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Abstract – This paper presents a framework for distributed emotional characters on
a computer network and proposes innovative concepts for shared emotional state
management. Firstly, behavior accuracy is defined in terms of three types of
behavior (physical, procedural and emotional). Secondly, visual soundness – a
concept inversely proportional to behavior accuracy – is associated with the
autonomy of clones. Thirdly, the usual concept of dead reckoning is relaxed by
exploring the idea of autonomy, which is the basis for networked emotional
characters. The framework built on the top of Bamboo [7] can gracefully cope with
reactive environments producing good levels of smooth animation, visual
soundness, behavioral accuracy and collision avoidance.

Keywords – networked virtual environments, emotional characters, dead
reckoning, behavior, autonomy.

Resumo – Este artigo apresenta um framework para desenvolvimento de ambientes
virtuais distribuídos habitados por personagens com emoção e propõe novos
conceitos para gerenciamento de estado compartilhado. Primeiramente, precisão de
comportamento é definida em termos de três tipos de comportamento (físico,
procedimental e emocional). Em seguida, solidez visual – um conceito
inversamente proporcional à precisão de comportamento – é associada à autonomia
de clones. Por último, o conceito usual de dead reckoning é relaxado, explorando a
idéia de autonomia que é a base para personagens inteligentes distribuídos em rede.
O framework, desenvolvido com a utilização da ferramenta Bamboo [7], suporta de
forma elegante ambientes reativos produzindo bons níveis de suavidade de
movimentos, solidez visual, precisão de comportamento e ausência de colisões.

Palavras-chave – ambientes virtuais distribuídos em rede, personagens com
emoção, dead reckoning, comportamento, autonomia.
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INTRODUCTION

Virtual environments distributed over computer networks began in the early 80’s with the
classified research on distributed military simulation by the US Department of Defense (SIMNET –
simulator network) and networked games (notably Flight and Dogfight by SGI). However, despite
all these years of activities, this research area still faces enormous challenges and lacks uniformity
in its concepts and definitions. Notably, behavior, emotion, and autonomy of virtual humans are not
well-defined concepts in the area of shared state management. Unfortunately, at the other side of the
spectrum, most of the people working on emotional characters are not focused on networked virtual
environments.

Emotional characters have been intensively investigated in the areas of behavioral
animation[1], ecosystem simulation [2] and interactive drama in virtual worlds [3,4]. However,
there is a very small number of works on the distribution of behavioral characters over computer
networks. IMPROV [5] and JackMOO [6] are remarkable projects on distributed virtual actors, but
they are not centered on the management of networked emotional states and cannot cope with
reactive distributed environments.

This paper proposes a flexible and clear view of the concept of shared behavioral state
management and presents a framework for networked emotional characters. A prototype is built on
the top of BAMBOO [7], which is an open-architecture toolkit.

Before presenting the main ideas of this paper, some notes on terminology and general
concepts are needed. Firstly the name of the whole area of research should be explained, because
the literature often makes no distinction between “distributed virtual environments” and “networked
virtual environments”. Secondly, the techniques of managing shared state information are reviewed.
After these preliminary explanations, the paper proposes the ideas of visual soundness, autonomy
and recovering mechanisms as the basis for networked emotional characters. Finally, the framework
is presented and conclusions are produced.

DISTRIBUTED OR NETWORKED VE ?

The term “distributed virtual environment” does not emphasize the nature of the problems to
be tackled in this paper. Distributed virtual environment is a broader concept to characterize
systems where an application is decomposed into different tasks that are run on different machines
or as separate processes. A networked virtual environment is a more specific and adequate term to
define a software system in which users interact with each other in real-time over a computer
network. This is precisely the definition found in the new book by Sandeep Singhal and Michael
Zyda [8], which is the first extensive reference organizing the many aspects in the field without
being a documentation of standards. Sometimes the term “distributed interactive simulation
environments” is used in the literature. This is motivated by the DIS network software architecture
and its successor HLA (High Level Architecture) [9], which was recently been nominated as an
IEEE standard and an OMG standard.

