiem of proving under an intuitionistic theory.

KEYWORDS: theorem prdving, intuitionistic logic, tableau

calculus, proof procedure.

RESUMO

Apresenta-se um procedimento de prova para a logica intui-
cionista de primeira ordem baseado em uma versac melhorada do
calculo de tableau intuicionista de Beth. Este - procedimento
também trata o problema da prova a partir de uma teoria intui-

cionista.

PALAVRAS-CHAVE: provadores de teorema, ldogica intuicionista,pro-

cedimento de prova, calculc de tableau.
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I. INTRODUCTION

The tableau method introduced by Beth [Beth 1959] has been
mainly used to prove the completeness of various logic calculil
such as the modal and intuitionistic logic.Since recently these
non-standard logics are becoming more used in various branches
of artifficial intelligence and computer sclence, as a means
for expressing program development and program strategies and
as logics of knowledge and belief ([Sintzoff 1986], [de .. CGroote
1986], [Halpern 1985]), the need arises for efficient . . proof

systems for. these logics.

-The available tableau-based intuiltionistic proof - systenms
constitute a very readable means of investigating the wvalidity
of arbitrary first-order formulas. Beyond that, as one might

think of a tableau as an exploration of a hypothetical counter-

model to a particular formula, if the tableau does not . end
successfully we get also a model in which the formula is not
valid. .

In this work we propose én intuitionistic first-order

proof procedure based on an improved tableau system for the

intuitionistic logic. We also investigate the problen of
proving under altheoryc In section II we present an
introduction té,the intuitionistic Kripke's semantic and a
particular tableau system.‘In section III we improve the
tableau system presented in section IT faor both the
propositional and prediéate parts of the logic and study fhe

problem of proving_under a theory.



1I THE INTUITIONISTIC TABLEAU CALCULUS

In order to get an adequate characterization of a decision
proceduré-for'validity of first-order intuitionistic formulas
we define the so-called Kripke semantics for the intuitionistic
logic. We assume familiarity with the aspects cf this non-—
standard logic which motivate the present semantic concept.

In the next two sections a Kripke's model theory for
intuitionistic logic is presented from which we get .the
particular intuitionistic Beth tableau defined according to the

uniform qf,ﬁ,X,S notation introduced by Smullyan [Smullyan 19683.

}n addition some notational conventions and useful
definitions that are used 1n the next sections are also
presented. .

The intuitionistic Kripke-style semantics ' and the

intuitionistic tableau calculus are taken from [Fitting- 1983} .
‘We let A, B range over predicate signed formulas, p,q range
over propositional signed formulas and X, Y range over sets

of signed formulas.
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If.1 PRELIMINARIES

In this section we present Kripke's model theory for the
intuitionistic logic. We assume familiarity with the usual
definition of the'intuitionistic language and formulas.

The pair <G,R> is cailed an intuitionistic frame if G is a
non-empty set and R 1s a reflexive, transitive relation on G,

Let D be some non-empty set. A first-order intuitionistic frame

over D is a triple'(G,R,P> where <G,R> is an _ iIntuitionistic
frame and P is a mapping from G to non-empty subsets of D

meeting the monotonicity condition: if wRw' then P(w) P(w'). Cne
might think of w G and P(w) as being a state of knowledge and
the "things" that~exist in world w, respectively,.

We present a Kripke's intuitiohistio semantic version using
signed formulas. By a signed forrnwula we mean +A or -A where A is
a formula and "+", '"-" are two new formal symbols.

For ease the exposition we use a uniform notaticn due to
Smullyan and Fitting that classifies‘signed formulas according
to their sign and major connective/operator as shown in the
following table. Each formula.class is presented together with

the definition of it's components. For example, for each -

formula two components,c£1 and céz are defined. In the
following charts we assume the language is L(C), all sentences
are in L(C) and all constant symbols are chosen entirely from

the set C.



o ol oL, A A A
+(A & 'B) +A +B +(A |/ B) +A +B
~(A V B) ~A ~B -(A & B) -A ~-B
~(AD B) | +A -B +(A D B) -A . 4B
—~A +A +A +~A -A -B

¥ | ¥ $ S

+(¥Vx) A(x) +A(a) +(3x) A(x) +A(a)
~(@x) A(x) ~A(a) ~(Vx) A(x) -A(a)

In addition we use various first-order languages described

as follcws. We assume CO is some designated infinite collection

of formal constant symbols and L(CO)~is the formal first-order
intultionistic language ( the formal language of discourse) we
will be primarily interested in. A disjoint set of the same

cardinality, PO' is also set aside as parameters. Then L(COU PO)
will be the language used in formal 'proofs ( the formal language
of proofs). Likewise each intuitionistic model has a domain D

and we use L(D) as the language of that model.

