
-1-

Designing Web Information Systems
Daniel Schwabe

e-mail: schwabe@inf.puc-rio.br

Gustavo Rossi

LIFIA, Fac Cs. Exactas, UNLP, Argentina
CONICET and UNLM

e-mail: gustavo @sol.info.unlp.edu.ar

Alejandra Garrido

 LIFIA, Fac Cs. Exactas, UNLP, Argentina
CONICET and UNLM

e-mail: garrido@sol.info.unlp.edu.ar

ABSTRACT:

This paper characterizes Web Informations Systems (WIS), idenfying distinguishing
features and discussing their design requirements. Next, it presents the notion of
Design Patterns, and shows how they can be applied to the design of WIS, drawing
examples from sites in the WWW.

KEYWORDS: WWW, Hypermedia, Design Patterns

RESUMO:

Este artigo procura caracterizar o que são os Sistemas de Informação baseados na
WWW. São identificadas as propriedades características de tais sistemas, e são
analisados os requisitos de projeto para este tipo de aplicação. Em seguida, é
introduzido o conceito de “Padrões de Projeto” (“Design Patterns”), que é então
utilizado para o projeto destas aplicações. Ao longo do artigo, são utilizados exemplos
reais encontrados na WWW.

Palavras Chave: WWW, Hipermidia, Padrões de Projeto

Este trabalho contou com o patrocínio parcial do CNPq.
This work was partially sponsored by CNPq.

-2-

Designing Web Information Systems
D. Schwabe (*), G. Rossi (**) and A. Garrido (***)

 (*)Departamento de Informática. PUC-RIO, Brazil
E-mail: schwabe@inf.puc-rio.br

(**) (***) LIFIA, Fac Cs. Exactas, UNLP, Argentina

E-mail: [gustavo, garrido]@sol.info.unlp.edu.ar

(**) is also at CONICET and UNLM

1. Introduction
A working definition of a Web Information System can be as a set of WWW

sites under the same administration, storing information to be used – created,
accessed, and modified – by some identified community of users.

At least part of the phenomenal success of the WWW, and the increasing
integration of “traditional” information systems into it is the recognition that it
actually provides a richer communications channel between human beings that
make up institutions, companies, schools, interest groups, or, more generally, society.

From its inception, the WWW was meant to be a way to help people access and
use information, as stated by Tim Berners-Lee [Berners-Lee97] - “In fact the thing that
drove me to do it (which is one of the frequently asked questions I get from the press
or whoever) was partly that I needed something to organise myself. I needed to be
able to keep track of things, and nothing out there, none of the computer programs
that you could get, the spreadsheets and the databases, would really let you make this
random association between absolutely anything and absolutely anything, you are
always constrained. For example, if you have a person, they have several properties,
and you could link them to a room of their office, and you could link them to a list of
documents they have written, but that's it. You can't link them to the car database
when you find out what car they own without taking two databases and joining them
together and going into a lot of work. So I needed something like that.”

A WIS can be seen then as an example of a “hybrid” system, a system conceived
to be part of a man-machine team in solving a problem. This means that part of the
task will be executed by the computer, and part by the human being. Since the human
being will be performing part of the task, information must be presented to him in
the most apropriate way - hence, multimedia and hypertext. This definition is quite
flexible and can accomodate most existing WISs, since the boundary between the part
performed by the computer and the part performed by the human being is movable –
in one extreme one falls into traditional systems, where the computer does all the
processing, and in the other extreme one falls into many current websites, where the
computer just stores information and presents it to the human being, who then does
the task.