SHARED STATE MANAGEMENT

Shared state management is the area of networked virtual environment dedicated to the
techniques of maintaining shared state information [8]. In a networked virtual environment, local
objects are replicated in remote hosts and the users have the illusion of experiencing the same
world. The consistency of this shared experience is hard to be achieved without degrading the
virtual experience. When a state change is generated at a particular host, there is a necessary delay
before all other hosts incorporate this update. One of the most important principles in networked
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virtual environments is that no technique can support both high update rate and absolute state
consistency. This principle is a consequence of the characteristics of the computer networks, which
are the latency, bandwidth and reliability. Network latency is the delay of transfer measured in units
of time, network bandwidth is the rate of transfer (bits/second), and network reliability measures
data packet losses. These network characteristics cannot be eliminated in any network technology,
today or in the future. In order to guarantee total state consistency, hosts must always exchange
acknowledgments and retransmit lost state updates before proceeding with new state updates.

In a networked virtual environment, at any given time, hosts will never produce identical
views of the virtual world, unless centralized models [10] with absolute state consistency are
implemented. Even with total state consistency, users will not see the same movement at the same
time, because of the transmission time. Furthermore, in these centralized models, the source host
may be forced to reduce its update rate to allow time for the consistency to be achieved. In any case
of pursuing absolute consistency, the scene will not be realistic and the movement will not be
smooth. Networked virtual environments must tolerate inconsistencies in the shared state updates.

There are two techniques for managing shared state updates that allow inconsistencies [8]: (1)
frequent state update notification; (2) dead reckoning. In the first technique, hosts frequently
broadcast (or multicast) update changes without exchanging acknowledgments. This technique has
been mostly used by PC-based multiplayer games [11]. In dead reckoning techniques, the
transmission of state updates is less frequent and the remote hosts predict the objects’ behavior
based on the last transmitted state.

The quality of a networked virtual environment is also determined by its scalability, which is
its capacity of increasing the number of objects without degrading the system. Therefore techniques
of managing shared state updates should be used in conjunction with resource management
techniques for scalability and performance. Singhal and Zyda [8] present an excellent description of
these later techniques, such as packet compression, packet aggregation, area-of-interest filtering,
multicasting protocols, exploration of the human perceptual limitations (e.g. level-of-detail
perception and temporal perception) and system architecture optimizations (e.g. server clusters and
peer-server systems).

VISUAL SOUNDNESS AND BEHAVIORAL ACCURACY

In networked virtual environments the hosts should pass the test of visual soundness and
every clone should exhibit behavioral accuracy.

The test of visual soundness is an expression proposed in this paper to indicate an important
subjective test for networked virtual environments. A host passes the test of visual soundness if the
user will be unable to distinguish between local and remote objects on the display. An environment
that passes this test may be considered a networked virtual environment that is visually sound. This
test fails when the movements of the clone are jerky or are composed of large jumps, which usually
happen when the clone tries to follow the pilot’s movement. Another reason of failure is the
overlapping of objects, even when the animation is remarkably smooth.

A clone exhibits behavioral accuracy when it mirrors the following behaviors of its pilot:

§ Physical behaviors (e.g. position, velocity, and acceleration);
§ Procedural behavior (e.g. commitments, goals, and sequences of tasks);
§ Emotional behaviors (e.g. fear, joy, and excitability).

It is evident that a host may exhibit a high level of behavioral accuracy but fails the test of visual
soundness (e.g. clones and their pilots have quite similar positions and velocities, but clones’
movements are jerky). The reverse is also possible; that is, a host may pass the test but exhibits low
level of behavioral accuracy.
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In fact, behavioral accuracy and visual soundness can be understood as being inversely
proportional to each other. Behavioral accuracy depends on the system’s shared state consistency.
However, to increase state consistency, the update rates must be lowered, which in turn decreases
visual soundness. Looking the other way around, visual soundness is related to local precision,
which is achieved by giving autonomy to clones, that is, capacity to act by their own according to
the local environment (view) presented by each host. This perspective based on the problem of
autonomy is the starting point for the main ideas of this paper. A totally autonomous clone would
act exactly like a local object but would, of course, have no behavioral accuracy. The challenge is to
search for techniques that guarantee reasonable levels of behavioral accuracy while passing the test
of visual soundness and providing good levels of scalability.