A first-order intuitionistic model over a domain D is a
quadruple <G,R,P,lh> where ‘<G,R[P> is a first-order
intuitionistic frame over D and | is a relation between

members of G and sentences of L(D), the language of that model,
such that for all w€ G:
For regular connectives (&,l, 3)
R1) wlo, iff wlFe¢]and wlk2¢y
R2) wl-A 4iff wl-8 or wlkA;
R3) wll-¥ iff w|- ¥(a) for every at€ P(w)
R4) wi-& iff wl- $(a) for some a€ P(w)
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For special connectives (~, 2D, V)
81) wl =  Lff (Bw¥) (W%IF«{I and w*l%iﬁz )
s2) wll-pg iff ({w*) (w*[l-gq or w49 )

L-Y(a) for every a€P(w¥))

$3) wik-¥  iff (Hwx) (w*
S4) wiS& iff (Fw*) (w*|k-§(a) for some a€ P(w*))
We have also the following conditions: '

- +A

C1) & atomic, if wl +A then w¥
C2) if A atomic then exactly one of wli- %A, Wil A .
Here w* denotes an arbitrary world in the relation R to w,
Different versions of the intulitionistic first-order logic
can be obtained by restricting the way in-which P varies fron
world to world. If we take the P map as constant, P(w)=P(w') for
all w,w' belonging to G; we get the constant domain version of
this logic and if we don't impose this restriction on P we get

the varying domain intuitionistic first-order logic.

7
~

Note that at a world w of an intuitionistic model(@,R,H~c>we
have | »
wl-i +A for wi- A
Wl -A for wlh- A
Note also. that -A and ~A play very different roles. One might say
that wll~ ~A asserts that, given the state—of~knowledge W, 2
disproof of A can be achieved. But w|l -A merely asserts that no

probf of X 1is possible with knowledge w.

We now define the interpretation of a formal language into
the language of the model. Suppose C and D are two sets of
constants and v:C->D is a mapping of the ccnstants in C to the
constants in D. In thé obvious way we extend v to a mapping of

languages v:L(C)--3L(D). As L(COLJPO) is the formal language to be

used in proofs an interpretation of this language in a first-
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order Kripke model <G,R,P,|k>over D is a mapping v:COL/P —2D,

We say that a sentence A of L(D) is valid in the mnodel

<G,R,P,|k>if wl- A for every w G such that all constants of A

) is wvalid under

are in P(w). We say that a sentence A of L(COU PO
an interpretation v in a intuitionistic model if v(A) is

valid
in this model in the sense used above.

Finally a first-order sentence A of L(COU PO) is

intuitionistically valid if X is valid under every interpretation

in every first-order intuitionistic model.



Ir.z2 THE INTUITIONISTIC BETH TABLEAUS

In the last section we followed the approacnh based on the
observation that the connectives ~, D and ¥ behave in a
special' way while &, I/ and™d behave in a inore reuuliregular
fashion.‘By this approach we obtained a direct charadterization
of intuitionistic models, in termg cf signed formulas using
the presented uniform notation that will provide us with a
tableau system.

In tableau systems proofs ( or derivations) are written in

tree form, branching downward. At each node of the tree occurs
a signed formula. An attempted proof of A begins with a one-
branch, one-node tree whose only node is -A, Then the tree is

enlarged using certain extension rules. For example, if +(A & B)
occurs on a branch, +A and +B may be added to the end of the

branch. As another example, if +(A [/ B) occurs on a branch, the

end of the branch may be split into a left and - a right
continuation and +A added to the end of the left fork, and +B
to the end of the right. The full set of branch extension rules

wiil be given latter. A branch is called closed if if contains
+A and —-A for éome formulé A. A tableau ( or tree) is called
closed if each branch of it is closed. A élosed tableau for -A
is, by definition, a proof of A.

One may think of a tableau for -A as an exploration of a
hYpothetical countef—model to A: if one had -A what else would
one have. A cidsed tableau for -~A is the verification that there
are no countef—models to A, hence A nmust be valid., In other
words, beginning a pableau proof of A by putting down -A amounts

to supposing there is a world in which A is not forced ( .in this



world wé G, wHw A); an ensuing contradiction will tell us A is

forced everywhere, i.e. A 1is intuitionistically valid.

