
-1-

OOHDM-WEB: Rapid Prototyping of

Hypermedia Applications in the WWW
Daniel Schwabe

e-mail: schwabe@inf.puc-rio.br

Rita de Almeida Pontes

e-mail: rita@inf.puc-rio.br

PUC-RioInf.MCC-08/98, March, 1998

Abstract
This paper presents OOHDM-Web, an environment allowing rapid prototyping of hypermedia
applications designed using OOHDM in the WWW. This environment allows direct mapping of
navigation and interface constructs of OOHDM into a library of functions in the CGI scripting
environment CGI-LUA, extended with the DB-LUA package. This environment allows
implementation of hypermedia applications as CGI scripts that produce dynamically generated
pages, whose contents are fed from a database and integrated with pre-defined templates.

Keywords: Hypermedia Authoring, WWW, Authoring Methodologies

Resumo
Este artigo apresenta o ambiente OOHDM-Web, que permite a prototipagem rápida na WWW
de aplicações hipermidia projetadas com o OOHDM. Este ambiente fornece um mapeamento
direto de construções de navegação e de interface para uma biblioteca de funções no ambiente
de programação CGI CGI-Lua, estendido com o pacote DB-Lua para acesso a bancos de
dados. Este ambiente permite a implementação de aplicações hipermídia na forma de
“scripts” CGI que produzem páginas geradas dinamicamente, cujo conteúdo é alimentado a
partir de uma base de dados, integrados com gabaritos pré-definidos.

Palavras-chave: Autoria hipermidia, WWW, metodologias de autoria, modelagem.

Este trabalho foi parcialmente patrocinado pelo CNPq.

This work was partially sponsored by CNPq.

-2-

OOHDM-WEB: Rapid Prototyping of

Hypermedia Applications in the WWW
Daniel Schwabe* and Rita de Almeida Pontes

Dept. of Informatics, PUC-Rio
R. M. de S. Vicente, 225

Rio de Janeiro, RJ 22453-900, Brazil
E-mail: [schwabe,rita]@inf.puc-rio.br

* Work partially supported by CNPq.

Abstract

This paper presents OOHDM-Web, an
environment allowing rapid prototyping of
hypermedia applications designed using
OOHDM in the WWW. This environment
allows direct mapping of navigation and
interface constructs of OOHDM into a
library of functions in the CGI scripting
environment CGI-LUA, extended with the
DB-LUA package. This environment allows
implementation of hypermedia applications
as CGI scripts that produce dynamically
generated pages, whose contents are fed
from a database and integrated with pre-
defined templates.

1 . INTRODUCTION

One of the prime implementation platforms
for hypermedia applications nowadays is
the WWW. In this case, a collection of
documents and CGI scripts is made
available to users, allowing both access and
in many cases processing of information
contained in these documents. This
collection of pages usually shares a common
coherent interface appearance and
behavior, and may be physically located in
one or more web servers. One example of
such applications is the Amazon Books
website (www.amazon.com).

However, much in the same way as in other
platforms, there is no environment that
facilitates the structured development of
such applications. In spite of a number of
design methodologies having been proposed
and adopted [OOHDM [Schwabe 96,
Schwabe 95], HDM [Garzotto 93], RMM
[Isakowitz 95], Matilda [Lowe 95],
designers are still forced to map the
primitives in such methodologies to any
given implementation platform.

The tools available in the market today may
be classified in three main categories: page
editors, web site editors, and web site
building environments.

Page editors – Hot Metal

(www.softquad.com), Hot Dog
(www.sausage.com), Claris Homepage
(www.claris.com, PageMill (www.adobe.
com) – allow the construction of HTML
pages, be it in WYSIWYG mode or not, with
little or no notion of a website as a coherent
collection of pages.

Web site editors – FrontPage (www.
microsoft.com) CyberStudio (www.golive.
com), in addition to editing HTML pages,
allow the management of sets of pages, but
not considered as being part of a consistent,
homogeneous unifying design; pages are
treated in the same way as files in a file
system. A more structured view of a
website is allowed by the tool NetObject’s
Fusion (www.netobjects.com), where a site
is in fact regarded as a set of pages sharing
a common visual style. Is also possible to
have automatically inserted navigation bars
that reflect the site’s structure, but
unfortunately this structure is take to be the
hierarchical file structure storing the pages
and not a logical one defined by the
designer.