“Universal access means that you put it on the Web and you can access it from
anywhere; it doesn't matter what computer system you are running, it's independent

-3-

of where you are, what platform you are running, or what operating system you've
bought and to have this unconstrained topology, which because hypertext is
unconstrained it means you can map any existing structures, whether you happen to
have trees of information or whatever. As people have found, it is very easy to make
a service which will put information onto the Web which has already got some
structure to it, which comes from some big database which you don't want to change,
because hypertext is flexible, you can map that structure into it.” (Tim Berners-Lee,
[Berners-Lee97])

The WWW is based on the hypertext paradigm, inasmuch as it is composed of
pages (in HTML) which can be linked to each other through URLs (links). Regardless
of how a reader has reached a page, he will normally have the option of accessing the
pages linked to the current page; by choosing a particular link, he will cause the page
pointed to by the link to be exhibited; this process can repeats itself indefinetly. This
succession of steps is know as “navigation”, and is intrinsic to hypertext, and hence to
the WWW.

This mode of access should be contrasted with more conventional database
applications, where most accesses are achieved through queries – the user formulates
a statement in some query language, describing the data he wishes to retrieve, and the
system retrieves and displays the data. The user then may process this data in some
fashion, and eventually issue another query to retrieve more information. In many
cases, this sequence of steps is executed by an application program, not by a human
being.

From the discussion above, we can intuit that there are distiguishing features in
WISs that present new design requirements vis-a-vis traditional systems. In a broad
sense, we can categorize them in three groups, which will be elaborated further later
on.

The first group of design issues has to do with navigation, addressing issues
such as

• What constitutes an “information unit” with respect to navigation?

• How does one establish what are the meaningful links between information
units?

• Where does the user start navigation?

• How does one organize the navigation space, ie, establish the possible
sequences of information units the user may navigate through?

• If we are adding a WWW interface to an existing system, how do we map the
existing data objects onto “information units”, and what relationships in the
problem domain should be mapped onto links?

The second group of design issues has to do with the organization of the
interface, addressing issues such as

-4-

• What will be the interface objects the user will perceive? How do these objects
relate to the navigation objects?

• How will the interface behave as it is exercised by the user?

• How will navigation operations be distinguished from interface operations
and from “data processing” (i.e., application operations)?

• How will the user be able to perceive his location in the navigation space?

The third group of design issues has to do with implementation, addressing
issues such as

• How are information units mapped onto pages?

• How are navigation operations implemented?

• How are other interface objects implemented?

• How are existing databases integrated into the application?

It should be noted that we are separating navigation design from inteface design
and from implementation design, which follows the OOHDM [Schwabe 96]
architectural model. Similar separations (sometimes finer grained) can be found in
other methodologies such as RMM and HDM.

There are many advantages in separating interface design from both
implementation and navigation design. The WWW started as a standards-based
architecture, where documents are described in HTML. Nevertheless, as soon as
commercial interest stepped in, there was an escalating succession of (unilateral)
HTML extensions by several manufacturers, leading to the point where many pages
are only readable using one type of browser. This situation is further complicated by
the possibility of extending functionality via scripting languages such as JavaScript
and VBScript, or via plug-ins such as Shockwave or ActiveX.

As a consequence, the only way to protect the investment made in designing the
interface is trying to represent the major design decisions that capture the “essence”
of the interface in an implementation independent manner. If one is successful, even
in the face of standards evolution, it is possible to maintain the core interface design,
and reimplement a minimal part of the whole application.

Another advantage of separate interface design is the fact that, since
communication with human beings is an important part of WISs, there are other
disciplines that are required to make this effective, notably graphics design,
multimedia (content) design, etc... The interface level is an ideal point where
professionals from these other disciplines can contribute to the overall application
design. Therefore, a separate interface design helps bridging the communication gap
between computer professionals and professionals of other disciplines by helping
focus on the aspects that must be jointly solved in order to reach an effective design.

In the next sections, we will describe how some of the questions raised above can
be addressed using design patterns [Gamma95] as a presentation device. We then
discuss some implementation issues related to WISs, and draw some conclusions.

