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Abstract

Quispe, Marcela; Haeusler, Edward Hermann (advisor); Gordeev,
Lew (co-advisor). Some Results in a Proof-theory Based on
Graphs. Rio de Janeiro, 2014. 90p. D.Sc. Thesis — Departamento de
Informatica, Pontificia Universidade Catdlica do Rio de Janeiro.

Traditional proof theory of Propositional Logic deals with proofs which
size can be huge. Proof theoretical studies discovered exponential gaps between
normal or cut free proofs and their respective non-normal proofs. Thus, the
use of proof-graphs, instead of trees or lists, for representing proofs is getting
popular among proof-theoreticians. Proof-graphs serve as a way to provide a
better symmetry to the semantics of proofs and a way to study complexity of
propositional proofs and to provide more efficient theorem provers, concerning
size of propositional proofs. The aim of this work is to reduce the weight /size
of deductions. We present formalisms of proof-graphs that are intended to
capture the logical structure of a deduction and a way to facilitate the
visualization. The advantage of these formalisms is that formulas and sub-
deductions in Natural Deduction, preserved in the graph structure, can be
shared deleting unnecessary sub-deductions resulting in the reduced proof. In
this work, we give a precise definition of proof-graphs for purely implicational
logic, then we extend this result to full propositional logic and show how
to reduce (eliminating maximal formulas) these representations such that a
normalization theorem can be proved by counting the number of maximal
formulas in the original derivation. The strong normalization will be a direct
consequence of such normalization, since that any reduction decreases the
corresponding measures of derivation complexity. Continuing with our aim
of studying the complexity of proofs, the current approach also give graph

representations for first order logic, deep inference and bi-intuitionistic logic.

Keywords
Proof Theory;  Proof-graphs; = Natural Deduction;  Proof Com-
plexity;  Strong Normalization; Classical Logic; Implicational Minimal

Logic; Deep Inference; Bi-intuitionistic Logic;
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Resumo

Quispe, Marcela; Haeusler, Edward Hermann (orientador); Gordeev, Lew
(co-orientador). Alguns resultados em teoria de prova baseado em
grafos. Rio de Janeiro, 2014. 90p. Tese de Doutorado — Departamento
de Informatica, Pontificia Universidade Catdélica do Rio de Janeiro.

A teoria da prova tradicional da légica proposicional trata provas
cujos tamanhos podem ser demasiado grandes. Estudos tedricos de prova
descobriram diferengas exponenciais entre provas normais ou livres de corte
e suas respectivas provas nao-normais. Assim, o uso de grafos-de-prova, ao
invés de arvores ou listas, para representar provas estd se tornando mais
popular entre teéricos da prova. Os grafos-de-prova servem como uma forma de
proporcionar uma melhor simetria para a semantica de provas e uma maneira
de estudar a complexidade das provas proposicionais e fornecer provadores de
teoremas mais eficientes, em relagdo ao tamanho das provas proposicionais. O
objetivo deste trabalho é reduzir o peso/tamanho de dedugbes. Apresentamos
formalismos de grafos de prova que visam capturar a estrutura logica de uma
dedugao e uma forma de facilitar a visualizagdo das propriedades. A vantagem
destes formalismos é que as férmulas e sub-dedugées em dedugao natural,
preservadas na estrutura de grafo, podem ser compartilhadas eliminando
sub-deducbes desnecessarias resultando na prova reduzida. Neste trabalho,
damos uma definigdo precisa de grafos de prova para a logica puramente
implicacional, logo estendemos esse resultado para a ldégica proposicional
completa e mostramos como reduzir (eliminando férmulas méximas) essas
representacoes de tal forma que um teorema de normalizagao pode ser provado
através da contagem do nimero de férmulas maximas na derivagao original. A
normalizacao forte serd uma consequéncia direta desta normalizagao, uma vez
que qualquer redugao diminui as medidas correspondentes da complexidade da
derivagao. Continuando com o nosso objetivo de estudar a complexidade das
provas, a abordagem atual também fornece representacoes de grafo para logica

de primeira ordem, a inferéncia profunda e légica bi-intuitionista.

Palavras-chave
Teoria da Prova;  Grafos de Prova; Dedugao Natural, Complexi-
dade de Provas; Normalizagao Forte; Légica Classica; Loégica Minimal

Implicacional; Inferéncia Profunda; Ldgica Bi-intuicionista;
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1
Introduction

The use of proof-graphs, instead of trees or lists, for representing proofs
is getting popular among proof-theoreticians. Proof-graphs serve as a way to
provide a better symmetry to the semantics of proofs (Oliveira & Queiroz 2003)
and a way to study complexity of propositional proofs and to provide more
efficient theorem provers, concerning size of propositional proofs. In (Bonet &
Buss 1993), one can find a complexity analysis of the size of Frege systems,
Natural Deduction systems and Sequent Calculus concerning their tree-like
and list-like representation. This leads to O(nlog(n)) improvement in the size
of the list-based proofs compared to tree-like proofs, which is based on the
observation that the hypotheses occur only once in the lists and more than once
in the trees. Thus sharing formulas helps to reduce the size of proofs. There
are related works, e.g. (Alves, Ferndndez & Mackie 2011), that use graphs
for representing proofs, pointing out that proof-graphs offer a better way to
facilitate the visualisation and understanding of proofs in the underlying logic.

On the other hand (Finger 2005), (da Costa 2007) and (Gordeev,
Haeusler & Costa 2009) show that the use of Directed Acyclic Graphs (DAGs)
together with mechanisms of unification/substitution in proof representations
has compacting/compressing factor equivalent to cut-introduction. And, ob-
viously, graphs can save space by means of reference, instead of plain copying.
This work shows yet another advantage of using graphs for representing proofs.
First, we show that using “mixed” graph representations of formulas and in-
ferences in Natural Deduction in the purely implicational minimal logic one
can obtain a (weak) normalization theorem that, in fact, is a strong norma-
lization theorem. Moreover the corresponding normalization procedure does
not exceed the size of the input, which sharply contrasts to the well-known
exponential speed-up of standard normalization. The choice of purely implic-
ational minimal logic (M) is motivated by the fact that the computational
complexity of the validity of M~ is PSPACE-complete and can polynomially
simulate classical, intuitionistic and full minimal logic (Statman 1979) as well
as any propositional logic with a Natural Deduction system satisfying the sub-

formula property (Haeusler 2013). Then we extend this result to propositional
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logic obtaining also strong normalization.
In a more general context, this work has been conducted as part of a
bigger tree-to-graph proof compressing research project. The purpose of such

proof compression is:

1. To construct small (if possible, minimal) graph-like representations of
standard tree-like proofs in a given proof system and — in the propo-
sitional case — investigate the corresponding short graph-like theorem

provers.

2. To find short (say, polynomial-size) graph-like analogous of standard
tree-like proof theoretic operations like e.g. normalization in Natural

Deduction and/or cut-elimination in Sequent Calculus.

Note that the present work fulfills both conditions with regard to the
mimp-graph representation (see below) of chosen Natural Deduction and the
corresponding notion of formula-minimality (see Theorems 3, 7?7, 4 and 5).

Back to the proof normalization, recall the following properties of a given

structural deductive system (Natural Deduction, Sequent Calculus, etc):

— Normal form: To each derivation of « from A there is a normal derivation
of o from A’ c A.

— Normalization: To each derivation of o« from A there is a normal
derivation of a from A’ ¢ A, obtained by a particular strategy of

reductions application.

— Strong Normalization: To each derivation of a from A there is a normal
derivation of o from A’ ¢ A. This normal form can be obtained by

applying reductions to the original derivation in any ordering.

The strong normalization property for a natural deduction system is

usually proved by the so-called semantical method:

— Define a property P(m) on derivations 7 in the Natural Deduction

system;

— Prove that this property implies strong normalization, that is Va (P(7) —
SN (7)), where SN(X) means that X is strongly normalizable;

— Prove that V@ P(m).

There are well-known examples of this property P(X) : (1) Prawitz’s
“strong validity”; (2) Tait’s “convertibility”; (3) Jervell’s “regularity”; (4)
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Leivant’s “stability”; (5) Martin-L6f’s “computability”; (6) Girard’s “candi-
date de reducibilité”. Note that such semantical method to prove strong
normalization is unconstructive and even in the case of purely implicational
fragment of minimal logic it provides no combinatorial insight into the nature
of strong normalization. Another, more constructive strategy would be to
show that there is a worst sequence of reductions always produces a normal
derivation. Let us call it a syntactic method of proving the strong normalization
theorem. The method used in the present research is that any sequence of
reductions always produces a normal derivation. This means that the order
in which cuts (maximal formulas) are eliminated has no impact on the end-
result. This is obtained by brute force: the proof consists of an exhaustive
case-analysis.