Web site building environments –
StoryServer (www.vignette.com), Cold
Fusion (www.allaire.com), CGILua [Hester
97], (http://www.tecgraf.puc-rio.br/
scripts/
cgilua/manuais/cgilua/cgilua.html) and
DBLua (www.tecgraf.puc-rio.br/~cgilua)
allow the construction of sites where
documents are defined using templates
which extend standard HTML with some
proprietary set of tags, typically allowing
including of statements in some custom
defined or standard programming/scripting
language. In such environments, documents
are dynamically assembled at run-time by
instantiating a template with data pulled
off from a database. Documents can be
created and maintained using the same
mechanisms, employing another set of
appropriately defined templates.

In Figure 1 we make a rough comparison
between these tools.

-3-

flexibility simplicity portability
(programs

)

portabilit
y

(data)

maintenance efficiency programming
language

CGILUA *** *** *** *** ** ** ***

Cold
Fusion

** ** * *** * * *

StoryServ
er

*** ** * * *** *** ***

Figure 1 - Comparison between web site building environments. A larger number of “*”
indicates that the corresponding aspect is better developed.

The major drawback of these environments
is the fact that they lack higher level
abstractions that allow the user to design
applications without resorting to a node-
and-link level of description of the whole
system. On the other hand, they can be
used as implementation environments for
designs carried out using one of the
previously mentioned methodologies. This
paper presents how this has been achieved
for applications designed employing the
Object Oriented Hypermedia Design
Method (OOHDM) [Schwabe96, 95], using
the CGI Lua web site building environment.
The reasons for this choice are discussed
briefly in section 4.

2 . THE OOHDM-WEB ENVIRONMENT

One of the foundations of the OOHDM
approach is the separation of concerns in
the process of hypermedia application
design, embodied in four deferent phases:
Conceptual Design, Navigation Design,
Abstract Interface Design and
Implementation. During the Conceptual
Design phase the application domain is
described, without concern for user profiles
and tasks. In the Navigation Design phase,
different user types and their corresponding
tasks are used to derive the navigation
objects (nodes, links and access structures)
and how they are structured. In the
Abstract Interface Design phase the
navigation objects are mapped onto
interface constructs, which will be

implemented in the Implementation phase.

In many situations, especially when the
interface will be implemented in the WWW,
the Abstract Interface Design phase may
not be cost effective, since it requires the
definition of the interface behavior at a level
of detail which is in most cases
unwarranted. This is presently true for the
interface semantics for most browsers when
displaying documents in the current HTML
standard and some of its dialects. In such
cases, a rapid prototyping tool may be an
effective substitute.

The OOHDM-Web environment addresses
the Navigation, Abstract Interface and
Implementation phases. It is assumed that
the designer has already defined the
navigation objects that will make up the
application, and will define the interface
appearance using templates written in an
extended version of HTML. The elements
that must be defined are:

1. Navigation Classes and their instances;

2. Navigation Contexts

3. Access structures

4. Interface Templates

Once these elements have been defined, the
website may be deployed, using OOHDM-
Web functions together with the CGI Lua
scripting environment, to serve dynamically
generated pages that follow the specified
OOHDM design. Figure 2 shows this setup

-4-

HTML Pages

Browser

Interface Appearance OOHDM Navigation SchemaOOHDM-Web
Environment

 - Tables describing navigation
classes

- Tables identifying contexts
- Tables describing contexts

Template mixing
HTML with commands
using OOHDM-Web
library functions and
CGI-Lua

HTTP Server

Figure 2 - The structure of the OOHDM-Web Environment

OOHDM-Web uses the CGI Lua scripting
environment, which is written in the
scripting language LUA [Ierusalimshy 96].
CGI Lua maintains a number of global
variables that may be accessed by scripts,
and provides several functions to ease page
generation; for example, there are functions
that take care of passing state information
between scripts, easing the burden on the
designer.

Pages in CGI Lua may be of two kinds:
LUA (documents with .lua extension) and
mixed HTML (documents with .html or
.htm extensions). The first kind simply
executes the statements in LUA, which
must generate a valid HTML document, just
as with other CGI scripting languages. The
second kind takes HTML statements
interspersed with CGI Lua statements,
which are surrounded by “$|” marks or by
“<!--$$” and “$$--!>“.Whenever the CGI
Lua interpreter runs into these statements,
they are executed, and must generate valid
HTML code, besides possibly setting values
of global variables.