-5-

2. Designing WIS with Patterns
Though originated in architecture [Alexander77] design patterns are being

increasingly used in software design [Gamma95]. Design patterns are a good means
for recording design experience as they systematically name, explain and evaluate
important and recurrent designs in software systems. They describe problems that
occur repeatedly, and describe the core of the solution to that problem, in such a way
that we can use this solution many times in different contexts and applications.
Looking at known uses of a particular design pattern we can see how successful
designer solves recurrent problems.

In some cases, it is possible to give structure to single patterns to develop a
pattern language: a partially ordered set of related patterns that work together in the
context of a certain application domain. Design Patterns complement methodologies
in that they address problems at a higher level of abstraction. Many design decisions
that cannot be recorded through the use of the primitives of a method can be
described using patterns’. In this way, we claim that using design patterns, WIS
designers can profit from existing design knowledge in several communities such as
hypermedia or user interface design.

We next present some patterns we have discovered and used in the context of
developing WISs. These patterns address diferent design problems and they form the
basis of a pattern language for WIS. For the sake of clarity they are organized in
architectural, navigational design pattern and interface patterns. Architectural
patterns help in deciding the overall WIS structure, for example by separating
conceptual, navigational and interface design; navigational ones address aspects
related with navigation inside a WIS whereas the latter are meant for designers of
GUI.

We describe them using a single template describing the problem that originates
the pattern, the motivation, the solution and an example in the context of WIS. This
template allows expressing solutions in a “methodology-independent” way and so
they can be used with different WIS design methods, such W3DT [Bichler97], RMM,
OOHDM, WebDesigner [Takahashi 97]. A more detailed version of these patterns can
be found in [Rossi97, Garrido97]

2.1 Node as a Navigational View

Problem: How to add navigation capabilities to the components of an existing
application (for example a dbms one), therefore adding hypermedia functionality to
it? How to combine conventional transactional processing with navigation?

Motivation: In many situations, existing applications can benefit from a
hypermedia interface, such as when making them accessible via the WWW. Even
when the application does not exist previously, it may be desirable to share a number
of information items among several applications to be on the Web.

Solution: Define a navigational layer between the application to be enhanced
and its graphical interface, build up of object’s observers that are called nodes .
Implement the navigational behavior in nodes. Then define each node’s GUI by

-6-

adding means of activating node’s behavior. Separate the application’s conventional
behavior from the navigational operations. The OOHDM methodology defines the
concept of Node as a navigational view over a conceptual model [Schwabe96]; RMM
has a similar construct in the “slice” primitive. This pattern can be used both during
design to separate design concerns or during implementation (for example when
using an object-oriented WIS development environment such as VisualWave
[Vwave96]) to allow different views to be built from the same database. Intranets
applications accessing a shared database must also use some version of this pattern to
allow for different user profiles to access the database according to their needs. This
pattern represents one of the most important architectural decisions, considering a
WIS as a system that may add hypermedia functionality to more conventional
applications.

Example: Many Internet News Agents use this pattern for providing
personalized views of news database. In this case we find a combination of Node as a
Navigational View with dynamic Page Creation Method (see 2.4). For example, it is
possible to define Custom News at http://www.news.com, as shown in Figure 1.

-7-

Figure 1 - An example of the use of “Node as Navigational View” to
customize a page. (http://www.news.com)

2.2 Node as a Single Unit

Problem: What constitutes an “information unit” with respect to navigation?

-8-

Motivation: A node should encompass a self-contained “unit” of information,
that should make sense for a set of users performing a set of tasks in a given domain.

A node does not necesseraliy have to correspond to a single web page. For
example, it is quite common to find web pages that are very long, including different
merged topics, some of which may not be relevant to the task at hand. For instance,
in http://www. cs.brown.edu/memex/, a single page shows a big picture at the
beginning, then information of what Memex and Beyond is about, then a global
index of topic, then a description of what is still missing comes after that, followed by
details about the kinds of navigation that appear in the web site, etc. Conversely, if a
node is complex (or is made out as a composite), it may be better to split it up into
several pages, although care must be taken so as to not make reading and printing
more difficult, since the reader must navigate from one fragment to the next in order
to see the entire “unit”.