Other methods use assignments of rather complicated measures to deriv-
ations such that arbitrary reductions decrease the measure, which by standard
inductive arguments yields a desired proof of the strong normalization. In
this thesis we show how to represent derivations in a graph-like form to M~
and full propositional logic, and how to reduce (eliminating maximal formu-
las) these representations such that a normalization theorem can be proved
by counting the number of maximal formulas in the original derivation. The
strong normalization is a direct consequence of such normalization, since any
reduction decreases the corresponding measure of derivation complexity. The
underlying intuition comes from the fact that our graph representations use
only one node for any two identical formulas occurring in the original Natural

Deduction derivation (see Theorem 3 for a more precise description).

[p]' [p24]
B , HL__p¢
r r>(>q) p=>(pAq) > > [MPTQ
7 T T P -
rr3p il (r29)> (> (pra)) TP p>(pArg)
P P> (pAg) PAgQ
PAg
r r>(p>q)
. b P34 r_rop T r2@309)
[p] q by T TP P p2g
r r2p pPAg p 4
—p p=(prg) pAg
PAg

Figure 1.1: Example of derivation with two steps of reduction.

We show in Figure 1.1 an example of the eliminating a maximal formula
in a derivation in Natural Deduction. The formula p » (pA¢q) is not a maximal
formula before a reduction (>1) is applied to eliminate the maximal formula
(p~>q) > (p> (prq)). This possibility of having hidden maximal formulas in
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ND is the main reason to use more sophisticated methods whenever proving
strong normalization.

In Figure 1.2 we show an embedding of this derivation into a mimp-
graph. This example shows the reason why our normalization procedure is
directly a strong normalization. We remark that there is no possibility to hide
a maximal formula because all formulas are represented only once in the graph
(see Figure 1.2). In this graph p » (pAgq) is already a maximal formula. We can
choose to remove any of the maximal formulas. If p > (p A q) is chosen to be
eliminated, by the mimp-graph elimination procedure, its reduction eliminates
the (p = q) » (p > (pAq)) too. On the other hand, the choice of (p » q) » (p »
(pAq)) to be reduced only eliminates itself. In any case the number of maximal

formulas decreases and the mimp-graph becomes as shown in Figure 1.3.

Figure 1.3: Normalized mimp-graph of the example in Figure 1.2.

Continuing with our aim of studying the complexity of proofs, the current
approach also give graph representations for first order logic, deep inference

and bi-intuitionistic logic.
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1.0.1
Related work

The related idea of proof-graphs has been investigated in the last deca-
de, for classical and intuitionistic logic. More recently, N-graphs introduced by
de Oliveira (Oliveira & Queiroz 2003) is a proof system originally developed
for classical logic, as a suitable solution to the lack of symmetry in classical
ND logic. Mainly because N-Graphs use a multiple conclusion proof struc-
ture. N-Graphs have also been adapted for intuitionistic logic (Quispe-Cruz,
de Oliveira, de Queiroz & de Paiva 2014).

In (Geuvers & Loeb 2007) another approach to represent Natural De-
duction using graphs is proposed. It reports a graph-representation of Natural
Deduction, in Gentzen as well as Fitch’s style. In fact the proofs are repres-
ented as hypergraphs, or boxed-graphs, with possibility of sharing subproofs.
It is developed not only for the implicational fragment, although the repre-
sentation of linear logic proofs is related as further work. Our approach is di-
fferent from (Geuvers & Loeb 2007) in that we include graph-representations
of formulas in the proofs. The fact that our normalization procedure leads
to strong-normalization is a consequence of sharing subformulas, and hence
subproofs, in our proof-graph representations. It is unclear whether a similar
result is available using (Geuvers & Loeb 2007).

Other previous research concerning the use of graphs to represent proofs
was developed on connections to substructural logics as Linear Logic, see
(Girard 1996) and (Girard, Lafont & Regnier 1995) for example. The main
motivation of this just mentioned investigations is to provide a sound way
of representing Linear Logic proofs without dealing with unique labeling and
complicated rules for relabeling and discharging mechanisms need to represent
Linear Logic proofs as trees in Natural Deduction style as well as in Sequent
Calculus.

Proof-nets were such representations and a syntactical criteria on the
possible paths on them were considered as a soundness criteria for a proof-
graph to be a proof-net. Proof-nets have a cut-rule quite similar to the cut in
Sequent Calculus. For the Multiplicative fragment of Classical Linear Logic,
there is a linear time cut-elimination theorem. However, when the additive
versions of the connectives are considered, the usual complexity of the cut-
elimination raises up again. Linear Logic is an important Logic whenever we
consider the study of a concurrent computational system and semantics of
it strongly uses concurrency theory concepts. Our investigation, on the other
hand, is not motivated by proof-theoretical semantics !. From the purely proof-

! The name that nowadays is used to denote the kind of research pioneered by Jean-Yves
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theoretical point of view, we use graphs to reduce the redundancy in proofs
in such a way that we do not allow hidden maximal formulas in our graph
representation of a Natural Deduction proof.

Finally, we mention Alessio-Gundersen (Guglielmi & Gundersen 2008)
work, where a kind of flow graph is used to present an abstract graphical
framework capable of representing the calculus of structures in deep inference
and is also presented a normalization mechanism via an abstract graphical

framework for SKS system.

1.1
Organization

Chapter 2 gives the basic notions of natural deduction that is considered
in the thesis.

Chapter 3 introduces our proof-graphs for minimal implicational propo-
sitional logic.

Chapter 4 proposes proof-graphs with explicit sharing of sub-proofs by
means of boxes to border the set of shared rules.

Chapter 5 adds the full minimal propositional logic to the mimp-graph
formalism (propositional mimp-graph) with its normalization procedure and
then adds a version for first order logic and the set of transformations that we
need to describe the normalization.

Chapter 6 starts with a brief overview of deep inference and the calculus
of structures by Guglielmi (Guglielmi 2007) and then presents a proof-graph
representation for this calculus; and Section 6.2 introduces the Bi-intuitionistic
Logic and then shows how the formalism N2Int can be embedded in proof-

graphs.

Girard
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2
Background

In this chapter, we present the basic notions related to the logics that
will be considered in the thesis. We will start by introducing natural deduction
that will serve as a basis for developing proof-graphs. Thus, we review the first

order logic formulation in Gentzen-Prawitz’ Natural Deduction.

2.1
Natural Deduction

2.1.1
A Natural Deduction System

The natural deduction (ND) is formulated in a language with logical
symbols: connectives A, v, >, the quantifiers V and 3, parentheses, bound
variables z,vy,z,..., free variables a,b,c,... and the symbol for contradic-
tion, 1(absurdity). Non-logical symbols: the propositional letters, predicates
P,Q, R, ..., functional symbols. The set of formulas A, B,C, ... can be genera-
ted with these logical symbols and non logical symbols. Negation of a formula
A is expressed by A » 1.

Definition 1

- Minimal Implicational Logic. It is a version of classical proposi-
tional calculus: Formulas are built only with propositional letters and the
implication connective ». There are only two simple inference rules in
ND: the implication introduction (31) and the implication elimination
(=>E) that we will see later.

— Propositional Logic. We will now add to propositional logic, the
connectives: conjunction (A) and disjunction (V) and their introduction

and elimination rules.

- First Order Logic. In addition to the symbols of propositional logic
(connectives, propositional letters and parentheses), It includes the quan-

tifiers V and 3, predicates, functional symbols and constants.
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An inference rule is a scheme written as:

S1,52, ...y Sh,

S P

where p is the name of the rule, S, .55, ..., S, are premise formulas and S is
the conclusion formula. The basic idea of Natural Deduction is an asymmetry:
Deductions take the form of tree-like structure, starting with one or more
hypotheses as the leaves but having only one conclusion as the root.

The natural deduction system is described by means of introduction and
elimination rules for each connective/quantifier plus the intuitionistic absurdity
rule (17) and the classical absurdity rule (Lo). These inference rules are as
follows (Menezes & Haeusler 2006):

Conjunction
]._.[1 H2 ]--[1 Hl

A B/\I AAB AAB
AAB A B

/\ER /\EL

Disjunction
[Al* [B]
I, I, Iy

AvBVIR AvBVIL AvB C’C C(vE,u,v)

Implication
[A]"
I

AEB L w) B

Existential Quantifier

[A@)]

JzA(x) C

A(t)

eA(z)

JE

Universal Quantifier

A(a)
VzA(x)

VzA(x)

VI A7)

VE

Intuitionistic and Classical Absurdity

[A» L]

11,
17 1

IT,
I
A A (Le,u)
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Some rules allow to discharge the hypotheses, when a formula is inferred,
it becomes independent of a certain hypothesis. We denote discharged hypo-
thesis by using square brackets and use an index to relate the hypothesis to

the rule application that discharges it.