In addition to CGI Lua, the Lua
environment includes another library, called
DBLua. This library allows access to any
ODBC compliant database, and is used
extensively to allow OOHDM-Web
functions to access the tables describing the
hypermedia application.

Even though OOHDM is object oriented, it
does not assume the implementation will be
carried out in an OO environment. In
particular, OOHDM-Web assumes a
relational database system will be used to
store the information represented in the
various schemas. In the following sections,
it is shown how each of the element types
enumerated above is represented in the
database.
2 .1 A Simple Example Application
To illustrate the concepts involved in
OOHDM-Web, we give a small example,

describing part of a website for a research
laboratory. The Navigation Classes are
described in Figure 3.

Project
Title
Acronym
Description
StartDate

Professor
Name
Rank
Research Interest
Picture

Leads

Participates in

Figure 3 - Navigational Schema for part of a
website of a research lab.

The Context Diagram for this application is
given in Figure 4.

Guided
Tour. Index

Prof. Index

Main
Menu

Guided Tour

Professor

Alphabetical

by Project

by rank

Project

Alphabetical

by Professor

Projects

Professors

Guided Tour

Figure 4 - Context Diagram for the example
application.

2 .2 Navigation Classes
Each navigation class and its instances is
implemented as a table with the following
structure

-5-

Class CL

objectID Unique key identifying
the object instance

attribute 1 Value of attribute 1

attribute 2 Value of attribute 2

... ...

attribute n Value of attribute n

For tthe example, the corresponding tables are

ClassProfessor

#ObjectI
d

ProfName ProfImg Rank ResearchInterest

lfgs Luis F. G.
Soares

 associate High speed networks...

schwabe Daniel Schwabe associate Advanced Information
Systems ...

noemi Noemi
Rodriguez

 assistant Distributed systems ...

ClassProject

#ObjectID Acronym ProjTitle ProjDescr ProjDate

redpuc REDPUC Project REDPUC This project developed the
first Brazilian LAN...

1980

oohdm OOHDM Projeto OOHDM OOHDM is an authoring
methodology for hypermedia
applications...

1994

hyperprop HYPERPROP Hyperprop The Hyperprop architecture
allows the representation of
hypermedia documents...

1992

The name of the table, as well as the names
of the attribute fields are given by the
designer. The only condition is that objectID
be a key field of the table.
2 .3 Navigation Contexts
To recap, navigational contexts are
structured sets of navigational objects,
formed according to several possible
criteria; a navigation order may be also
specified. A. There is a master table
specifying the navigation contexts that are
present in the application:

Context

ContextName The name that
identifies the context

Type The type of context

Contexts may be of five different types:

1. Class derived - Contexts of this type are
formed by objects of some class, selected
according to some criterion. For example,
“all full professors” would include objects
of class “Person” who are “full professors”;

2. . Class derived group of contexts -
Instead of specifying a single context, it is

often more concise and convenient to
specify groups of related contexts. In this
case, the contexts in the group are formed
according to some property of objects in the
same class. For example, “professors by
rank” would form a context group, in which
each member of the group is a context
formed by objects of class “Person” who
are of a given “rank”. There is one context
in the group for each possible value of
“rank”.

3. Enumerated context - is formed by
individually enumerating the objects that
make it up.

4. Link derived - is a context formed by
objects that participate in a relation. For
example, “Students enrolled in
“Hypermedia Authoring Seminar” is
formed by objects of class “Person” who
are “students” and are related to the object
“Hypermedia Class Seminar” of class
“Course”.

5. Link derived group of contexts -
Analogously to the class derived group, this
is a set of contexts formed by objects
connected by some type of link. For
example, “Students by course” is a group

-6-

such that each of its members is a context
formed by objects of class “Person” who is
a “Student” and is linked to an object of
class “Course” by a link of type “is enrolled
in”. There is one such context for each
possible object in class “Course”.

Since each context type requires different
types of information, there are five different
tables to represent them:

Type1 : Class derived context

#ContextName Name identifying the
context

ClassName Class to which the
elements of the
context belong

Selection SQL query selecting
the elements of the
context

Order Name of the attribute
used to order the
objects in the context

TargetPage Name of the
template page
used to show the
elements of the
context

NavigationType Type of navigation
allowed in the
context

The valid navigation types are free,
sequential, circular and index. In this last
case, navigation within the context is only
allowed from its index to an object and
back; no paths are provided for navigating
from object to object without first going
through the index.