Solution: Make a node a single unit, self-contained entity of information,
focusing on a certain topic. All data that is relevant for that entity should be included
the same node. Good object-oriented modeling of the application domain may give a
good initial grasp for defining each node; when several different objects contain
closely related information, define a single page (node) as a view over them.

Example: In the Amazon books WIS,(http://www.amazon.com) information
about a book is shown in the way described by this pattern.

-9-

Figure 2 - An example of use of the pattern “Node as a single unit” in
http://www.amazon.com

-10-

2.3 Navigational context

Problem: How to organize the WIS navigational structure, providing guidelines,
information and relationships that depend on the current state of navigation, in such
a way that information can be better presented and comprehended ?

Motivation: WIS usually involve dealing with collections (e.g., Records,
Paintings, Cities, Persons, etc.). These collections may be explored in different ways,
according to the task the user is performing. For example, we may want to explore
Books of an author, Books on a certain period of time or literary movement, etc., and
it is desirable to give the user different kinds of feed-back in different contexts, while
allowing him to move easily from node to node.

Suppose for example that in a WIS for a bookstore, we reach “William
Shakespeare”, choose to navigate to his books, and then arrive at “Romeo and Juliet”.
However, we can also reach “Romeo and Juliet” while exploring Books written
during Romanticism period, or navigating through some Publishing
CompanyEditing House. It is clear that we will explore the same object under three
different perspectives; for example while accessing it as a Shakespeare’s work we
would like to read some comments about its relationships with other works by
Shakespeare (e.g., as it relates to “Love’s Labour’s Lost” because both incorporate
sonnets into their structure), and also to have easy access to the next book he wrote
(say, in chronological order. Meanwhile, as a Romantic work, it would be fine to read
(or see) something about the Romanticism period and be able to access other works
on the same movement (perhaps not Shakespeare’s) that we can buy at the bookstore.
This means that we will need not only to present the information in a different way
in all cases but also to provide different links or indexes.

Solution: Decouple the navigational objects from the context in which they are
to be explored, and define objects’ peculiarities as Decorators [Gamma95], that enrich
the navigational interface when the object is visited in that context.

Navigational Contexts are composed of a set of Nodes (like Books) and Context
Links (links that connect objects in a context). Nodes are decorated with additional
information about a particular context and additional anchors for context links. The
navigational context may also contain information about the context itself (for
example an explanation about Romantic Books) that will be shown in a particular
Context Node. That node may provide an index to all nodes in the context or a link
to the first one.

A diagram of the interacting elements is shown in Figure 1, where the context
node provides an Index to the nodes and also each decorator provides an anchor to
the ‘next’ node in the context.

-11-

Node

Decorator

Context
 node

Link

Figure 3 Diagram of Navigational Context pattern

Identifying navigational contexts is important because they are high level
architectural constructs that help organizing navigation in such a way that we can
describe the navigational structure of a WIS not only as a set of pages but also as a set
of contexts in which those nodes will be accessed. There are different strategies for
defining navigational contexts; for example the set of instances that satisfy some
property of a class (e.g, “all books authored in 1997”) may be traversed in a
navigational context; a n-ary link also originates a context (e.g, “all books writen by
Shakespeare”).

Another direct consequence of defining contexts is the definition of access
structures (indexes and guided tours) allowing access to the elements in a context. In
this manner, contexts may also help the user to find the proper place where to start
navigation.

This pattern is a primitive in OOHDM [Schwabe 96].

Example:

In Figure 4 on can see a page of the Portinari Collection site. This page describes
one painting, which is being navigated in the “artworks by theme” context. This page
is also part of other contexts, as indicated in the figure: “artworks by date” and
“artworks by technique”. A more detailed discussion can be found in [Schwabe 96].