Dead reckoning is the basic technique to overcome the above-mentioned challenge. However,
the usual concept of dead reckoning should be expanded. Firstly, dead reckoning protocols should
be built on the basis of the clone autonomy. Secondly, these protocols should take into account the
states of mind of entities and users. The consequences of this approach are many:

(1) The state of information may be any type of behavior (physical, procedural or
emotional);

(2) There will be many different protocols adapted to each type of object and behavior;
(3) The protocol consists of two parts: a prediction mechanism and a recovery mechanism.

The prediction mechanism estimates the values of the shared states and the recovery
mechanism tries to restore values in the neighborhood of the pilots’ state values.

It should be noted that total behavioral accuracy and perfect synchronism between pilots and
clones are infeasible, even for simple scenes on a local high-speed network supporting high-end
graphics workstations. We should assume that users would never see and experience the same
virtual world in any circumstance - even in the situation of absolute consistency with very few
users, such as two surgeons operating a remote patient. In this yet impossible dream of the
networked virtual environment community, clones should take autonomous actions to guarantee
local precision and the success of the operation.

CLONE AUTONOMY LEADING TO NETWORKED EMOTIONS

Dead reckoning has its origin in networked military simulations and multiplayer games,
where users manipulate aircraft or ground vehicles. In these systems, prediction and recovery is a
matter of trying to guess and converge to the pilot’s trajectory. Second-order polynomial is the
technique most commonly used to estimate these objects’ future position based on current velocity,
acceleration and position. It provides fairly good prediction since aircraft and vehicles do not
usually present large changes in velocity and acceleration in short periods of time. Moreover, since
the prediction algorithm is deterministic, the source host can calculate the error between pilot and
clones’ position, only sending updates when necessary. Convergence to the pilot’s trajectory is
usually done with curve fitting [8].

When it comes to articulated avatars, a couple of different approaches can be taken for dead
reckoning. For applications requiring high state consistency, joint-level dead reckoning algorithms
can be used to predict in-between postures [12]. This approach does not take into account the action
the avatar is executing and dead reckoning computations are performed on joint angles information
received at each update message.  However, in many situations consistency at the level of
articulated parts is not essential. Especially in collaborative work systems, where avatars interact
with each other and together manipulate objects, visual soundness at each host becomes more
important.  Furthermore, articulated avatars have gained intelligence over the past years and efforts
are being made to give them capacity to understand and accept orders like “say hello to Mary” [6].
In this context, dead reckoning at the level of physical actions has been considered [5, 6, 13].  That
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is, instead of sending position updates, the pilot sends to clones messages that indicate the low-level
physical action it is executing: “smile”, “dance” or  “wave”.  In these systems, clones predict pilot’s
state by performing the same actions, regardless of the fact that each host may be presenting
different objects movements. However, these script-based systems cannot cope with emotional and
reactive behaviors.

This paper proposes another approach to avatar dead-reckoning that gives even more
autonomy to clones, providing them with emotions and some power of decision. With no
intelligence at all, clones are restricted to executing by their own only certain localized actions. For
example, if the pilot tells them to “walk to the door”, the environment will probably not remain still
during all the time they take to get there. So, while they walk, the pilot must tell them how to react
to environment changes – “deviate right” or “get your head down”.  However, remembering that
pilot and clones always experience different views, some hosts may present poor visual soundness.

On the other hand, if clones can make decisions based on what they see, hear and feel then they can
get to the door naturally, deviating from an angry dog or smiling to a friend that passes by.
Behavioral accuracy will be maintained at a higher level by making clones always consistent with
pilot’s overall commitments, goals, and emotional states. Clone autonomy is the only way to create
an environment of networked emotions. Fig.1 shows the example of a character that does not like
Mr. Green, one of the avatars in the room. In this example, the pilot and its clone experience
different emotional state depending on the position and posture of Mr. Green and, consequently,
they follow different paths towards the target. Although the local and remote hosts exhibit different
animated scenes, this distributed virtual experience will be perfectly acceptable if the pilot has only
the following characteristics: “walk to the wall between the doors” (procedural behavior) and “I am
afraid of Mr. Green” (emotional behavior).