Before we present the full set of tableau rules soms
previous comments about how these rules are obtained are made.
The conditions R1 .~ ' R4 of the last section Suggest that for
regular cohnéctives we can adopt rules similar to the classicél
ones. The special connectives need a more careful treatment. We
see that condition S1 give us information, not about the world
w, but about éome world w* acessible. from w. We jump from one
world to another when This condition is applied. Next . we
investigate what information we may take with us in such a jump.
We note that condition Cl can be generalized. If {G,R,P, |-> is
an intuitionistic model and w G then: if wl A then w¥|FA for
all formulas A. This is proved by induction on the degree of A,
-using the properties of the R relation for intuitionistic models
Thus, to see what information we may take along if we move from
w to w¥* we-.define the set of the positively signed formulas of X
~as Cox e {+A] +A€X} .

Then we see thaf in an intuitionistic model if wl~ X then W*H~X+
This is proved by the generalization of condition Cl.We conclude
that we may take with us positive but not negative information.
A similar argument is applicable to the condition S4. If X is
the set of signed fbrmulas on the branch, we;replace it by X+.
S0 we get a rether convenient way of schematizing these critical
rules ( for -'special and special) latter. The condition . s2
offers much less trouble because the speéial;¥formulas are

positively signed. Then

wl-p iff (Ywr) (w¥ -8 ) (f 1is positive)
1fE (Yw*) (w* Hw/ﬁ’l or W*lkﬁg ) ( by R2 )
and only the condition R2 is sufficient for the . special ﬁ

formulas, A similar argument is applicable to the condition 83.

)



In addition a certain infinite set of formal constants CO and
a disjoint set PO of parameters are introduced to . characterisze

the language L(COL/PO) of formal proofs., Note that tableau proofs

will be of sentences of L(CO), tableau derivations will be from
sets of sentences of L(Cp), but in tableaus sentences of L(C&jPO)
-l
may be used.
The full set of intuitionistic brach extension rules is
given by:
(&) +(A & BYE X (V+) +(A | B) X
1
xU{+a, +B} xUfray IxU {+B]
(/=) -(A | B)E X (&-) —(A & B)EX
. . A,
xU {-n, -B} xU{&-al xU { -8}
(O-) ~(A D BYEX M+) +(A D B) X
,.(.. .- . -
XU {+a, -BY xU -}l 20 {+8)
(~=) = JAEX (~t) + ~AEX
x U {+8Y x"U {~A}
(V+) +(¥x) A(x) X V=) -(Vx) Alx) X«
xU {eaca)y CxUA{-aa)
(5-) ~(@Ex) Alx) X (=H+) +(Hx) Alx) X
xU{-a(a)}. revi {+AC§)}
.’_ . . )
where X = {+A|+A€ X} » &€t COU PO is any constant and ﬂG}PO

is any new parameter, where new means new to the branch.
It is known that this tableau system is sound and complete
[Fitting 1983]: . a formula & has an intuitionistic Beth. tableau

proof iff & i1s valid in all intuitionistic firsk-order models,



s an example we appl s intuifionisti tableau systen
A _ ple ply th intuitionistic tablea tem

to the formula ~~ (~p V p):

— ~n (~p UV p) (1) (~=)
+ ~ (~p IV p) (2)  (~+)
+ ~ (~p Vop), ~~p Vp (3)  (]~)

+~(~p VD) =~p V p,=~p,-p (4) (~=)

+~(~p |/ P), +p (5)  (~+)
+-(~p V' P)y, =~p VD, +p (6) (=)
'*“"‘("‘p [/P), —-~P I/py"""p,“p)‘{'p' (7)

We use also the following notation for rule applications:

M T RN

7

“where X and Y are signed formula sets and p and +/- are a.formula-
main connective/operator and a .formula polarity, respectively.

' By the number of choice points a particular formula X has
we rnean the number of rules that can be applied to this set. Tor
exanple, if X = {+(p & q), —(p L/q)} , then the rules (&+) and
(I~) are applicable to X. Thus, we say that X has two choice

points for rule applications.