-12-

Contextual Navigation

Figure 4 - Example of the pattern “Navigation Context” in the Portinari
Collection application (http://www.portinari.org.br) Artowrks can
be navigated by theme, date or technique..

-13-

Figure 5 - Another example of the “Navigation Context” Pattern from the
National Gallery of Arts site (http://www.nga.gov). A guided tour
of “Italian Renaissance Ceramics” forms a context.

There are several other examples, as shown in Figure 2 and Figure 5. There are
several sites that also employ this pattern to customize the advertisement banner
depending on the way the user arrived at the page; this corresponds to having a
decorator object depending on the context in which the page is being navigated.

2.4 Page Creation Method

Problem: When is it better to create pages statically, and when is it preferable to
create pages dynamically?

Motivation: In many applications, the contents of a node (page) do not change,
or change very little. On the other hand, in WIS, where information is captured from
databases, nodes must be defined dynamically.

-14-

Solution : Pages must be dynamically created when the application’s data and
functionality will be constantly updated, when readers can modify, create, or compose
new nodes, and when instant update is needed. Otherwise, when there is no
underlying application, and the set of nodes is limited and fixed, manual creation is
the most acceptable solution. In some cases the computation of nodes on demand
(when they are the destination of a navigation step) can be a heavy process, and so it
is better to pre-compute the nodes by running the defining queries at definition time,
and storing the results. This approach is only feasible when data on the data base
changes at a low enough rate.

Example:

There are inumerous examples on the WWW; for instance, most news sites and
most online merchant sites generate pages dynamically. The example is shown in
Figure 1 for the http://www.news.com site.

2.5 Link Creation Method

Problem: When is it better to define static links, and when is it preferable to
create links through computations?

Motivation: Similarly to ‘Node creation method’, sometimes is hard to decide
the pros and cons of defining links by hand (by directly defining the target URL or by
means of a computation. In some cases invariant relationships in the problem
domain are best represented by static links, while dynamic link creation is reasonable
when nodes are creating dinamically (see the above pattern) and as a side ef

Solution: Static links are used in closed, static applications, when
maintainability in case of future change is not an issue, and nodes are also statically
created. Static links may be used in dynamic applications when the definition of a
link-computation is too complex, the endpoint node is very difficult to be changed, or
the link is only temporary. Computed links should be preferred in dynamic
applications where new nodes are also created dynamically, data is volatile, and
maintainability must be efficiently achieved. Use also dynamic links, even with
statically created nodes, when it is possible to define link types, and when the number
of links of each type to create is considerable (i.e., the effort require to write a
computation to automatically create the links is less than the effort to manually
instantiate all links in a relationship between large sets of nodes).

Example:

A prime example are search sites, such as http://www.altavista.com or
http://www.excite.com. Links are included in each page as a result of executing a
search query against a document database.

2.6 Information-Interaction Decoupling

Problem: How do you differentiate contents and various types of controls in the
interface ?

-15-

Motivation: A page in a complex application displays different contents, and is
related to many other pages, thus providing many anchors. Moreover, if the page
supplies means of control activation other than navigation (such as poping-up some
information or triggering some query), the user may experience cognitive overhead.
It is well known that when too many anchors are provided in a text, the reader is
distracted and cannot take profit of all of them (http://www.autoweb.com/ is an
example of the occurrence of both problems).

Solution: Separate the input communication channels from the output
channels, by grouping both sets separately. Allow the “input interaction group” to
remain fixed while “the output group” reacts dynamically to the control activation.
Within the output group, it is also convenient to differentiate the “substantive
information” (i.e., content) from the “status information”. This solution not only
improves the perception of a node’s interface, but also the efficiency of the
implementation.

Example:

This is a common pattern found in the WWW. An example is shown in Figure
6 for the http://www.zdnet.com site, where general controls are on the left bar, and
content specific links are on the right hand side; no links are included in the text
itself. Most other examples in this paper also employ this pattern.