— In VI-rule the parameter a can not occur in any hypothesis on which the
proof of A(a) depends.

— In JE-rule the parameter a can not occur neither in 3zA(z), nor in C,

nor in any hypothesis on which the upper occurrence of C' depends other
than A(a).

Figure 2.1 shows a proof in Natural Deduction. The formulas VyF'(a,y)
and 3zVyF(z,y) are assumed at first. Then they are discharged at the steps

JE; and I, respectively.

[VyF(a,y)]”
F(a,b)
Iz F(z,b) A
[JzVyF(z,y)]* VYyIzF(z,y)
VyIzF(z,y)
IzVyF(x,y) » VyIzF(z,y)

(3E, v)
(=Lu)

Figure 2.1: A proof in Natural Deduction.

In the definition of proof-graphs for first order logic, we will only be
concerned with natural deduction for intuitionistic logic, that is obtained by

the set of rules for ND, excluding the classical absurdity rule (L.).

2.1.2
Normalization

In some kinds of derivations, we have the existence of redundancies.
Specifically, we have redundancies or “detours” like introduction followed by
elimination of a connective that can be transformed into a proof without the
two rules. Proof transformations by eliminating redundancies is called the
normalization procedure, which is the main computational interest for us and
was introduced by Gentzen and later on developed much further by Prawitz,
who considerably extent Gentzen’ techniques and results. For an extensive

treatment see (van Dalen 1994).

Definition 2 A formula occurrence v is a maximal formula in a derivation
when it is the conclusion of an introduction rule and the major premise of an

elimination rule. v is called a mazimal formula.
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Derivations will systematically be converted into simpler ones by “elimi-

nation of maximal formulas”. The main cases are defined below:

Definition 3 (One Step Reduction)

- Al followed by AE;:

IT; I1,
A Ay Al converts to IL;
Al A Az AE. Az
A, ¢
- >l followed by -»E:
[A]" 11,
IT
11, B2 (=1, 1) converts to [1&4]
>, U 2
A BA »> B SE B

- vI followed by VE:

II [Ad]* [Ae] I

_ A vI IL IL converts to 4]
ALv 4, B B (VE,u,v) II;
B el B

- VI followed by VE:

11
A It/
VaAlzial Alz/y] :i—; converts to A{t/;ﬂ
Alt/y]
- A1 followed by JE:
Afil) [A(y)] Ar?)
t II, t
—7 9 converts to
Az A B 11
zA(x) _ (3E.) z%/y]

Notation II >; I’ stands for “II is converted to II’ ”. II > II’ stands for
“there is a finite sequence of conversions IT = IIy >y II; >y ... > II,_; =II’ ” and
IT > II" stands for II > IT" or IT =II". (II reduces to II" ).

Definition 4 If there is no II} such that Iy >; I} (i.e. if II; does not contain
mazximal formulas), then we call TI; a normal derivation, or we say that II;
is in normal form, and if II > II' where II' is normal, then we say that 11

normalizes to II'.
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We say that > has the weak normalization property if every derivation
normalizes. Moreover, when this property holds independently of the strategy
that is used in applying the reduction steps, one says that the system satisfies

the strong normalization property.

Theorem 1 (Weak Normalization) All derivations normalise.

Theorem 2 (Subformula Principle) Every formula occurrence in a nor-
mal deduction of A from T has the shape of a subformula of A or of some
formula of T, except for hypotheses discharged by applications of the Lo-rule

and for occurrences of L that stand immediately below such hypotheses.
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3
Mimp-graphs: Graphs for Minimal Implicational Logic

In this chapter we define graph representations using “mixed” formulas
and inferences in Natural Deduction in the purely implicational minimal
logic; then we obtain a (weak) normalization theorem that, in fact, is a
strong normalization theorem. The choice of purely implicational minimal
logic (M=) is motivated by the fact that the computational complexity
of the validity of M~ is PSPACE-complete and can polynomially simulate
classical, intuitionistic and full minimal logic (Statman 1979) as well as any
propositional logic with a Natural Deduction system satisfying the subformula
property (Haeusler 2013).

3.1
Definition of Mimp-graphs

Mimp-graphs are special directed graphs whose nodes and edges are
assigned with labels. Moreover we distinguish two parts, one representing the
inferences of a proof, and the other the formulas. For the formula-part of a
mimp-graph, we use formula graphs as a basis and consist only of formula
nodes (see Definition 8). A formula can also be presented as a formula tree,
but sharing within a formula is possible with formula graphs. An example is
shown in the Figure 3.1: the propositions p and ¢ each only need to occur once
in the graph.

AN ,;(:’L}‘»\
Ve \'\. o
K - J/
) ) (3
FL Vgl i
# . K T & P
® @ ® @ @) (@

Figure 3.1: Formula (p » ¢) » (p » ¢) depicted as a formula tree (left side)
and as a formula graph (right side).

The formula nodes (F-nodes) are labeled with formulas as being en-

coded /represented by their principal connectives (in particular, atoms). Addi-
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tionally we will use delimiter nodes (D-nodes) H; and C' to indicate which are
the hypothesis formulas and the final conclusion formula of the mimp-graph.

As for the inference-part of a mimp-graph we have the rule nodes (R-
nodes) that are labeled with the names of the inference rules (I and -E). Both
logic connectives and inference names may be indexed, in order to achieve an
1-1 correspondence between formulas (inferences) and their representations
(names).

Since formulas are uniquely determined by the representations in ques-
tion, i.e. F-node labels, in the sequel we will sometimes identify both; to em-
phasize the difference we will refer to the former as formula graphs, i.e. those

whose F-node labels are formulas, instead of principal connectives.

Proposition: Implication:
(») PON
\ e
/ N
/ ™
e
formula node formula node

(left subformula) (right subformula)

Figure 3.2: Types of formula nodes.

Edges are labeled with tokens that identify the connections between the
respective R-nodes and F-nodes. Note that formulas may occur only once in
the mimp-graph. Subformulas are indicated by outgoing edges with labels [
(left) and r (right), see Figure 3.2.

R-nodes, like in Natural Deduction, require the correct number of
premises. The premises are indicated by incoming edges and there are edges
from the R-nodes to the conclusion formulas. In the terminology about R-
nodes, the R-node —E has two incoming edges, these are distinguished by
calling them major (with label M) or minor (with label m) and so also the F-
node ‘premise’ associated with these edges. Thus, an R-node —E has a major
premise and a minor premise, the major premise contains the connective that
is eliminated; the other premise is called ‘minor’, and an R-node —I has only
one premise. Figure 3.3 shows the R-nodes »I (implication introduction), »Iv?
(implication introduction vacuously) and »E (implication elimination). In the
case in which the discharge of hypotheses is vacuous, a mimp-graph is repres-
ented by a disconnected graph, where the discharged F-node is not linked to
the conclusion of the rule by any directed path.

In the R-nodes, formulas are re-used, which is indicated by putting several
arrows towards them, hence the number of edges with label p, M, m and ¢

coming/going to an F-node could be arbitrarily large. To make all this a bit

Lthe “v” stands for “vacuous”, this case of the rule I discharges a hypothesis vacuously.
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formula node formula node formula node formula node
major premise) (minor premise . remise remise
\maj F?‘ ) p ) delimiter node (p T ) (P m )
,,7 & (closed asg?mption} i.\-: “-i
NE¥ B S § (>Iv}
“-Ir' “.—J -\1_/
:_;:' Ry '.IE
W v W
formula node formula node formula node
(conclusion) (conclusion) (conclusion)

Figure 3.3: Types of rule nodes of the mimp-graph.

[p]' p-og
B [P
7 >F
p—_) T (-)[3,].)

(@) (pan) T

2

| trans

Figure 3.4: The transition from a derivation in ND to a mimp-graph.

more intuitive we give an example of a mimp-graph in Figure 3.4, which can
be seen as a derivation of (¢ » 7) » (p » r) from (p » ¢). Hypotheses are
replaced by D-nodes H and indexes of discarded hypotheses are replaced by
additional edges assigned with the label: disc. Note that the D-node H can
only be discharged once. The re-using of formulas is necessary. We remind the
reader that some valid implicational formulas, such as ((((r » s) »7) > 1) >
s) » s (see Figure 3.5), need to use any number of times a subformula, in this
case the subformula (((r » s) » r) » ) > s is used twice. Because of this,
edges p, m, M and c in Figure 3.5 are indexed with the same index of the
R-node to which they belong.