II1 A PROOTI" SYSTEM FOR THE TABLEAU CALCULUS
A direct implementation of the above presented tableau

calculus would lead to several problems concerning efficiency:

(1) The non-crucial rules are adding formulas to the
formula set X, e.g., the rule (&+) adds +p and +q to X if
+ (p & g) occurs in X;

(2) In general there are several elements in a set to
witich the tableau rules are applicable. For‘example, consider
the case when both rules (~+) and (~-) can be applied to the
formula set {'+~p, «Nq} . ‘This kind of indeterminism is
increased still more by’the first.point;

(3) As a consequence of the crugiallrules which are

deleting formulas and the non-crucial rules we note that loop-
checking mus*t be considered in a theorem prover implementaticn,

For example, the following sequence of rule applications yields

a loop:
. - T (o) .
~+) JORE G W St S "
{amep, wp} s Lo, p, —ep) 4> {4~wp, w}
L J , | ,
In the next sections these problems are tackled, Our
congiderations are divided into three parts. For the case of

propositional logic we present pure replacement rules in such a
way that problems (1) and (3) disappear. A rule strategy is

given in order to keep the number of choice points small.In the

next step we are concerned with the problem of proving a
propositional formula under a theory. For that aim a proof
search procedure is presented which chooses axioms from the

theory in order to get & prcof in a more systematic way. The



formulas of the predicate intuitionistic logic are investigated

in the last section. Here the critical point is the problem
of moving the quantifier in a systematic way. The method

investigated for this case will turn out to be a generalization

ot the method presented in the last section.



IiI.1 THE PROPOSITIONAL LOGIC

The essential aim of this section is to change the tableau
rules in such a way that they become pure replacement rules.For

example, instead of

x U {+ p & Q} L) > X\J‘{+ p & a, +D,b+é}
we replace + p & ¢ by +p, +q :

; - & i ~

xU {+p & q} ( f> > x U {+p, +Q}
where now (&+)' 1is the improved tableau rule

(&+)' +p & q

+D, +q
But that change towards pure replacement rules does not

work in all cases. The rule

(=)' +~D
=D
is toc weak, so that the tableau for example from seétion II

does not close:

-~ ~~( p [ ~p) (1)
+~ (p V-p) (2)
- (p V-~p) (3)
“Py = ~p (4)
+p (5)

The point is that in line (3) we have lost the information
that + ~( p V .p) can be used once more in line (5), To

compensate that loss of information we reformulate rule (~+)'



by :

(~e)! +~D
. o

The starred negatively signed formula -p* means that it can
be carried over if a crucial rule is applied. And this is exactly
what +~p means: +~p can be carried over if a crucial rule is
applied. And af;‘ter a crucial‘rule is applied, +~p can be de-
composed to -p. Consequently, the modified tableau rul‘es can be

written in the following way:

m
(&) + P & q (&) - D &g
1 m
+p, +q -P -4
. m
(V) +p Va (=) -p Vg
’ m m
+ p| +qg - P - q
4 m’
(o) + D (am) xU {--p™}
+
-p* x U {-rp}
.
>+)" + pD g o-) xU {- pDq ™}
-p* | +q XV {+p, "}
where mé& {'*','__'} and
x" 1= {pl pLxYy U
{»p*[mp*GfX} .

The modified rules call for some comments. Since we have
two types of negatively signed formulas ~-p and -p*, we must
define two rules for each negatively signed logical connective,
This is done in a gecneric way by m which can be either t*! or

. . 1 1 .
' t. Thus, *-pm standg either for -p* or -p — that is identified

with -p. 'fhe branching rules effect that the remaining  formulas



(5]

are carried over to each branchi, e.g.
x U {+p i/ q}

BN

XU{W} XU{m}

' s s e s .t " , .
Note the new definition of X . For the crucial rules a
different kind of notation was used in order to express thet the

non-starred negatively signed formulas must te deleted. Although-

the definition of Xt was restated one might continue %o think
this set of formulas constitutes the information that we nay

take along when state transition occurs.

if the signed formula set X associated with a node of the
tableau contains +pm and ~pm, then this branch of the tableau is
called closed. The tableau for an arbitrary formula g is closed
iff all it's branohés are closed.

In order to solve the problem of the indeterminism of the

application c¢f the tableau rules we neke the numbex of choice
points of the formula set X smaller by the adoption of the

following rule order:

(&+) < (&)< (1)< (=)< () < (=)

In addition allhthese‘six rules are less than (~-) and { -).Thus
in the tableau constfuction process the smaller rules are applied
first, Moreover, 1f one of the six former rules is applicable to

two ( or more) different elements, one may assume that all sets

of signed formulas are crdered in any way and take the first
element. The two latter rmiles must be treated in another WEY »
For them the previous sclution does not hold and we have to

retain all the chcice points for their applications and congider

the order in which these rules are applied essential becaise
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when applied to a set X all negatively signed formulas in X
are deleted.