-16-

Figure 6 - An example of the “Information/Interaction Decoupling” pattern at
the http://www.zdnet.com. General Links are on the left; content
specific links are on the right. Notice there are no links in the text
itself.

2.7 Behavioral Grouping

Problem: How to organize the different types of controls in the interface so that
the user can easily understand them?

Motivation: A problem we usually face when building the interface of a WIS is
how to organize control objects (such as anchors, buttons, etc.) to produce a
meaningful interface. In a typical WIS there are different kinds of active interface
objects: those that provide "general" navigation, such as the “back” button, or
anchors for returning to indexes; objects that provide navigation inside a context;

-17-

objects that control the interface, etc. Even when applying Information-Interaction
Decoupling there may be a lot of different kinds of control objects.

Solution: Group control interface objects according to their functionality in
global, contextual, structural and application objects, and make each group
perceivable in a different screen area. Provide similar interface appearance inside
each group to enhance comprehension.

Example:

In Figure 7 we see an example of Behavioral Grouping in the context of
http://expedia.msn.com. There are three screen areas for control objects: one in
which "general" anchors are presented (at the top), another for context anchors (at the
left) and another one for action item at the bottom.

Figure 7 - An example of “Behavioral Grouping” in Microsoft’s Expedia site
(http://expedia.msn.com). Notice the controls at the navigation
bar at the top; the itinerary options at the left and the actions at
the bottom.

-18-

3. Implementation
During implementation, the designer will actually implement the design.

Though it is not the focus of this paper to analyze implementation aspects, we will
briefly discuss how some of the previously presented design patterns may be
implemented.

 When an object-oriented environment is used it is straightforward to
implement the separation of concerns we propose in this paper: the domain model
will be implemented by a set of classes, while navigational operations can be defined
in classes mapping hypermedia concepts like node, link, etc. An external database can
be used to contain the application information. The interface is naturally decoupled
and implemented using HTML (or combinations of HTML, Java-Script, etc)

However in non-object oriented environments some patterns may require more
complex implementations. There are basically two types of concerns that must be
faced: how to implement the information objects (placeholders) and how to
implement the interface objects.In the discussion that follows, we will briefly
examine each of these concerns, in the light of the WWW implementation
environment.The implementation of the information objects traditionally called
nodes, will typically be done using some sort of database, or perhaps a set of files in
the file system.

In addition to mapping information objects into whatever database model
(relational, OO, etc...), it is also necessary to implement “within context” information,
which functions as decorators within particular contexts. Typically, this entails
enriching the data model used in the database to account for the added attributes, and
defining control functions that make these attributes accessible in the appropriate
contexts. If the implementation is based directly on the file system, these control
functions will access additional files containing the contextual information.

Whereas the mapping of information objects into implementation objects is
somewhat obvious, the implementation of contexts is more complicated. The
supporting database model or set of files must also contain the context definitions.
With the exception of arbitrary contexts (whose specification is an enumeration of its
members), other types of contexts include a query or function specification that must
be evaluated to derive the members of the context. This computation can be done
either previous to application deployment or at runtime; the former is preferrable if
the data changes infrequently, and the latter when data changes frequently and the
user must always access the most recent data.

Navigation operations within contexts require keeping state information. For
example, to determine “what is the next recommended restaurant in this area”
requires knowing which area the user is currently looking at, and which restaurants
make up the referenced context (“restaurants in a given area”), and what is the
ordering defined for that context (e.g., “alphabetical” or “price range”).

In terms of the WWW this means that either this state information is kept
within the database or file structure being used, or special control information is kept
on the side to represent the navigation state. In this case, any of the better know

-19-

techniques for keeping state in the WWW may be employed: passing state
information within URLs, from page to page; keeping state information in hidden
fields passed on from page to page; or using cookies. All of these techniques require
using CGI scripts to implement navigation.