F-nodes in the graph (Figure 3.4) are labeled with propositional letters p,
q and r, the connective »; R-nodes are labeled with »E and »I. The underlying
idea is that there is an inferential order between R-nodes that provides the

corresponding derivability order; F-node labeled 4 linked to the delimiter node
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[r]*

(r=>s8)=>r)>r [((r>s)>7r)>71)>s]®

r_f)s [(r>3s)>r]?
((r>s)>r)>r)

[(((r>s)>r)>7)>s]3

(((r>s)>r)>r)>s)>s

|| trans

L il T,
.

! £s icr
i’ Ir
Mf / [0
4 8
s / S

Figure 3.5: The transition from a natural deduction proof to a mimp-graph.

with labeled C' by an edge labeled conc is the root node and the conclusion
of the proof represented by the graph. Besides, the node -»; linked to the
delimiter node labeled Hj by the edge labeled hyp (hypothesis) in the graph
is representing the premise (p » q).

We want to emphasize that the mimp-graphs put together information on
formula-graphs and R-nodes. To make it more transparent we can use different
types of lines. In this way F-nodes and edges between them are used solid lines,
whereas inference nodes and edges between them and adjacent premises and/or
conclusions are used dashed lines and additionally delimiter nodes have been
shaded. So nodes of types » and p (propositions) together with adjacent edges
(1,7) have solid lines, whereas nodes labeled »I and »E together with adjacent
edges (m, M, p, c,disc) have dashed lines.

We now give a formal definition of mimp-graphs.
Definition 5 (Label types) There are four types of labels:
— R-Labels is the set of inference labels: {1,/n € N} u {s3E,,/m € N},

— F-Labels is the set of formula labels: {=;/i € N} and propositional letters
{p7Q7r) "'}7
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— Ep-Labels is the set of edge labels: {l (left), r (right)},

— Ey-Labels is the set of edge labels: { p; (premise), m; (minor premise),
My, (major premise), ¢, (conclusion), discs (discharge), hyp, (hypo-
thesis), conc (final conclusion) / i,j,k,r,s,t € N},

— D-Labels is the set of delimiter labels: {Hy/k e N} u{C}.

The union of these four sets of label types will be called LBL.

Definition 6 Let G be a graph. ly is a labeling function from the nodes of G
to RUFuUD-Labels, i.e. it assigns a label to each node; lg is a labeling function

from the edges of G to EpUE,-Labels, i.e. it assigns a label to each edge.

Definition 7 Let G; = (V!, El, L) and Go = (V?, E2, L?) be two graphs,
where: VI and V2 are sets of vertices, E! and E? are sets of labeled edges, L
and 1.2 are subsets of LBL. The operation G1®Gs = ( Viu V2, E17 E2) Llu L?)
equalizes nodes of G1 with nodes of G5 that have the same label, and equalizes

edges with the same source, target and label into one. To be precise, the sets
Vu V2 and E'7 E? are of the form

- Viuv2= {CU]_ € Vl}U {LUQ € VZ/VIL']_ eVl lvl(IL']_) * le(l'g)}.
~ B B? = {z1—1; € BV} U {my—2oy € B2/ V(z1—5y1) € B (I (z1) #
b2 (22) V U1 (31—1) # Lz (ma—>90) v ly1 (31) # Ly2(y2))}-

Note: This operation does not include nodes created by duplication or marked,

according what is explained in Definition 28.

We will use the terms o, 8, and +, to represent the principal connective
of the formula «, 8 and ~y respectively. In next definitions, the graph has been

simplified to improve readability, and to explain the details.

Definition 8 (Formula graph) A formula graph G is a directed graph
(N, A, B) where: N is a set of vertices (or nodes), A is a set of labeled edges
(ve N, t eEp-Labels, v’ € N) of source v, target v’ and label t and is identified
with the arrow 'ULVU’, B is a set of labels b € FUEp-Labels.

Formula graphs are recursively defined as follows:
Basis One propositional letter p is a formula graph.

> If Gy is a formula graph with root node o, and G5 is a formula graph
with root node B,, then the graph G that is defined as G1 & Gy with

1. an F-node >,
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2. edges: -)ql—>ozm and »>,——sf,,
is a formula graph (see the following figure).

Gy Gy

(&> -

Definition 9 (Mimp-graph) A mimp-graph G is a directed graph (V, E, L)
where: V is a set of nodes, L is a subset of LBL, E is a set of labeled edges (v €
V, t € Epyp-Labels, v’ € V') of source v, target v’ and label t and identified
with the arrow v—v'.

Mimp-graphs are recursively defined as follows:

Basis If Gy is a formula graph with root node o, then the graph G defined as
G: with delimiter nodes H, and C and edges a,—sC' and thﬂwm

s a mimp-graph.

sE If Gy and Gy are mimp-graphs, and the graph (intermediate step) obtained
by G1 ® G5 contains the edge -)ql—>am and two nodes >, and o, linked
to the delimiter node C, then the graph G5 that is defined as G1 ® G,
with

1. the removal of ingoing edges in the node C which were generated in
the intermediate step (see the figure below, dotted area in G & Gs);
2. an R-node »E; at the top position;

C conc
»E;, »E,—=p, and p,—C, where

new is a fresh (new) index ranging over all edges of kind ¢, m and

new

3. edges: oyp—

M ingoing and/or outgoing of F-nodes o, [, and >4;

is a mimp-graph (see the following figure).

>I If Gy is a mimp-graph and contains a node B, linked to the delimiter node
C and the node a, linked to the delimiter node Hy, then the graph G
that is defined as
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1. G := Gy & Go, such that Gy is a formula graph with root node -,
linked to F-nodes a,, and (3, by edges: -)tl—>am, >——Bn;

conc

2. with the removal of edges: B,—C;
3. an R-node >1; at the top position;

p c conc disc,
4. edges: B,——>1;, sL;—5» 5, ——C and »1;,—> H},, where new
is a fresh (new) index considering all edges of kind p, disc and c

ingoing and/or outgoing of F-nodes oy, By and -4;

is a mimp-graph (see the following figure; the a,,-node is discharged).

>Iv If G1 is a mimp-graph and contains a node B, linked to the delimiter
node C, then the graph G that is defined as

1. G == Gy ® Gy, such that Gs is a formula graph with root node >4
linked to F-nodes o, and B, by edges: -)tl—>am, -)tr—>ﬂn;

2. with the removal of the edge B, —~—>C;

3. an R-node »lv; at the top position;

4. edges: Bnm»)lvj, > 25C and -)Ivjcnﬁh)t, where new is an index

under the same conditions of the previous case;

is a mimp-graph (see the following figure).

Definition 10 Let G be a mimp-graph. An inferential order < on nodes of
G is a partial ordering of the R-nodes of G such that n <n' iff n and n' are
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R-nodes and there is an F-node f such that nﬂ)f Bt and Ibly is ¢ and

Ibly is m, or lbly is ¢ and lbly @s M, or [bly is ¢ and Ibly is p. Node n is a top

position node if n is maximal w.r.t. <.

In order to avoid overloading of indexes, we will omit, whenever possible,
the indexing of edges of kind ¢, m, M, p and disc, keeping in mind that the
coherence of indexing is established by the kind of rule-node to which they are
linked.

Lemma 1 enables us to prove that a given graph G is a mimp-graph. We
just have to check that G has an inferential ordering on all R-nodes and that
each node of G is of one of the possible types that generate the Basis and the

construction cases »E, »I and »Iv of Definition 9.
Lemma 1 G is a mimp-graph if and only if the following properties hold:

1. There exists a well-founded (hence acyclic) inferential order < on all R-

nodes of the mimp-graph?.
2. Every node N of G is of one of the following siz types:

P N is labeled with one of the propositional letters: {p, q, 1, ... }. N

has no outgoing edges | and r.

K N has label »,, and has exactly two outgoing edges with label | and
r, respectively. N may has outgoing edges with labels p;, m; or My;

and ingoing edges with label c; and hyp,,.

E N has label 5E; and has ezactly one outgoing edge >E;——> [, where
Brn is a node type P or K. N has exactly two ingoing edges
am—>>E; and -)qLeEi, where oy, s a node type P or K. There

are two outgoing edges from the node -»,: -)ql—>am and »;——B.

I N has label »1; (or »lv;, if discharges an hypothesis vacuously), has
one outgoing edge »1,—-;, and one (or zero for the case »Iv)
outgoing edge -)deii>H k- N has ezactly one ingoing edge: ﬂnp—>Ij,
where B, is a node type P or K. There are two outgoing edges from
the node >;: -)tl—>am and -)tr—>ﬂn such that there is one (or zero

for the case »Iv) ingoing edge to the node oy, : Hkhﬂ»am.
H N has label Hy and has outgoing edges with label hyp.