In the example, we have

#ContextName Prof_Alphabetical

ClassName Professor

Selection *

Order ProfName

TargetPage prof.html

NavigationType Circular

Type 2 : Class derived context group

#ContextName Name identifying the
context

ClassName Class to which the
elements of the
context belong

ClassAtribute Name of attribute
that will be used to
group contexts

NavigationType Type of navigation
allowed in the
context

TargetPage Name of the
template page used
to show the
elements of the
context

Order Name of the attribute
used to order the
objects in the context

The elements of a group are contexts that
are defined according to the possible values
of an attribute of the class. For example, to
group “Professors” by “Rank”, the
following table is defined:

Table Professor_Rank

#ContextName Prof_Rank

ClassName Professor

ClassAtribute ProfRank

NavigationType Circular

TargetPage prof.html

Order ProfName

Type 3 : Arbitrary Context

#ContextName Name identifying the
context

Def_Table Name of the table
enumerating the
elements of the
context

NavigationType Type of navigation
allowed in the
context

Since the elements of an arbitrary context
do not possess any rule of formation, they
must be individually named. This is
achieved by having an entry in the
“Def_Table” for each enumerated element.
The format of this table is as follows

-7-

ClassName Class to which
the elements of
the context belong

ElementId A key identifying
the element

Anchor Name of anchor to
be used in the
index to the
context

TargetPage Name of the
template page
used to show the
elements of the

context

For example, a simple guided tour of the
laboratory, listing the main projects and
their respective leaders, would be defined
as follows

Table Guided_Tour

#ContextName GuidedTour

Def_Table Guided_Tour_Def

NavigationType Sequential

Table Guided_Tour_Def

#ClassName # ElementId Anchor TargetPage

Professor lfgs ProfName prof.html

Project HYPERPROP ProjTitle proj.html

Professor schwabe ProfName prof.html

Project OOHDM ProjTitle proj.html

Type 4 : Link derived context

#ContextName Name identifying
the context

RelationTable Name of table
representing the
links

SourceClass Class to which the
source element of
the link belong

DestinationClass Class to which the
destination element
of the link belong

NavigationType Type of navigation
allowed in the
context

TargetPage Name of the
template page
used to show
the elements of
the context

For example, the context “Professors by
Project” is represented by

#ContextName Prof_Proj

RelationTable Professor_Project

SourceClass Project

DestinationClass Professor

NavigationType Sequential

TargetPage prof.html

-8-

The table representing the link is defined as
follows

#Source
Element

Key identifying the
source element of the
link

#Destination
Element

Key identifying the
destination element of
the link

For example, the relation between
“Professors” and “Projects” is represented
by

Table Professor_Project

#Source
Element

#Destination
Element

lfgs Hyperprop

schwabe OOHDM

noemi Hyperprop

Type 5 - Link derived context group

#Context
Name

Name identifying the
context

Relation
Table

Name of table
representing the links

Source
Class

Class to which the
source elements of the
link belong

Destination
Class

Class to which the
destination element of
the link belong

DestTarget
Page

Name of the template
page used to show
the elements of the
context

Navigation
Type

Type of navigation
allowed in the context

SourceTarget
Page

Name of the template
page used to show
the elements that
are the source of
the link

Source
Context

Name of the context
that is formed by the
sources of the links

In the example, we have

#Context
Name

Proj_Prof

Relation
Table

Professor_Project

Source
Class

Professor

Destination
Class

Project

DestTarget
Page

proj.html

Navigation
Type

circular

SourceTarget
Page

prof.html

Source
Context

Prof_Alphabetical

In OOHDM it is possible to extend a class
when its objects are accessed within a
certain context. This is achieved via a
mechanism called “InContext Class”, which
functions as a decorator to the original
class, adding new attributes to the
decorated class. This is implemented by
having two tables, one that indicates which
navigation classes have extensions via
InContext classes, and the second one to
specify the particular extensions for each

-9-

Identification of InContext Classes

#Class Name of class to be
extended

ContextTable Name of table
containing the
additional attributes for
a given context

Attribute specification for InContext
Classes

objectID Unique key identifying
the object instance

#ContextName Name identifying the
context

attribute 1 Value of attribute 1
for element “objectID”
in the context
“#ContextName”

attribute 2 Value of attribute 2
for element “objectID”
in the context
“#ContextName”

... ...

attribute n Value of attribute n
for element “objectID”
in the context
“#ContextName”

2 .4 Functions in the OOHDM-Web
Library

The designer builds page templates that mix
HTML tags with special commands that are
interpreted by the CGI Lua scripting
environment. These commands can be, in
general, valid statements in the Lua
programming language. In addition, a set of
functions is provided to allow the designer
to make reference to OOHDM navigation
primitives as defined in the tables above, in
such a way that (s)he does not have to
know the actual internal representation
used to store these elements. There are four
categories of functions: index generation;
page layout; context navigation; and
miscellaneous, which are described next.