We exemplify the use of backtracking in order to solve the
~indeterminism of the application of the crucial rules by

applying the present procedure to the formula (p>q) V¥V (qDp):

- (p2a) V(adp) (1) (V)

- (p>a), -( adp) (2) O-)'

+ P, - 4q (38)
Note that the rule (D-)' when applied to the first‘element of
the set {— ( pDa), - (qZ)p)} gave a non-closed branch as can
.be seen by line (3). As the two choice points for the
appiication of the rule (D-)' are retained one can backtrack

and find the other solution which is the same as the previous

one with the exception that line (3) is substituted by:

+4q -p (3)r
As we got a non-closed tableau this formula is noﬁ valid
in the intuitionistic propositional logic.
As another example we apply the proposed procedure to the
formula ~~ ( ~p [/ p) and compare fhis solution with the one

given in section II.2 :

~ =~ (~p Vp) (1) (~-)!
+ ~ (~p Vp) (2)  (~t)'
- (~p VP) (3) (=)
~~p* , =p* (4) (=)
+p, -p* (5) |
We see that this proof has smaller lehgth @han the one

presented before. This can be formally verified by giving a



translation function which transforms prcofs obtained in the
pure Beth system to proofs where the improved rule set is used
and showing that in all cases the length of the former proofs

is greater than the length of the latter ones.

It was shown [Bittel 1987%! that these improved tableau
rules are sound'and complete and furnishes a more efficient
tableau calculus than the ones presented in the literature

( [Rautenberg 1979], [Fitting 1983]).
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III.2 PROVING UNDER A THEORY

In this section we consider the typical theorem proving
problem of knowing if a particular formula p is implied by a
given set [’ of. formulas ( axioms) which are assﬁmed to be
valid. This is the same of kﬁowing whether p is a theorem in

the theory defined by [*. Here we must check if
AVET:
qel”
-is valid by trYing to construct a closed tableau for this

implication. But when we have a large set of axioms this way

of proving is a very inefficient one.as we know that only a
few formulas of [' are usually needed to show that p is a
theorem. Next, in ordef to solve this problem, we present a

proof search procedure which looks for the formulas needed iﬁ
the proof process, i.e. to close és early as possible the
intuitionistic propositional tableau. This proof search
procedure is based on tﬁe.modified tableau calculus given in
the last section and consists of a goal—oriented, depth-first
strategy with backtracking-that accepts arbitrary formulas of

the ihtuitionistic‘propositional logic.

We adapt here a proof procédure based on classical
tableau calculus [Schoenfeld 1985] for knowledge bases
consisting of arbitrary propositional formulas to the

intuitionistic propositional logic. At each proof step, when
a new formula is to chosen from the knowledge base, the
procedure chooses in such a way that the search space is small,

First we present the following definitions. We say that a
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branch of a tableau T crosses ( a tableau) of a formula qe [
if it contains ‘as subpath a branch of the tableau for q. By

a literal.we mean a signed propositional variable indexed by m:
—pm, We say that two literals are linked if they form’ a
connection, i.e. a pair —am,+am where a is a propositional
variable. We say that a 1iteral is connected to a formula q if
it is linked to some literal in q.

To know whether p is a theorem in the theory defined by "
we can investigate the‘validity of the formula (ql&...&qn)ib p.
Applying the improved intuitionistic propositibnal tableau

rules to it we get:

—(ql&-.-&qn)b p (1) ©@-)
+(q &...&q),-p (2)  (&+)"
+ql9'-"3+qn s —P (3) o

Thus we suppose that the order of r1is not fixed and construct
the tableaus for each of the formulas +q, (1£i€n). From these
tableaus we can obtain a connection table showing to which
fofmulas‘each literal in rﬂis connected. This table associates
literals in ['to ordered formula sets C. »

We start the tableau proof construction with the fornula
-p which is called the goal formula. Suppose that in the
tébleau generatibnbprocess we reach a state where the .tableau
of another g & [ has fo be appended to a certain open branch
©. The idea is to choose oné q éo that at least one of the
resulting branches contains .a.connection. Now, let Qj be ‘the

last formula crossed by 9, and let elqj be the restriction of

6 to qj, i.e. that subpath of 6 which is part of the tableau
for qj. Furthermore, let C bé the set of all qke;r1 such that
qK is connected to éome literal on elqj and qk is not crossed

by ©. C is ordered in a certain way, e.g. by respecting a



20

given order of ['. This is used to organize backtragking. If
backtracking occurs, the subtableau starting witﬁ.the' actually
chosen qké C is removed, and the new subtableau is generated
starting.with the next qké.C. We say that the choice at qj is
altered. Backtracing means that we go upwards on 9 up to the
next qk where such an altering of a choice is possible.