As in traditional dead reckoning approaches, the proposed management system for networked
emotional characters is based on the tolerance to inconsistencies. Depending on the local view at
each host, pilot and clones can decide differently. In some situations, different decisions can take
clones’ physical and emotional behavioral accuracy to unacceptable levels. In this matter, a
recovery mechanism that restores state consistency is presented in the next section. It is worth
noting that, for all types of dead reckoning algorithms, inconsistencies introduce undesirable
consequences. For example, a dead reckoned aircraft might collide with another object during the
convergence stage, when the predicted trajectory deviates from the real one. The literature lacks

Pilot Clone

target target

Local Host Remote Host

Mr Green close
and staring at

time

Fig. 1 Pilot and clone with different emotional states
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information about how these situations should be handled. This paper claims that the clones’
autonomy is the most adequate approach to tackle these problems gracefully.

RECOVERING MECHANISM KEEPS CLONES UNDER CONTROL

Increasing the clones’ autonomy makes them capable of reacting to the environment -
avoiding collisions, expressing emotions and interacting with other avatars - according to what they
experience locally. Each clone can act differently as long as it obeys the pilot’s high level order.
Put in another way, prediction becomes non-deterministic. Taking again the “walk to the door”
example, while the pilot decides to deviate right from a fearing entity, one or more clones may
decide to deviate left or even not deviate at all, depending on the entity’s state at each host.  If all
clones get to the door in approximately the same period of time, then the goal is achieved.
However, clones that deviate left may encounter other obstacles that can make them get too far
from the pilot and from the door.  In this case, these clones should try to recover to the pilot’s state.

Both, pilot and clone, have specific roles in the recovery mechanism.  The pilot, after telling
clones the task to be executed, should send them state update messages until the task is finished.
The interval of time between updates is determined by environment properties that influence clones
behavioral accuracy such as the type of application, the number of entities and the level of activity.
In this way, the update rate will be dynamically adapted to environment demands.  Since prediction
is non-deterministic and the pilot has no way of knowing how far clones are, the update rate cannot
be based on state error. Considering that updates have the purpose of helping clones out in
extraordinary situations where they cannot find their way to execute a task, the average working
update rate will tend to be low.

On the other hand, upon receiving an update message, each clone will verify if it needs to
recover from inconsistencies. That will be the case if it is approximating neither the pilot state nor
the goals. The clone will recover from inconsistencies by suspending the main task and executing a
recovery action that will take it to the neighborhood of pilot’s state in the most possible natural way.
The recovery action is determined by a temporary redefinition of the priorities, which can
eventually be more restrictive than the original top most priority (e.g. “converge to the actual pilot’s
path” takes precedence to the more generic task “leave the room”). When the recovery action is
terminated, the main task is resumed.

1

3

2

left door right door

pilot
clone
update message
recovering points

pilotclone

time

object 2 is swinging

A

B

Fig 2  Recovering consistency
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Fig. 2 illustrates the following case:
♦  The characteristics of the avatar 1 are “leave the room” and “keep away from people”.
♦  Object 2 is swinging randomly around a small area, which causes different reactions from

other objects (i.e. the hosts will never display the same position of object 2).
♦  The clone of the pilot 1 is initially going left (because the left door is a valid exit), when it

notices object 3 and then starts getting far from the target.
♦  The update message from the pilot triggers the recovery action at point A.
♦  The clone 1 converges to the pilot’s path.
♦  From point B forward anything can happen depending on the actual position of object 2

(e.g. clone 1 follows the pilot’s path towards the right door, or clone 1 goes to the left
door). In any case, the high-level behaviors will be consistent.

MODELING AN EMOTIONAL CHARACTER

Based on the architecture for emotional characters presented by [1] for behavioral animation,
the mental model of Fig. 3 is proposed for pilots and clones in a networked environment. This
model reflects a hybrid approach to avatars’ intelligence that combines logical reasoning, proposed
by traditional AI, with reactive behavior, the dynamic response to environment changes proposed
by the agent theory. Its elements are drawn on general principles of cognition science that rule
human mind models.

The Long Term Memory (LTM) stores facts and emotions, either pre-programmed or
perceived by the character during its existence in the virtual environment. The data stored in the
LTM is operated on by controlled and automatic procedures of the Cognition Center.  Controlled
procedures require conscious attention and are used for deductive and logical reasoning such as
path-planning. Learned Procedures, Behavioral Functions and Emotion Generator are the automatic
procedures that model the character’s unconscious. Events or goals automatically trigger them.