2.4.1 Index Generation Functions
These functions build HTML fragments
that, when interpreted by the HTTP server
together with the CGI Lua environment, will
generate an index to a context. The index is
such that, when the users selects an entry,
the corresponding page is generated. To aid
in this generation process the CGI Lua
environment will make available to the
script that generate the page three global
variables, that may be accessed within the

LUA code embedded in the page:
cgi.context contains the name of the context
in which the page is being accessed;
cgi.group contains the name of the group, if
applicable; and cgi.inst contains the
objectID of the selected instance in the
context.

For class derived contexts, the function is

Index{ContextName, Anchor, Formatting
Function}.

In this case, “Anchor” is a class attribute to
be used as an anchor for each object in the
context. “Formatting Function” is a Lua
function call that should result in valid
HTML code to exhibit the index. The
designer may use the formatting functions
provided in the OOHDM-Web environment
described later on.

Using the example, for the class derived
context “Professors_Alphabetical”
containing all professors in alphabetical
order, the call

Index{context=“Professors_Alphabetical”
, anchor=“ProfName”, function=
‘Horizontal(separator = <IMG WIDTH=“4”
HEIGHT=“4” ALIGN=“TOP”
SRC=“IMG/DOT.GIF”>)’}

would produce a horizontal list of
professor names, separated by small
squares, where the “ProfName” is used as
an anchor to point to a page that would
show information about the professor. The
function “Horizontal” is described later.

For class derived context groups, the
function is

Index{ContextName, Anchor, Group,
Formatting Function}.

For example, for the group called
“Prof_Rank” the call

Index{ context=“Prof_Rank”,
anchor=“ProfRank”, group= “Prof_Rank”,
function= ‘Horizontal_Tab(col = 2;
par_table = BORDER=1)’ }

would produce a 2-column table with the
possible ranks; for each rank, the anchor
would point to the first professor of that
rank.

For arbitrary contexts the function is

Index{ContextName, Formatting
Function}

In the example, the call

Index{ context=“Guided_Tour”, function=
‘Vertical_Tab(col = 2; par_table =
BORDER=1)’ }

generates the guided tour index as a vertical
table with 2 rows.

-10-

For link derived contexts the call is

Index{ContextName, SourceAnchor,
Formatting Function}.

where “SourceAnchor” is the anchor of the
source of the link. For example, the call

Index {context = ‘Profs_Proj’,
SourceAnchor = ‘ProjName’, function =
‘Vertical()’}

would generate a vertical table whose
elements are the project names, pointing to
the first professor that participates in the
corresponding project.

For link derived context groups, the
function is

Index{ ContextName, Group, DestAnchor,
SourceAnchor, Formatting Function}. or

Index{ ContextName, Group, DestAnchor,
SourceAttribute, Formatting Function}.

The difference between the two calls is
whether the index will also serve as an
index for the source elements of the links
(first option) or simply as a grouping for
the destination elements (second option).
For example, the call

Index {context =’Proj_Prof’, group =
‘associate’ , DestAnchor = ‘ProjName’,
SourceAnchor=‘ProfName’, function =
‘Horizontal_Tab(col = 2; par_table =
BORDER=1)’}

would produce an index of “Projects” lead
by “Professors” of rank “Associate”
organized as a 2-column horizontal table. In
this index, for each “Professor”. This is
illustrated in Figure 5.

Index of Projects by Professor

Daniel Schwabe Luiz F. G. Soares
OOHDM Hyperprop

RedPUC

ProjectOOHDM

Project Hyperprop

Professor
Daniel Schwabe

Associate

Professor
Luiz. F. G. Soares

Associate

Project RedPUC

Figure 5 - Example of index generated by
the Index function for link derived context

group. The other pages are part of other
contexts and are included to ease

comprehension.