The presented proof procedure is sound and complete.,
Soundness follows from the fact.that any tableau (by a strategy
whatsoever) with allbranches closed by contradictions is. a
correct proof. To see completeness, note that it is guaranteed
that all formules in [Tare crossed exactly once by each -open
.branch. |

Consider the following example,,Suppose the axiom set - and

the goal formula are given by:

M : aq, = ~~a

q2 = bDa
q3= cD>b
q4;(1&e3b
qg = d
.7 °©

Goal: p = a .

We want to know whether p is a theorem in the theory defined by
[?. First, we construct a tableau for each formula in this

axiom set:

q M +and
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q2 : +bDa
RN

+a -b*
Ay : +c Db

7N
+b -c*

q4,: +d & eDDb
// ™~
+b -d & e *
PG
- -d¥ —-e*
dg * +d
g * e

. From these tableaus the following connection table is . obtained.
Note that this table associates literals in ['to ordered formula

sets C.

Literals Formulas
-a q,

—a% q_’]_’ q2
-b" a ., 4,
~d" ag '
—em dg

+b q2

+C 4

+d a,

+e- a,
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Now the proposed proof procedure constructs. the following closed

tableau:

-a
l add‘q2
/jb:>a :
+a -b*
‘ add q4
+d & e:)b\\\
+b -d & e
_.d* _e*
add g ‘ l add g
+d +€

Note that we have marked the closed branches. Note also that -b*

is connected to both the formulas q3 and q4° We have first added

the formula q3

closed. Then backtracking occurs and the formula q4 is added

reaching a state where the tableau could not be

‘with success.

| One might reformulate the above connection conéept as
follows. If we let & be the actual open branch in a tableau and
let lle.e be a literal in the last formula of 9, we say that a
formula q is connected to ll by g literal lé if there is a path
of 1, in © P .P ..Pnl and a path of 1_ in g R R ...le such

1 17 2° 1 2 12 2
that ll is linked to 12.



III.3 THE QUANTIFIER RULES

In this section we generalize the intuitionistic - proof
procedure presented abbveato.arbitrary’intuitionistic first-
order formulas.

We first present the whole proposed intuitionistic first-
order branch extension rules which are all replacement rules

as the ones in section III.1

Propositional Logic

(&+) _+A & B _ (&-) _-A & B "
+A, +B A" g™
(V#) _+A V B | (V) -ayB"
+A | +B _ _A-I?'l!“Bm
(~+) +~A (~=) rlf x U =A™
. A" | B x U LA}
(O+) +ADB | (>-) [Z;XU—ADBm'
~A* | +B ri+ ; X+U{+A,—Bm}
~where m={"*',' '} and x" ={X - {~A|—Ae X} .
Quantifier Rules
(V) _+(Vx)AG) ST (V=) =A™ X0,
+A(a); [TULY)AGOY -A(a) Vx5 07
@) _+ @Gx)Ax) @3- _=E@xac"% [
+A(a) —A(g)m;Fiu{;(EX)A(X)m}'

where ag& COU P and_g_EPo..

Axiom Intraduction Rule.

(ry _x; f}
xUaq; [

1
~ where qélﬂull .



We take [ as a global axiom set; note that [Moccurs only

in the axiom introduction rule. Here r1 is a local axiom  set
that increases just in those rules in which: . .multvipliable
formulas are decomposed. Negatively signed formulas in | must
be deleted if a crucial rule is applied.

Before we give the new connection concept and the whole
proof procedure description some previous definitions are
necessary. ) |

A formula tree for a signed formula is a variant of its
formation tree containing additional information as to -the
polarity of its subformulas occurrences i.e. whether - an
occurrence of a subformula is negative or pésitive within the
.for@ula.’ln other words, it is built by the tableau rules but
in chich all rules are taken as branéhing rules.