ZWe can extend this “dashed” inferential order < to the full “mixed” order <* by adding

new “solid” relations < corresponding to arrows L and 5 between F-nodes. Note that <*
may contain cycles (see Figure 3.4). However all recursive definitions and inductive proofs
to follow are based on the well-founded “dashed” order <, hence being legitimate.
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C N has label C and has ezxactly one ingoing edge with label conc.

Proof:

=: By induction on the construction of mimp-graph (Definition 9). For
every construction case for mimp-graphs we have to check the three properties
stated in Lemma. Property (2) is immediate. For property (1), we know from
the induction hypothesis that there is an inferential order < on R-nodes of
the mimp-graph. In the construction cases »I, sIv or 5E, we make the new
R-node that is introduced highest in the <-ordering, which yields an inferential
ordering on R-nodes. In the construction case »E, when we have two inferential
orderings, <; on GG; and <3 on G5. Then G; & G5 can be given an inferential
ordering by taking the union of <; and <, and in addition putting n < m for
every R-node n,m such that n € G; and m € Gs.

<=: By induction on the number of R-nodes of G. Let < be the topological
order that is assumed to exist. Let n be the R-node that is maximal w.r.t. <.
Then n must be on the top position. When we remove node n, including its
edges linked (if n is of type I) and the node type C is linked to the premise of
the R-node, we obtain a graph G’ that satisfies the properties listed in Lemma.
By induction hypothesis we see that G’ is a mimp-graph. Now we can add the
node n again, using one of the construction cases for mimp-graphs: Basis if n
is a P node or K node, »E if n is an E node, -1 if n is an I node. [

It is natural to consider minimal mimp-graph-like representations of given
natural deductions. Actually one can try to minimize the number of F-nodes
and/or R-nodes, but in this version we consider only the F-option, as it helps
to reduce the size under standard normalization (see the next section). To
grasp the point, note that mimp-graph in Figure 3.4 (see above) is F-minimal,
i.e., its F-labeled nodes refer to pairwise distinct formulas. This observation is

summarized by Theorem 3.

Theorem 3 (F-minimal representation) FEvery standard tree-like natural
deduction II has a uniquely determined (up to graph-isomorphism) F-minimal

mimp-like representation Gy that satisfies the following four conditions.

1. G is a mimp-graph whose size does not exceed the size of 1.

2. II and Gy both have the same (set of ) hypotheses and the same conclu-

sion.
3. There is graph homomorphism h : Il - Gy that is injective on R-Labels.

4. All F-Labels occurring in G denote pairwise distinct formulas.


DBD
PUC-Rio - Certificação Digital Nº 1012697/CA


PUC-RIo - Certificacdo Digital N° 1012697/CA

Some Results in a Proof-theory Based on Graphs 30

Proof: Let N and Form be the set of nodes and formulas, respectively, occur-
ring in II. Note that II determines a fixed surjection f : N-Form that may not
be injective (for in II, one and the same formula may be assigned to different
nodes). In order to obtain G take as R-nodes the inferences occurring in II
assigned with the corresponding R-Labels representing inferences’ names (pos-
sibly indexed, in order to achieve a 1-1 correspondence between inferences and
R-Labels, cf. Figure 3.4). Define basic F-nodes of G as formulas from Form
assigned with the corresponding F-Labels representing formulas’ principal con-
nectives (possibly indexed, in order to achieve an 1-1 correspondence between
formulas and F-Labels, cf. Figure 3.4). So the total number of all basic F-nodes
of Gy is the cardinality of the set Form, while f being a mapping from nodes
of II onto the basic F-nodes of Gp. To complete the construction of G we
add, if necessary, the remaining F-nodes labeled by failing representations of
subformulas of f(z), z € N, and define the E-Labels of Gy, accordingly. Note
that by the definition all nodes of G have pairwise distinct labels. In particu-
lar, every F-Label occurs only once in Gpj, which yields the crucial condition
4. [ ]

3.2
Normalization for mimp-graphs

In this section we define the normalization procedure for mimp-graphs.
It is based on the standard normalization method given by Prawitz. Thus a
mazimal formula in mimp-graphs is a »I followed by a »E of the same formula
graph (see Definition 11). It is the same notion of maximal formulas that is
being used in natural deduction derivations. So a maximal formula occurrence
is the consequence of an application of an introduction rule and major premise
of an application of an elimination rule. But here we assume that derivations
represented by mimp-graphs. We wish to eliminate such maximal formula by
dropping nodes and edges that are involved in the maximal formula.

Definition 11 A maximal formula m in a mimp-graph G (see the figure below,
where the double-headed arrows represent several edges) is a sub-graph of G

consisting of:
1. F-nodes o, Bn, 24, the R-node >1; and the delimiter node H,;
2. the R-node »E; at the top position;

l T p c hyp disc
3. edges: >, Qs >4 Bn, Bn »l;, -1, >4, Hy, O, 21;—H,,

m M c
ap—E;, »—>E; and -sE;—f,,;
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I,
O
a a >0
3 s>E
I3

However, as a special case of maximal formula could also happen that
between the R-nodes »I and »E there are several other maximal formulas such
as the case in the example of Figure 3.6, where there is a maximal formula
with R-nodes »I, and »Ej; (dotted area with white background) inside of the
maximal formula with R-nodes »I3 and »E¢ (area with shaded background).
That is, the inferential orders of R-nodes are intermediate to those of the R-
nodes »I3 and »Eg. In these cases eliminate in one step the maximal formula,
with the exception of the R-nodes »; and »; because they are still related with
other nodes, becoming as shown in the same figure. We can visualize another
maximal formula (with R-nodes »Iy and »E;) that is pending removal.

Definition 12 (1) For n; € V, a path in a proof-graph is a sequence of

. h la lg—2 I .
vertices and edges of the form n, Ny Np-1 ny such that ny is

a hypothesis F-node, ny, is the conclusion F-node, n; alternating between an R-
node and an F-node. edges; alternate between two types of edges: l; € {m, M, p}
and l; = c¢. (2) A branch is an initial part of a path which stops at the
conclusion F-node or at the first minor premise whose major premise is the

conclusion of an R-node.

The term R-node sequence is representing a deduction, and if it is a
smaller part of another R-node sequence (subdeduction), then it is called a
subsequence of the latter. A subsequence that derives a premise of the last R-
node application in an R-node sequence is called a direct R-node subsequence.
Instead of writing “the direct R-node subsequence that derives the minor
premise of the last inference of an R-node sequence D”, we simply write “the

minor subsequence of D”.

Definition 13 A reordering of a given mimp-graph G is obtaining by supply-
ing G with the following (new) inferencial order on the R-nodes of G.

- o(t,) =0 for an R-node t,, starting with hypothesis.

- o(t) = o(t") + 1 if the conclusion formula of R-node t' is premise, right

premise or magjor premise of t.
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Figure 3.6: Example of a maximal formula with an intermediate maximal
formula.

Proposition 1 A graph obtained by a reordering according to Definition 13

is @ mimp-graph.

Definition 14 Consider a mimp-graph G with a mazimal formula m, that

satisfies the following requirements:

1. Between the R-nodes -1, and ->E; there are zero or more maximal

formulas with inferential orders within the range of these rule nodes.

2. There is an edge -)I,-i»)q and the F-node >4 has zero or more ingoing

edges.

3. There is an edge -)qL-)El and the F-node -, is the premise of zero or

more of another R-nodes.

4. If a branch will be separated from the inferential order this branch must
be insertable in the following branch, according to the order, i.e., the

conclusion of this separated branch is the premise in the following branch.

The elimination of a maximal formula m from G is the following opera-
tion on a mimp-graph (see Figure 3.7, the double-headed arrows are represen-

ting several edges):
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1. If there is no mazximal formula between the R-nodes »1; and ->E; then

follow these steps:

(a) If the edge »1,—>, is the only ingoing edge to », and the edge
-)qL-)El is the only outgoing edge from -, then remove edges to

and from the F-node -4, and remove the F-node .

(b) If the D-node H,, discharged by >1, has n outgoing edges with label

hyp then repeat n-times edges in the minor subsequence of >E;.
(c) Remove edges to and from nodes »1;, »E; and H,.
(d) Remove nodes »1;, »E; and H,.
(e) Apply the operation defined in Definition 18 to the resulting graph.

Note that Proposition 1 ensures that the result is a mimp-graph.

2. Otherwise eliminate the mazimal formulas between the R-nodes »I; and

>E; as in the previous step.

N
f&)‘!}_\ |I D
~ *u ! |
f&;'fi‘.“ Ve
')
;b_, “_\_\\ \‘\I
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b o 3~ F ~
[ 2 - * '\/ | \\
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Figure 3.7: Elimination of a maximal formula in mimp-graphs.