2.4.2 Formatting Functions
As already mentioned in the previous sub-
section, OOHDM-Web provides functions
to help position dynamically generated
elements on a page. The functions are:

Horizontal(separator) -

 generates a list of elements arranged
horizontally, separated by the string
“separator”

Vertical() -

 generates a list of elements arranged
one per line

Horizontal_Tab(cols, par_table, par_rows,
par_cols, par_cell) -

Generates a table with “cols”
columns, and a variable number of
rows, depending on the number of
elements. “par_table” is a string
passed as parameter to the <TABLE>
tag; “par_rows” is the same for the
<TR> tag; “par_cols” is the same for
the <TD> tag; and “par_cell” is the
same for the table cell.

Vertical_Tab(rows, par_table, par_rows,
par_cols, par_cell) -

Generates a table with “rows” rows,
and a variable number of columns,
depending on the number of elements.
Elements are filled top to bottom,
column by column. “par_table” is a
string passed as parameter to the
<TABLE> tag; “par_rows” is the
same for the <TR> tag; “par_cols” is
the same for the <TD> tag; and
“par_cell” is the same for the table
cell.

2.4.3 Navigation Functions
These functions generate anchor for links to
be included in the page which allow
navigation within contexts. The functions
are:

NextLink(html_anchor, context) or
NextLink(atr_anchor, context) -

generates an anchor for a link to the
next element in the context. This
anchor may be an HTML snippet
(first option) or an attribute of the
class the elements belong to (second
option)

PrevLink(html_anchor, context) or
PrevLink(atr_anchor, context) -

same as NextLink, but for the
previous element in the context.

FirstLink(html_anchor, context) or
FirstLink(atr_anchor, context) -

same as NextLink, but for the first

-11-

element in the context.

LastLink(html_anchor, context) or
LastLink(atr_anchor, context) -

same as NextLink, but for the last
element in the context.

AllLinks(html_anchor, formatting function,
context) or AllLinks(atr_anchor, formatting
function, context) -

generates links to all elements of the
context, using the formatting function
to arrange elements on the page.

2.4.4 Miscellaneous Functions
These are functions to help manipulate
objects. The are:

Attrib(Class, ObjectID, Attribute, Context)

 returns the value of attribute
“Attribute” of object “ObjectID” of
class “Class” in context “Context”).

Repeat(String, #times)

 Generates a string made or “#times”
repetitions of “String”.

3 . AN EXAMPLE

To illustrate how the actual templates are
built, we show in this section portions of
the Telemedia Laboratory website, which is
similar to the example shown in the
previous sections; the generalizations from
one to the other should be obvious. For
example, instead of “Professor”, this site
uses “Researcher”.

In Figure 6 an index to the “Researcher in
Alphabetical Order” context (analogous to
“Professor in Alphabetical Order”) is
shown. The list is actually generated by a
function call; in Figure 7 the uninterpreted
template is shown, with the function call
spelled out.

Function
Call 1

Figure 6 - An index to “Researchers in Alphabetical Order” context

-12-

$| Index {context = ‘Researcher_Alphabetical’,
anchor = ‘ResearcherName’ , function =
‘Vertical()’ } |$

Figure 7 - Uninterpreted template for the index shown in Figure 6. “Function Call 1” in that
figure is shown in full in this template.

If the user chooses the anchor “Daniel
Schwabe”, (s)he will navigate to the
following page, shown in Figure 8. The

corresponding uninterpreted template is
shown in Figure 9

Function
Call 4

Function Call 2

Function Call 1

Function Call 2

Figure 8 - A page showing information about a researcher in the Lab.

-13-

$| Atrib {class = ‘Researchers’, ObjectId
= cgi.inst, atr = ‘ReseacherName’ } |$

$| Atrib {class =
‘Researchers’, ObjectId =
cgi.inst, atr = ‘Image’ } |$

$| Atrib {class = ‘Researchers’,
ObjectId = cgi.inst, atr = interest’ } |$

$| Atrib {class = ‘Researchers’,
ObjectId = cgi.inst, atr = ‘Rank’ } |$

Figure 9 - Uninterpreted template corresponding to the page in Figure 8.

In Figure 10 , a page of a project within the
“Project by Researcher” context is shown,

and the respective uninterpreted template is
shown in Figure 11.