If P1P2...Pn1 is a path from the root tova particular
literal 1 in the formula tree for an arbitrary formula P, thé
subformula sequence is the path obtained by thé previdus one

by keeping formulas only of the following forms:

fYx)A —(Yx)A™ ™
+(@x)A ~@x)a" -ADB ™

The deriving sequence of a literal 1 in a branch 6 of a
tableau is either a used chain ( that will be explained latter:y
in the context of the connection concept) if there exists some,
of simply the subformula seduence of 1 in the formula in which
1 occurs. The deriving sequence is computed during a tableau
construction. |

Now, let's see how the connection. concept looks like. If

we let @ be an .actual branch in a tableau and let 1 € O be a

1
literal in the last formula of 6 and let 12 be a literal in a

by 1. . if the

formula q, we say that q is connected to 1 »

1



following properties.hold:

(i)v the deriving sequence of 1, in 9 is P _P_...P and

1 1
the subformula sequence of 12 in g s R

n%l
R2...le2 ;

1 and 12 H

! - £f PP _...P d
(ii1i) there exists a merge 8152 Sm+n.o 172 n

no

e

(ii) there exists a most general unifiergof

R1R2...Rm, such that

(a) x=y , Sié {+@x)A, ~(Vx)A} and
SJ,E {'*'(VV)A’ —(By)A} :> Sl<SJ ;

(b) for all Pé{Pl,...,Pn}n@A.A is a formulal} and

T R

( means the subgequence relatiop

)
RyyevosRy, of {-A7, -ADE, —(Vx)A ¥

(c) for all R¢{R RQMH}A} and

TREERE
'.l'P C'OS =
RP1 i+] ! Sl mn+n 7

) m m m
s s 0 . . e~ - -:) . - .
P PHJQ’ {-~A", -ADB. -(Vx)A ‘}

S_ .9 1 is called a chain
12 m+n

of formulas. One minght think.of this order as being the order of

The ordered sequence of formulas S

the rule applications in order to get a closed branch. In a
further step we will show how this merge can be constructed.
Now we show hcow the whole proof procedure works. It can be
summarized in the next six points:
1. Apply fist the non-crucial rules .
2. If there - is a chain F1<F2<...<Fn then decompose F1 bana
delete Fl from the chain .
3. Now, apply the rules (~-) and (D-) if nothing is déleted.
4, Apply the rules (3+) and (V-) if nothing is deleted.
5. Apply the rules (V+) and 3-).
6. Choose indeterminisﬁically one of the crucial "formulas
and apply the corresponding rule to it,i.e. (~-), ‘Cbm)
and (¥-) or
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choose a formula q from ij{l which is connected to one

of the literals corresponding to the last formula . and

add q to the tableau, where it is necessary, ‘and go on

from that position by using now the computed chain
L F .
F&<F2< < n
As an example consider the following formula to which we

are going to apply the proposed pfoof procedure:
~~(Jy) (~(Vx)~~F(x)D ~F(y)) .

First, we construct its tableau:

—~~@y) (~(VX)~~F(x)D ~F(y))

Pl’ Ql
+~@y) (...)
- *
Py 0, ~@Y) (..n)
Poy Qp =~ (V/x)~~F(x)D ~F(y) * [1:= -@y) (..
4 l(YX) ~nF(x)
—F(v)*
Q, F(y)
P, —(Vx)~nF(x)*
+F(y)
P, -~~F(x)
+~F(x)
The deriving sequences of -F(x)* and +F(y) are'P1P2P3P4P5 and
Q1Q2Q3Q4 , respectively. Now we see that the subformula sequence

of +F(z) in -(3y)(...)* is obtained as follows:

R, -Ay) (o) *
R, = (Vx)wnF(x) D ~F(2)*
RS ~-~F(z)*

+F(z)

and is g;ven by R1R2R3.
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We note that there is a connection from -F(x)* to +F(z) where
the most general unifier is given by ¢(2z) = x and ...as a

result we get the chain P _P_P_P P_R R_R_ .When the procedure.is

12345123

applied we are guided by the above order of rule applications.
As another example we consider the problern of knowing if

the formula ~~(Yx) A(x) & B(x) is a theorem in the N theory

defined'by the axiom set [‘={~~(Yy)A(y), ~~(V2)B(z)}. First we

construct the tableau for the goal formula:

P, e (VX)A(x) & B(x)
+~(Vx)A(x) & B(x)
P, —(Vx)A(x) & B(x)
:ﬁfﬁ) & B(§i\-
Py -A(x) -B(x) P,
We note that the deriving sequences of -A(x) and ~B(§) are