Note that the removal of a node type I generated by case -»Iv in
Definition 23, disconnects the graph, meaning that the sub-graph hypotheses
linked, by the edge with label m, to the node labeled »E removed, is no longer
connected to the delimiter node type C.

Figure 3.8 shows an instance of the elimination of a maximal formula in

tree form. Note that this example shows the reason why essentially our (weak)
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Figure 3.8: Eliminating a maximal formula in a natural deduction proof and

its mimp-graph translation.
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normalization theorem is directly a strong normalization theorem. The formula
B » v is not a maximal formula before a reduction is applied to eliminate the
maximal formula o » (8 » 7). This possibility of having hidden maximal
formulas in Natural Deduction is the main reason to use more sophisticated
methods whenever proving strong normalization. In mimp-graphs there is no
possibility to hide a maximal formula because all formulas are represented
only once in the graph. In this graph 8 » 7 is already a maximal formula. We
can choose to remove any of the two maximal formulas. If 5 » 7 is chosen
to be eliminated, by the mimp-graph normalization procedure, its reduction
eliminates the @ » (8 » ) too. On the other hand, the choice of @ » (8 »
v) to be reduced only eliminates itself. In any case, the number of maximal

formula decreases.

Lemma 2 If G is a mimp-graph with a mazimal formula m and G' is obtained

from G by eliminating m, then G' is also a mimp-graph.

Proof: We use Lemma 1. All nodes in G’ are of the right form: P, F, E, I, H
or C. We verify that G’ has one ingoing edge with label conc to the delimiter
node type C and that is acyclic and connected. Finally, a referential order on
G' (as defined in Definition 13) between R-nodes must preserve. ]

We shall construct the normalization proof for mimp-graphs. This proof
is guided by the normalization measure. That is, the general mechanism from
the proof determines that a given mimp-graph G should be transformed into a
non-redundant mimp-graph by applying reduction steps and at each reduction
step the measure must be decreased. The normalization measure will be the
number of maximal formulas in the mimp-graph.

Also note an important observation concerning F-minimal mimp rep-
resentations (see Theorem 3). Since F-minimal mimps can have at most one
occurrence of hypotheses a and/or 3, every proper reduction step will diminish
the size of deduction. Hence the size of the graph (= the number of nodes)
can serve as another inductive parameter, provided that the normalization is
being applied to F-minimal mimp-graph representations.

Theorem 4 (Normalization) Every mimp-graph G can be reduced to a
normal mimp-graph G’ having the same hypotheses and conclusion as G.
Moreover, for any standard tree-like natural deduction I1, if G := Gy (the F-
minimal mimp-like representation of II, cf. Theorem 8), then the size of G’

does not exceed the size of G, and hence also 11.

Remark 1 The second assertion sharply contrasts to the well-known exponen-

tial speed-up of standard normalization. Note that the latter is a consequence
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of the tree-like structure of standard deductions having different occurrences of
equal hypotheses formulas, whereas all formulas occurring in F-minimal mimp-
like representations are pairwise distinct.

Proof: This characteristic of preservation of the premises and conclusions of
the derivation is proved naturally. Through an inspection of each elimination
of maximal formula is observed that the reduction step (see Definition 14) of
the mimp-graph does not change the set of premises and conclusions (indicated
by the delimiter nodes type H and C) of the derivation that is being reduced.

In addition, the demonstration of this theorem has two primary require-
ments. First, we guarantee that through the elimination of maximal formulas in
the mimp-graph, cannot generate more maximal formulas. The second require-
ment is to guarantee that during the normalization process, the normalization
measure adopted is always reduced.

The first requirement is easily verifiable through an inspection of each
case in the elimination of maximal formulas. Thus, it is observed that no
case produces more maximal formulas. The second requirement is established
through the normalization procedure and demonstrated through an analysis
of existing cases in the elimination of maximal formulas in mimp-graphs. To
support this statement, it is used the notion of normalization measure, we
adopt as measure of complexity (induction parameter) the number of maximal
formulas Nmaz(G). Besides, as already mentioned, working with F-mimimal
mimp-graph representations we can use as optional inductive parameter the
ordinary size of mimp-graphs. [ |

Normalization Process

We know that a specific mimp-graph G can have one or more maximal

formulas represented by Mj, ..., M,,. Thus, the normalization procedure is:
1. Choose a maximal formula represented by Mj.
2. Identify the respective number of maximal formulas Nmaz(G).
3. Eliminate M) as defined in Definition 14, creating a new graph G.

4. In this elimination, one of the following three cases may occur:

a) The maximal formula is removed.

b) The maximal formula is removed but the F-node is maintained, and,

Nmaz(G) is decreased;

c) All maximal formulas are removed.
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5. Repeat steps 1 to 4 until the normalization measure Nmax(G) is reduced

to 0 and G becomes a normal mimp-graph.

Since the process of eliminating a maximal formula on mimp-graphs
always ends in the elimination of at least one maximal formula, and with
the decrease in the number of vertices of the graph, we can say that this

normalization theorem is directly a strong normalization theorem.

3.3

Summary

In this chapter, we introduced the mimp-graph through the main defi-
nitions and examples, mainly devised for extracting proof-theoretic properties
from proof system. That is, we have tackled one of our research tracks. Mimp-
graphs preserve the ability to represent proofs in Natural Deduction and their
minimal formula representation is a key feature of the mimp-graph structure,
because as we saw earlier, it is easy to determine an upper bounds on the
length of reduction sequences leading to normal proofs. It is the number of
maximal formulas. This feature is of crucial importance because we intend to

use this method in automated theorem provers.
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4
Compactifying

This chapter provide a way to compactify the mimp-graphs, proposed in
the previous chapter, while keeping a similar structure in the compacted form.
Thus, we intend to minimize the number of F-nodes and R-nodes, thereby
F-labeled nodes refer to pairwise distinct formulas and sets of R-labeled nodes

refer to pairwise distinct subproofs.

4.1
Compactification Process

Parts of a derivation that have a similar structure can be shared, as shown
in Figure 4.1, the boxed formula p - ¢ is similar to the boxed formula p » r and
we can see that they have also similar derivations. (da Costa 2007) sketches
as unifying sub-proofs where the similarity is determined by the existence of
an unifier, thus given two formulas x and y, there is an object z that fits both
formulas (see Algorithm 1).

In mimp-graphs we say that formulas are formula graphs and their
similarity is determined by the existence of an isomorphism between these
formula graphs (see »3 and -»; in Figure 4.1). So too, the R-node sequences
>y, »E3, »E4 and -»lg, »E;, »Eg have a similar structure because premises
and conclusion of one sequence are isomorphic to premises and conclusion of
the other sequence, hence they are isomorphic as in the Definition 15. In our
proof-graphs, the number of formula nodes (F-nodes) was minimized with the
sharing operation @ (see Definition 7). Now we want to minimize the number
of inferences or R-nodes in the graph for this purpose we extend the mimp-
graphs (defined in Chapter 3) and define a representation in graphs, which we
call smimp.

To make it more transparent we use different types of lines. In this way
F-nodes and edges between them use solid lines, whereas inference nodes and
edges between them and adjacent premises or conclusions use dashed lines
and additionally delimiter nodes have been shaded. So nodes of types » and
p (propositions) together with adjacent edges (I,r) have solid line, whereas

nodes labeled »I and »E together with adjacent edges (m, M, p,c, disc) have
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Figure 4.1: The transition from a natural deduction proof to a mimp-graph

dashed lines.

Smimp somehow reflects the sharing of sub-proofs (or derivations with
similar conclusion and premises) by means of a graph definition, where the
reuse of a sub-result (or sequence of R-nodes) is depicted by a box that contains
it. This sharing will be done by comparing of conclusion formula graph with
the conclusion of the box that we want to reuse, if they are isomorphic then
we proceed to share the box by means of the addition of edges. In the above
illustration of Figure 4.2, the F-node -3 is the formula that attempts to reuse a
derivation with a conclusion isomorphic to it and a premise isomorphic to -4,
in the below illustration we see how it looks after sharing. Thus, the sequences
of rules: »I,, »E3, »E; and »lg, >E7, 5Eg, in Figure 4.1, are represented only
once as shown in the box, and new ingoing/outgoing edges (type m, M,p,c)
of the R-nodes in the box are added with an new index and related with their
isomorphic sub-graphs of premises and conclusion that the R-node sequence is
sharing.

The graph isomorphism for mimp-graph is a restricted version of the
general graph isomorphism that involves deciding the existence of a type of
node that preserves the isomorphism between a pair of graphs. For convenience,
we add the function type(v) to the definition of mimp-graphs that returns one
of the types of nodes described in the Lemma 1.
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Figure 4.2: The transition before and after of sharing.