REDPUC LANBRETAS HYPERPROP RAVEL

Function Call 2

Function Call 1

Function Call 3

Figure 10 - A page describing a project within the context “Projects by Researcher”.

It is interesting to notice how the “AllLinks”
navigation function is used to generate an
index to all projects in the context. The use
of OOHDM-Web global variables, such as
“cgi.context” and “cgi.inst” should also be

noticed; their value is set in the link that is
generated (using the OOHDM-Web Index
function) in the index page (not shown)
that leads to this page.

-14-

$| AllLinks{atr_anchor = ‘Acronym’, function = ‘Horizontal(separator =
-), context = ‘Proj_Researcher’} |$

$| Atrib { class = ‘Project’, ObjectId = cgi.inst, atr = ‘ProjTitle’ ,
context = cgi.context } |$

$| Atrib { class = ‘Project’, ObjectId = cgi.inst, atr =
‘ProjDescription’ , context = cgi.context } |$

Figure 11 - The uninterpreted template corresponding to the page shown in Figure 10. Notice
the use of “AllLinks” OOHDM-Web function, and the OOHDM-Web variables “cgi.context” and

“cgi.inst”.

4 . CONCLUSIONS

We have described the OOHDM-Web
environment for implementing web-based
hypermedia applications. This environment
is currently being used in a number of real-
world complex websites, some on the
Internet and some on private intranets.

As discussed in section 1, there are a
number of commercial tools comparable to
the CGI Lua+DB Lua environment, notably
Cold Fusion and StoryServer, and
OOHDM-Web environment could be
implemented in any one of them. There are
several reasons why have chosen CGI Lua,
the foremost being portability - CGI Lua is
available for the largest number of operating
systems. A second important reason is cost;
CGI Lua is freely available. A third reason
is the fact that CGI Lua, Lua and DB Lua
have been developed in another lab in our
department, and it was very convenient to
have the developers close at hand during
implementation.

In terms of runtime efficiency, we have
noticed that the slower part of the system
tends to be the database interface. This is
due to the way CGI scripts access
databases, since a new transaction must be
opened for each access. We are investing
ways to optimize this interface.

In terms of continuing research, our current
efforts are in the direction of providing a

richer set of formatting functions, following
the idea of design patterns [Rossi 97].
Another direction being pursued is the
integration of processing functions (as
opposed to pure browsing) in classes, to
allow operations such as dynamic creation
of instances, computations over
dynamically defined contexts, etc...In
addition, we are developing a web-based
environment in which OOHDM designs can
be developed, with a standard graphical
interface.

5 . REFERENCES

[Garzotto93] F. Garzotto, D. Schwabe and
P. Paolini: “HDM - A Model Based
Approach to Hypermedia Application
Design”. ACM Transactions on
information Systems, 11 (1), Jan. 1993,
pp. 1-26.

[Hester 97] A.M. Hester; R.C.Borges; R.
Ierusalimshy; “CGILua: A Multi-
Paradigmatic Tool for Creating Dynamic
WWW Pages”, Proceedings of the XI
Brazilian Software Engineering
Symposium (SBES’97) pp.347-360,
Fortaleza, Brasil, 1997 (available at
http://www.tecgraf.puc-
rio.br/~anna/cgilua/ cgilua.ps.gz)

[Ierusalimshy 96] R. Ierusalimschy, L.
H. de Figueiredo and W. Celes, "Lua - an
extensible extension language",

-15-

Software: Practice & Experience 26 #6
(1996) 635-652. (see also
http://www.tecgraf.puc-rio.br/lua/).

[Isakowitz95] T. Isakowitz, E. Stohr and P.
Balasubramanian. “RMM: A
Methodology for Structured Hypermedia
Design”. Communications of the ACM
38 (8), 1995, pp. 34-44.

[Rossi97] G. Rossi, D. Schwabe and A.
Garrido: “Design Reuse in Hypermedia
Applications Development” Proceedings
of ACM International Conference on
Hypertext (Hypertext’97), Southampton,
April 7-11, 1997, ACM Press.

[Schwabe95] D. Schwabe and G. Rossi:
"The Object-Oriented Hypermedia
Design Model (OOHDM)", Comm ACM,
August 1995.

 [Schwabe96] Schwabe, G. Rossi and S.
Barbosa: "Systematic Hypermedia
Design with OOHDM". Proceedings of
the ACM International Conference on
Hypertext (Hypertext'96), Washington,
March 1996.