P1P2P3 and P1P2P4, respectively.Now, we construct the tableaus

for the formulas belonging to the axiom set:

e (VY )A(Y) e (Y2)B(2)
R, =~ (Vy)A(y)* s, —~(Vz)B(2)*
R, +(Yy)A(y) S, +(Yz)B(z)
R3 +A(y) 83 +B(z)

The subformula sequence of +A(y) in the first formula and of
+B(z) in th ¥ i - \
(z) e second formula are given by RlRZRSand . 815283,
respectively. We see that there is a connection from -A(x) to
+A(y) where the most general unifier is ¢(z)=x and the chain

P1R1P2R9 is obtained. From this chain wé get the new tableau:
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P ~~n (YX)A(X) & B(x)
s~ (Yx)A() & B(x)
add +~~(Yy)A(y)

R -~ (Yy)A(y)*

+(Yy)Aa(y)
P -(Vx)A(x) & B(x)*
—A<§>/. }B@_)
R +(Yy)aly)
+A(x)

Now the deriving sequence for -B(x) is P _R P _-B(x). We see . that

112
there is a connection from -B(x) to +B(z) where g(z)= x and ' a
resulting chain PlRlslpéSZ is obtained. Then we continue

following the proof procedure in order to get é closed tableau.
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v CONCLUSION

In this work we have described an intuitionistic first-
order proof'procedure which is based on an improved version of
the intuitionistic Beth tableau. |

We note that because of the similarities between modal
and intuitionistic logic, resolution proof systems . . (e.g.
[Abadi 1986]) and matrix proof methods (e.g. [Bibel 1983] and
[Wallen 1987]) for the modal logic S4 can be adapted to the

intuitionistic logic. For example, if we take our special .
formulas as the V-type formulas of Wallen, our special V-2
formulas as his 7/ -type ones and change his path . . concept

definition we get an intuitionistic matrix proof method. Note
also that it is possible to generate connection calculi from

tableau-based proofs( [Wallen 1986]).

As future works some problems can be dealt with: ' the
description of how the chain of formulas is constructed, the
extension of the present proof procedure to limited second-
order and the investigation of how a‘program .. can .. -be

constructed from such proofs ( specially for program synthesis).



30
REFERENCES

[(Abadi 1986] Abadi, M. and Manna, %., Modal Theorem Proving, in
J.H. Siekmann, editor, 8th International Conference on Automated
Deduction, pages 172-189, July 1986. Lecture Notes in Computer
Science, Volume 230, Springer-Verlag. ‘ .
[Beth 19597 Beth, E. W., The Foundations of Mathematics, North-
Holland Pub. CO., Amsterdam, 1959. '

[Bibel 1983] Bibel, W., Matings in Matrices, Communications of
the ACM 26, pp. 844-852, 1983.

[(Bittel 1987] Bittel, 0., A Theorem Prover for Intuitionistic
Logic in TbolUse.T4, ESPRIT project, 1987. , '
[de Groote 1986] de Groote, Ph., Working Definition of a Xernel

for a Design Calculus, Research Report in International Summer

School_of Programming and .Calculi of Discrete Design,
Marktoberdorf, 1986. »
[Fitting 1983] Fitting, M. C., Proof Methods for modal and

Intuitionistic Logics. Volume 169 of Synthese library, D.Reidel,
Dordrecht, Holland, 1983. |

[Rautenberg 1979]Rautenberg, W., Klassische und NichtKlassische
. Aussagenlogic, Braunscheig, 1979.

tSchoenfeld 1985] Schoenfeld, W., Prolog Extensions Based ~on
Tableau Calculus, IJCAI, 1985. '

[Sintzoff 1986] Sintzoff, M., Expressing Progravaevelopments in
a Design Calculus, Research Report in International Summer
School of Programming and Calculi of Discrete : Design,
Marktoberdorf, 1986. . _

[Smullyan 1968] Smullyan, R. M., First—O:der Logic. Volume 43 of
Ergebnisse der Mathematik, Springer-Verlag, Berlin, 1968.
[Wallen 1986] Wallen, L. A., Generating Connection Calculi from
Tableau- and Sequent-Based Proof Systems. In A. G. Cohn and J.

R. Thomas, editors, Artifficial Intelligence and : its
Applications, pages 35-50, John Wiley & Sons Ltd., 1986,
[Wallen 1987] Wallen, L. A., Matrix Proof Methods for Modal

Logics, IJCAI, 1987.