Definition 15 (Graph isomorphism) The isomorphism between a pair of
graphs G = (V,E,L) and G' = (V',E',L’') is a mapping ¢ : V - V' satisfying

the following conditions:
1. ¢ is a bijection such that type(v) = type(¢d(v)) for allveV.

2. vll—wz e F - ¢(v1)l—,>¢(v2) € E' for all vi,vy € V' such thatl =1

unless the index.

Definition 16 (Subgraph isomorphism) Given two graphs G1 and Gs, we
say that there is subgraph isomorphism from G; to Gy iff there exists a

subgraph S c Gy such that Gy and S are isomorphic.

We present now the known graph transformation: the unfolding. This
transformation is to unfold a graph from all its vertices. When a graph contains
cycles, this process never stops, theoretically leading to infinite unfoldings.
Since formula graphs are acyclic, the unfolding of our graphs is a tree (see

right graph of the example in Figure 4.3).
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Figure 4.3: Formula (p » p) » (p » p) depicted as a formula graph (left side)
and as an unfolding graph (right side).

Definition 17 (Unfolding graph) The unfolding graph of a formula graph
is a formula tree that contains the same information, but has no shared nodes.
It is obtained by duplicating every node that is the shared target of multiple
edges, such that each edge gets its own target node.

Definition 18 (Substitution for graphs) A substitution for graphs o is
called a unifier for the set of graphs {Gh,...,Gy}, if and only if Gio = Gyo =
... =Gyo. The set {Gy,...,Gy} is said unifiable if there is one unifier for it.

Definition 19 (Pair in Disagreement) The pair in disagreement of a non-
empty set of formula graphs S is obtained by locating the nodes (in a pre-order
traversal) in the unfolding graph where not all formula graphs in S have exactly
the same label in nodes, and then extracting from each formula graph in S the
sub-graph with the node occupying this position in disagreement. The set of

these respective sub-graphs is the set in disagreement of S.

Algorithm 1 Unification algorithm adapted by matching

1: k=0,Sy=S, Dy ={e}, 0 ={e}

2: If Sy is a unitary set then substitute the original variables (any remaining)
of S by new variables applying ay/(vg,vx) for each remaining original
variable v, and add oy /(vg,vk) to ox; oy is the unifier of S. Otherwise,
if Sk is not a unitary set, then find the pair in disagreement Dy of Sk.

3: If there are elements v; and ¢, in D; such that v, is a variable that does
not occur in t, go to step 4. Otherwise, stop, S is not unifiable.

4: If Dy ¢ Sk, build Sk1 by substituting of occurrences of Dy, in Sk by ay,
where oy, is a variable that is neither in S nor in Sj. Otherwise, build Sj,;
by substituting of occurrences of Dy in Sy by oy previously associated. Do
Sk+1 = Sk ) Dk.

5: Do k =k +1 and go to step 2.

The building of smimp for a normal proof, unlike of mimp-graph, is in the
upwards direction, from conclusion to premises. If during the building of the
proof we find a similar formula to a conclusion already derived, similar in the

sense shown in the Algorithm 1. Instead of building two new branches for each
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of the similar formulas, we proceed as in the construction of the Definition 20 by
induction. In the smimp the R-nodes (I, »Iv, »E) inside boxes may be shared
any number of times, they represent rules with different inference orders. In
the definition we add the item named “share” that describes how sharing
is performed. The item “box” allows to add boxes and therefore distinguish
between shared and unshared R-nodes.

Definition 20 (Smimp) A smimp G is a directed graph (V, E, L, (Box;);er)
where: V is a set of nodes, L is a set of labels, E is a set of labeled
edges (v €V, t eE-Labels, v' €V) of source v, target v' and label t and is
identified with the arrow -0, (Box;)ier s a collection of set of nodes of
G, called the boxes. Moreover, the boxes (Box;);s should be non-overlapping,
two bozes are disjoint or one is contained in the other: Vi,j € I (Box;nBox; =
@ v Box; cBox; v Box; cBox;).

A smimp is defined recursively as follows:

Basis If G; is a formula graph with root node ., then the graph Go that is
defined as G1 with the D-nodes H,, and C' and the edges am—25C and

H hyp
n—>Qpy, 1S @& SMIMP.

»>I If Gy is a smimp and contains the F-node »; linked to the nodes oy, B,
and Hy, by the edges -)tl—>am, >—>0, and Hkl—>-)t respectively, then
the graph G that is defined as G with

1. the remowal of the edge Hkﬂ»-)t;
2. an R-node >1; at the top position;
3. a D-node H,; linked to the F-node (,;

di
4. the edges: Hk—>am, Bn—>-)I >I; _")t; >l ﬂHk,

is a smimp (see figure below; the a,,-node is discharged).

"'We will use the terms o, 8, and 7, to represent the principal connective of the formula
a, [ and ~y respectively.


DBD
PUC-Rio - Certificação Digital Nº 1012697/CA


PUC-RIo - Certificacdo Digital N° 1012697/CA

Some Results in a Proof-theory Based on Graphs 43

»Iv 2 If Gy is a smimp and contains the F-node »; linked to the nodes ., By
and Hy by the edges -)tiwm, >—f,, and Hkhﬂ»)t respectively, then
the graph G that is defined as G with

hyp
1. the remowval of the edge Hy,——-,;
2. an R-node »lv; at the top position;

3. a D-node Hy linked to the F-node [3,;

4. the edges: Hk%ﬁm ﬁnL-)Ivj and -)Ivji>-)t;

is a smimp (see figure below).

>E If Gy is a smimp and G2 is a formula graph with root node >, linked to
the nodes o, Bn by edges | and r, and the graph (intermediate step)
obtained by G ® Gy contains the node (3, linked to the D-node H;, then
the graph Gs that is defined as G1 ® Gy with
1. the remowval of the edge Hihﬂﬁn;
2. an R-node »E;, at the top position,
3. the edges: Hihﬂmm, Hjhﬂma, U —2 > >Ey,, -)a&—)Ek and

C
')Ek_k’ﬂn ;

is a smimp (see figure below).

Box If Gy is a smimp and contains a sequence of R-nodes R,,...,R; that

starts in the inference order i and ends in the inference order j, and this

2the “v” stands for “vacuous”
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sequence has zero or more premises i, ..., and one conclusion B,
then the graph G that is defined as G1 with a rule box Box={R;, ..., R;}
is a smimp (see figure below).

Share If G; is a smimp containing the F-node (3, linked to a D-node H and
there is a rule box Box = {Ry,..., R} and B, is unifiable® with some
conclusion graph of the bor* and each element in «a, ...,y (desirable
hypothesis) is unifiable with each premise® of the box, respectively. The
graph G that is defined as G1 ® a1 @ ... ® oy, with

1. the remowval of the edge H hﬂ»ﬂn and the D-node H;

2. the premises aj...ay that are not associated with a D-node H will

be associated with a new one;
3. for each R-node R; in Box
(a) a new inferential order conserving the list of original orders
given by: (R;/ [o | new]);
(b) for each premise F' of R;: apply o F® and add one edge (type p,
m or M with index new) from oF to R;;

(c) for the conclusion C of R;: apply oC' add one edge (type c with

index new) from R; to oC;

(d) if R; has any discharged formula F' then: apply o F and add one
D-node H and one disc-edge (with index new) to oF;

is a smimp (see figure below).

3in the sense shown in the Algorithm 1

4Tt is enough to compare at least one occurrence of them.

5Tt is enough to compare at least one occurrence of each premise.
6 was generated by the Algorithm 1
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)

new

W Pnewd
b1

Lemma 3 enables us to prove that a given graph G is a smimp without

explicitly supplying a construction. The Lemma basically says that we just

have to check that G has an inferential ordering on all R-nodes and that each
node of G is of one of the possible types ( P, K, E, I, B, H and C) that generate

the construction cases of Definition 20.

Lemma 3 G is a smimp if and only if the following hold

1.

There ezists a well-founded (hence acyclic) inferential order < on all R-

nodes of the smimp.

FEvery node N of G is of one of the following seven types:

P

K

N s labeled with one of the propositional letters: {p, ¢, r, ... }. N

has no outgoing edges | and r.

N has label »,, and has exactly two outgoing edges with label | and
r, respectively. N may has outgoing edges with labels p;, m; or My;

and ingoing edges with label c; and hyp,,.

N has label >Ey and has one (or n if the node is in a box) outgoing
edges >Ei—258,, where B, is a node type P or K. N has exactly
two (or 2n if the node is in a box) ingoing edges: ap——s-Ey and
-)q&-)Ek, where a,, s a node type P or K. there are also more

ezactly two outgoing edges from the node >, : -)aLam and »,—f,.