A different technique that has also been employed is to represent information
objects – both instance data and context information – as constants in JavaScript,
which are manipulated through funtions in scripts inserted in the root document of
a frameset. The scripts are executed to implement navigation operations within
documents that are stored in other frames in the frameset. The advantage of this
approach is that state maintenance is done entirely within the client machine; the
disadvantage besides only working for browsers that understand JavaScript is that it
breaks down for large systems as one reaches the limits in size for Javascript
programs. It should be noted that this technique may also be used in combination
with the previously mentioned ones.

In some situations, if the number of instances is small enough, it may be
justifiable to “precompute” all contexts and all navigations paths, and generate
separate page copies corresponding to different node instantiations within the
various contexts. In this case, all links are represented as static URLs, and it is not
necessary to use any of the mechanisms mentioned in the previous paragraph.

4. Conclusion
Designing successful WIS is hard; developers must deal with different concerns

such as organizing access to external resources (like databases), defining the
navigational structure of the application, building a good user interface, etc. Some
methods have been proposed to help designers in this task like OOHDM [Schwabe96],
W3DT [Bichler97] and RMM [Izakowitz95, Takahashi97]

We claim, however, that design methods solve just part of the problem and
propose using design patterns as a way to record and reuse designers’ experience
while developping WIS. In this paper we have presented some design patterns we
have found in different WIS development enterprises. These patterns address
architectural, navigational and user interface problems and, as shown in this work,
can be sistematically implemented in the WWW environment. We consider them as
a basis of a pattern system for the WIS domain. Being WIS design an enterprise that
needs the use of design knowledge from different fields (database, hypermedia, user
interface design, etc),his pattern system should be an excellent medium for recording
and transmitting this experience to WIS designers and for them to point the new,
recurrent problems they find.

Once a rich set of design patterns for WISs is available, designers can begin their
work from a higher level, possibly with the aid of (semi) automated tools. As a result,
there will be an increase in quality of WIS designs being deployed in the market.

5. References
[Alexander77] Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King

-20-

and S. Angel: "A Pattern Language". Oxford University Press, New York 1977.

[Berners-Lee97] Berners-Lee, T.; “The World Wide Web - past, present and future”,
Journal of Digital Information 1 (1)
(http://journals.ecs.soton.ac.uk/jodi/Articles/timbl.html)

[Bichler97] Bichler, Ma.;Nusser, S.: “Modular Design of Complex Web-Applications
with SHDT. In http://dec9.wu-wien.ac.at/w3dt/wetice/wetice.html.

[Gamma95] Gamma, R. Helm, R. Johnson and J. Vlissides: "Design Patterns: Elements
of reusable object-oriented software", Addison Wesley, 1995.

[Garrido97] A. Garrido, G. Rossi, D. Schwabe: “Patterns Systems for Hypermedia”.
Proceedings of PLoP’97, Pattern Language of Program, 1997. In http://st-
www.cs.uiuc.edu/~hanmer/PLoP-97/

 [Isakowitz95] T. Isakowitz, E. Stohr and P. Balasubramanian. “RMM: A Methodology
for Structured Hypermedia Design”. Communications of the ACM 38 (8), 1995, pp.
34-44.

 [Rossi97] G. Rossi, D. Schwabe and A. Garrido: “Design Reuse in Hypermedia
Applications Development” Proceedings of ACM International Conference on
Hypertext (Hypertext’97), Southampton, April 7-11, 1997, ACM Press.

 [Schwabe96] Schwabe, G. Rossi and S. Barbosa: "Systematic Hypermedia Design with
OOHDM". Proceedings of the ACM International Conference on Hypertext
(Hypertext'96), Washington, March 1996.

[Takahashi 97] K. Takahashi, E. Liang: “Analysis and Design of Web-based
information systems” Electronic Proceedings of The Sixth International W W W
Conference, Santa Clara, USA, 1997.

[VWave96] The VisualWave Programming Environment. Parc Place Systems. In
http://www.parcplace.com/products/vwave/vwv_prod.htm.