Learned Procedures are reactive plans that continuously revise the LTM to adapt themselves
to unexpected events and to the character’s emotional state. The name Learned Procedures comes
from the fact that these procedures represent learned skills with no need for conscious attention.
Behavioral Functions are primitive forms of automatic procedures and represent reactive physical
actions. The Emotion Generator operates on the LTM to generate emotional states.

The Perception Center detects events in the virtual environment associated to vision, hearing
and touch and passes the information to the Emotion Generator. The automatic procedures of the
Cognition Center and the Perception Center together implement the reactive behavior of the avatar.

Fig. 3  A mental model  for avatars

read/writecalls

Cognition Center
Conscious Unconscious

Controlled Procedures
(logical / deductive

 reasoning)
Learned

Procedures
Emotion

Generator

Behavioral
Functions

Fear, joy  etc Vision, hearing  etc

LTM Perception Center
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A FRAMEWORK ON TOP OF BAMBOO TOOLKIT

Bamboo is a language independent toolkit for developing dynamically extensible, real-time,
networked applications [7]. Bamboo’s design focuses on the ability of the system to configure itself
dynamically, what allows applications to take on new functionality after execution. Although in its
most recent versions Bamboo is presented as being application-neutral, it is particularly useful in
the development of scalable virtual environments on the Internet because it facilitates the discovery
of virtual components on the network at runtime. Bamboo’s architecture is presented in Fig.4.

Provision for dynamic extensibility is accomplished by the implementation of the plug-in
metaphor popularized by commercial packages such as Netscape Navigator. Bamboo offers a set of
mechanisms that enable the coexistence of plug-ins in a multi-threaded environment.  It also
provides a particular combination of these mechanisms with a “main” routine, forming a specific
executable called Bamboo’s kernel, which constitutes the initial runtime environment for plug-ins
to hook into.  It is completely up to the plug-ins to give the application its functionality.

While plug-ins are the “units of extensibility”, they are not the abstraction that Bamboo works
on directly. Instead, Bamboo uses the "module", which can be thought of as a container of plug-ins.
The data a plug-in inter-operates with can be physically coupled with it. Modules can then define
geometry, behaviors, protocols and so forth. In practice, several modules will combine to create a
specific application. Dynamically loaded modules can be retrieved from local disk or from the Web
via HTTP.

To provide portability, Bamboo’s kernel sits on the top of a platform-neutral API for system
calls, networking, threading, synchronization, and timing.  Until the latest stable Bamboo’s release
[14], the Adaptive Communication Environment (ACE) library was used for that purpose.
Bamboo’s developers are now on the process of replacing ACE with NSPR, the Netscape Portable
Runtime [15 ].

In the new version of Bamboo, language independence shall be provided through language-
specific plug-in loaders that will: (1) load/unload its language's interpreter/virtual machine; (2)
load/unload language-specific plug-ins for the kernel; (3) provide a language-specific API for
kernel services.

Bamboo supports three kinds of plug-ins: internally driven, event driven, and externally
driven. Internally driven plug-ins launch one or more threads of execution. Event driven plug-ins
attach themselves to existing threads of execution. Finally, externally driven plug-ins do neither, but
are utilized in some other way by the system, e.g. a math library. Event driven plug-ins are made
possible by a Bamboo mechanism that allows callbacks to be attached to and removed from a
callback handler.  Callback handlers have the property of sequentially executing each of its
callbacks when it itself is executed. Each callback is recursive in that it embeds two callback

(a) Bamboo’s Abstract Runtime View

Bamboo
Kernel

M1 M4

M8

plug-in 1
plug-in 2

M9

M5 M6

M7

M2

M3

Platform-neutral API
(ACE à NSPR)

Bamboo Kernel

Language
Loaders

Applications’ Modules (plug-ins)

Operational System

(b) Bamboo’s Layering

   Fig. 4   Bamboo’s  architecture
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handlers, one just before and one just after the callback function is executed. In this way, the
executable can be thought of as a tree of callbacks that can be dynamically extended in a very
flexible and robust manner (Fig.5).

The proposed framework for distributed emotional characters is being developed as a C++
Bamboo module. It offers a set of classes that provides the basic functionality needed for shared
behavioral state management.  It also supports frequent state regeneration and the traditional form
of dead reckoning for non-emotional entities.

Firstly, the framework considers that, at each host, the local virtual environment is composed
of Entities, intelligent and non-intelligent ones. In other words, an Entity can be a static decoration
object or a human-like avatar. Each shared component of the networked virtual world is then
implemented by one pilot Entity and several clone Entities, one object at each participating host.
The pilot, as the name suggests, is the master object whose state - considered the virtual
component’s true state - all clones continuously try to mirror. It is the pilot’s responsibility to send
messages to clones informing its state or the action it is executing so they can maintain behavioral
accuracy at an acceptable level.

An Entity is actually the root node of a tree structure made up of EntityParts (Fig.6). The
hierarchical structure reflects the physical dependence between parts: if one node moves, all its
children move along.  Every tree node may have a Body and a set of Actions it can perform. Actions
are state machines that can be started, suspended, resumed or terminated.

(a) Recursive Callbacks.

Post-Callback Handler

Pre-Callback Handler
func()

Callback
C
A
L
L
B
A
C
K

H
A
N
D
L
E
R

(b)  Extending the Executable.

Fig. 5  Callback structure.

Entity

Entity
Part

Entity
Part

Entity
Part

Entity
Part

Entity
Part

(a) Entity Tree Structure. (b) Entity Class Hierarchy.

EntityPart

Parent     Children
Body        Actions

LTM
Perception Center
Emotion Generator

AutoEntity

Clone/Pilot
Message Handler
Sync Unit

Entity

Fig. 6  The Entity structure and hierarchy
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The messages sent to an Entity are treated by its Message Handler. These messages can be
remote or local ones (Fig. 7). Remote communication is only possible from a pilot to its clones or
from one clone to its pilot. Entities pertaining to two different virtual components can communicate
locally at each host. After receiving a local message from another component, a clone might need to
inform its pilot about it.

The Entity object also includes a Sync Unit that is responsible for the shared state
management. If the Entity is a pilot, the Sync Unit sends update messages to clones at the
appropriate rate, depending on the type of virtual component and on environment properties. If it is
a clone, the Sync Unit controls the activation of the recovery mechanism as updates messages
arrive.

An intelligent Entity, called AutoEntity, yet includes a Long Term Memory (LTM), an
Emotion Generator and a Perception Center, all parts of the mental model presented in Fig.3.
AutoEntities implement emotional characters. In this case, the Actions that the EntityParts can
perform correspond to behavioral functions.  Learned procedures are Actions associated to the root
node since they access the LTM and make no sense for individual parts. A set of sensor objects –
Vision and others – constitute the Perception Center.

When the first Entity is created, a display thread, which continuously cycles the rendering
engine, is launched. The rendering engine culls and draws all Entities on all active cameras and is
implemented as a callback.  Running Actions have their state machines cycled by attaching them as
callbacks to the rendering engine’s pre-callback handler, as shown in Fig.8. Sensors attach callbacks
to the post-callback handler to verify environment changes that the current cycle of all Actions have
created. Sensors’ callbacks then activate the Emotion Generators, if necessary.

Host 1

Pilot 1 Clone 2

Host 2

Pilot  2 Clone 1

Fig.7  Entities’ Communication.

Action 1 of Entity 1

Sync Units callbacks

Action 1 of Entity 2

Action 2 of Entity 1

Rendering
func()

Pre-callback
handler

Post-callback
handler Sensors callbacks

Fig. 8  Display  thread
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Sync Units, working in conjunction with the Actions class, also attach callbacks to the display
thread to manage the virtual component’s shared state. The mechanism is as follows:

1. The virtual component is ordered to perform an action that requires state consistency
between pilot and clones (Action 1 in Fig.9). That could be, for example, to walk to the
door or, in the case of a non-emotional avatar, to move according to a 3D mouse
manipulation. The action is started by the pilot and is attached to the display thread.

2. Action 1 then executes enablePilotSync(), which attaches the Sync Unit callback. In the
case of an emotional character, a message informing the action to be executed (“action1”)
is sent to clones. Action 1 is then attached to clones’ display thread. Non-emotional clones
do not execute Action1.

3. Clones’ Action 1 executes enableCloneSync() to attach the Sync Unit callback to their
threads. Non-emotional clones have their Sync Unit callback automatically activated by
the first sync message received (step 4).

4. Pilot’s Sync Unit callback continuously transmits state information in “sync_update”,
“sync_deadreck” or “sync_recover” messages, depending on the current sync mode.  Sync
mode is dynamically determined by environment conditions but it also depends on the
virtual component’s type.

5. Clones’ Sync Unit callbacks verify incoming sync messages to determine the sync mode
and coordinate Actions accordingly. If in update mode, clones are just updated. If in dead
reckoning mode, Action 1 is suspended and the Dead Reckon Action, which corresponds
to a position prediction algorithm, is attached. When convergence to the pilot’s position is
necessary, the Dead Reckon Action is suspended and the Convergence Action is started.
Prediction is resumed when convergence terminates.  In recover mode, which is only
possible for emotional characters, Action 1 is suspended and Recover Action attached
whenever clones need to recover to pilot’s state.

When Action 1 terminates it detaches the Sync Unit callback before it removes itself from the
display thread.

An action that does not require state consistency (Action 2 in Fig. 9) could be the movement
of a clock’s pendulum, the rotation of a propeller or a human virtual eating a sandwich. In that case,
the pilot sends to clones only a message informing the action to be performed.

The above mechanism makes shared state management highly flexible in the sense that it can
adapt itself to the virtual component’s type, emotional or non-emotional, to the actions type, with or
without state consistency, and to dynamic environment conditions such as the activity level.

Fig. 9  Shared state management.

“sync_recover”

Sync Unit callback
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   enableCloneSync( )
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Dead Reckon Action
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“sync_dead reck”
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4 “sync_update”

5

Sync Unit callback
                    update
   sync        dead reck
  mode         recover
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   enablePilotSync( )
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The framework also provides the Network Interface Unit (NIU) to take care of remote
communication at the virtual environment level. Incoming messages related to the virtual
environment’s composition and configuration, such as creation and deletion of clones, are handled
by the NIU itself.  Component level messages are passed on to the appropriate local Entity. The NIU
is able to deliver a message to the right clone because it maintains a map associating pilots’ host
addresses to corresponding local clone Entities and uses the message’s from address as an index to
the map.

CONCLUSIONS AND FUTURE WORK

Behavior, emotion, and autonomy of virtual humans are not well-defined concepts in the area
of networked virtual environments. On the other hand, most of the people working on emotional
characters are not focused on shared state management over a computer network. This paper
explores a common view amongst these areas of research and proposes innovative concepts for
shared emotional state management. Firstly, behavior accuracy is defined in terms of three types of
behavior (physical, procedural and emotional). Secondly, visual soundness – a concept inversely
proportional to behavior accuracy – is associated with the autonomy of clones. Although the
literature have already mentioned that dead reckoning should handle any type of shared state and
state prediction may be object-specific [8], these ideas are not clearly explained. For instance, the
authors of Improv [5] do not present this system in terms of shared state management, although its
scripted events have been recognized as a form of object-specific state prediction elsewhere [8].
JackMOO [6] is also another impressive form of scripted events, but like Improv it cannot cope
with reactive environments and dynamic emotional characters. As far as collision is concerned,
real-time distributed collision agreement for dead reckoning algorithms are not clearly mentioned in
the literature [8]; and the existent systems probably fail the test of visual soundness. Therefore,
most of the interesting dead reckoning extensions produces smooth animation but cannot cope with
undesirable collisions that happen during the convergence stage, such as the position history-based
protocol [16]. One possible solution for many of the above-mentioned drawbacks is to relax the
concept of dead reckoning by exploring the idea of autonomy, which is the basis for distributed
emotional characters on a computer network. Therefore, this paper proposes a framework for
networked emotional characters that can also cope with reactive environments presenting good
levels of visual soundness, behavioral accuracy and collision avoidance.

Several examples were run in a Windows NT environment producing good results, although
performance was not formally investigated. Some of these examples are presented in Figs. 1 and 2
above.

There are several topics for future work. The framework should be expanded and improved to
handle more complex animation and characters. The mental model for avatars is surely a subject for
further investigation. Recovering criteria should also be studied in more detail – on the pilot’s side,
this concerns the set of rules used to dynamically adapt the update rate and, on the clones’ side, the
set of rules used to trigger the recovering action. Also resource management techniques for
scalability and performance should be investigated, especially area-of-interest filtering that is
central to networked emotional characters. Real-time distributed collision agreement is another
important topic for further research.
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