N has label 51; (or »lv;, if it discharges an hypothesis vacuously)
has one (or n if the node is in a bozx) outgoing edge >1; —>-)t ), and
one (or zero for the vacuous case »Iv, or n if the node is in a bozx)
outgoing edge (31;, discj, Hi). N has exactly one (or n if the node
is in a box) ingoing edge: BnLIj, where (3, is a node type P or
K. There are two outgoing edges from the node -;: -)tiwzm and
>——f, such that there is one (or zero for the case »Iv) ingoing

h
edge to the node a,,: Hkiam.
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B N is a rule box Box that contains R-nodes and each R-node can
store one or more inferential orders and satisfy the property of non-

overlap, two bozes are disjoint or one is contained in the other.
H N has label Hy, and has outgoing edges with label hypy.

C N has label C and has ezxactly one ingoing edge with label conc.

Proof: Similar to the proof of Lemma 1. [ ]

4.2
Discussion on R-minimal representation

There is a notion of ”minimal representation“ in the amount of F-nodes.
We would like to speak about "minimal representation“ in the amount of R-
nodes but this has not yet been established because in the definition of graph
has not been implemented a way to verify if all rule boxes occurring in Sy,

denote pairwise distinct boxes. So the Lemma proof below would be unfinished:

Lemma 4 FEvery mimp-like representation M has a uniquely determined (up
to graph-isomorphism) R-minimal smimp-like representation Sy, i.e. a repres-

entation satisfies the following four conditions.
1. Sy is a smimp whose size does not exceed the size of M.

2. M and Sy both have the same (set of) hypotheses and the same conclu-

ston.
3. There is a graph homomorphism h : M — Sy, that is injective on F-Labels.

4. All rule boxes occurring in Sy denote pairwise distinct bozes.

4.3
Example of application

Consider a generalization ¢ detailed below for what we have the

following fact from (Haeusler in press):

Proposition 2 Any normal proof of or in M~ has at least 2% occurrences of

the same assumptions, that are discharged by the last rule of the proof.

The ¢, family of formulas can be defined as follows:

Definition 21 Let x[X,Y]=(((X » Y) » X) » X)»Y. Using x[X,Y] we
recursively define a family of formulas. Consider the propositional letters C,

Dy, k>0, be the formula recursively defined as:
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&1 =x[D1,C] (4-1)

€k+1 = X[Dk+17§k] (4_2)

Using this family of formulas we define the formula o, n >0, such that,
for any k >0:

Pr+1 = €k+1')0

The following is a derivation of C from (((dg+1 = &) = dgs1) > dis1) 2

&, and hence, by an »-introduction we have a normal derivation of ¢, .

[(((dk+1 > fk) > dk+1) > dk+1) > gk]y

[dl]l . II*
(h293d)> 4 & [(((dir > &) > din) > dyar) > &7
d>c [(d1 2 c)> d1]® .
dr . I
((di=2ce)>d1)>ds &1

C
((((drs1 2 €k) 2 diy1) D dpya) 2 &) D c Y

Using smimp, we can build a proof with unified parts which is much
more economical than mimp-graph. Below we can find a table comparing both
versions of mimp-graph when used to prove the class of formulas ¢}, that have
this exponential growth. A comparative table is presented in Table 4.1 and

smimp representation in the Figure 4.4.

Linearized mimp-graph smimp

Mimp-Graph

1(G1) =69 I(GY)=7+7+Hyp(G)) =17, I(GS) =7+ 7+ Hyp(GS) =17,
Hyp(G1) =3 Hyp(G§) =3

I(Gs) = 327 I(Gh) =19+ 12+ Hyp(G}) = 44, I(GS) =13 + 12+ Hyp(GS) = 30,
Hyp(Gy) =7 Hyp(G5) =5

1(Gs3) = 1380 I(G%) = 43+ 17+ Hyp(G%) = 48, I(GS) = 19+ 17 + Hyp(GS) = 43,
Hyp(G3) =15 Hyp(Gg) =7

I(Gy) = I(G}) =91+22+ Hyp(G)) = 144, I(G9) =25+22+ Hyp(Gg) = 56,

. Hyp(GQ) =31 Hyp(Gg) =2+ Hyp(Gs)

I(Gy) = I(GY) = (2°6-5) + (2.4 5K) + Hyp(G}), I(GS) = (6k +1) + (2 + 5k) + Hyp(GS),
Hyp(Gy) =2" + Hyp(G}_;) Hyp(G) =2+ Hyp(G5_)

The length is given by [(G) =rn + fn+ Hyp(G),
l: length, rn: number of R-nodes, fn: number of F-nodes, Hyp: number of D-nodes H

Table 4.1: Comparative size of proofs
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X(k): k times the edge X

Figure 4.4: Smimp of g1

4.4
Conclusion

The treatment for inference rules, in addition to formula sharing, is
performed during the construction process of the graph. This feature is of
fundamental importance, since we intend to use this graph in automatic
theorem provers. In the construction process when similar formulas are found,
we share a sub-proof and produce the unifier in linear time. We do not
implement a process of searching for similar formulas in our graph but we
estimate that the resources consumed in such searching would be compensated

by the reduction of necessary resources to build the proof-graph.
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5
Extending mimp-graphs

Mimp-graphs provide a formalism for Natural Deduction where the use
of a “mixed” graph representation of formulas and inferences (in the purely
implicational minimal logic) serve as a way to study the complexity of proofs
and to provide more efficient theorem provers. We presented the main notion
of mimp-graphs in Chapter 3. In this chapter, we wish to extent this formalism

in graphs for full minimal propositional calculus and for first order logic.

5.1
Proof-graphs for propositional logic

In Chapter 3 we considered implication as the only logic connective.
Let us now turn to a more general presentation of proof-graphs for full
minimal propositional logic that includes » (implication), v (disjunction) and
A (conjunction). We also develop the normalization procedure for these proof-
graphs. Mimp-graphs for propositional logic will be defined along with partial
ordering on its R-nodes that allows to pass through the nodes of the structure.

We will also develop the normalization procedure for these proof-graphs.

— the set of formula labels F-Labels in Definition 5 has two added labels v,

A,
— the set of inference labels R-Labels has the added labels: {Al, AEl, AEr,
vIi, vir, vE};

— the set of edge labels Ej,-Labels has the added labels: {Ip (left premise),
rp (right premise), Im (left minor premise), rm (right minor premise) ,
ldisc (discharge to the left), rdisc (discharge to the right)};

— the definition of formula graphs has two added inductive graphs,

Conjunction: Disjunction:
(n). V)
\ // N o \ Vi L}\ oY -
v N y, \
formula node formula node formula node formula node
i.e. (leftsubformula) (right subformula) (left subformula)  (right subformula)

— inference rules A-Introduction, A-Elimination, v-Introduction and v-

Elimination in proof-graphs are as follows:
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A - introduction:

formula node  formula node
(left premise) (right premise)

D {Q/‘(
KAy
e
el
>
L4
formula node
(conclusion)

v - Introduction:

.
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A - Elimination:

formula node
(premise)

formula node
(conclusion)

v - Elimination:

50

formula node
(prerlnise)

formula node
(conclusion)

formula node formula node delimiter node

formula node

(premise) (premise) (right hypothesis) (jeft minor premise)

' j 2 S : -~

- | delimiter node pdisc -

P R : E T

y Vi (left hypothesis) g A, fornju1a node‘
s, ot S ddlin N (right minor premise)
Lvie} i Vle formula node __ ;. T S

T b (major premise) = VE feeeees

ol A R

‘\i’ \? el

formula node formula node

: : formula node
(conclusion) (conclusion)

(conclusion)

In the terminology about inference rules or R-nodes, when an R-node
has more than one incoming edge, these are distinguished by calling them
left, right, major or minor, or a combination of these terms and so also the
F-node ‘premise’ associated with these edges. Thus, the major premise in R-
node contains the connective that is eliminated; the other premise in R-node is
called ‘minor’. Two premises that play a more or less equal role in the inference
are called ‘left’ and ‘right’. For instance, an R-node VE has a major premise, a
left minor premise and a right minor premise; an R-node Al has a left premise
and a right premise.

The term R-node sequence is representing a deduction, and if it is a
smaller part of another R-node sequence (subdeduction), then it is called a
subsequence of the latter. A subsequence that derives a premise of the last R-
node application in an R-node sequence is called a direct R-node subsequence.
Instead of writing “the direct R-node subsequence that derives the minor
premise of the last inference of an R-node sequence D”, we simply write “the
minor subsequence of D”.

Definition 22 Let G; = (VY, E!, L) and Gy = (VZ2, E2, L2) be two graphs,
where: V! and V? are sets of vertices, E! and E? are sets of labeled edges, L'
and L? are subsets of LBL. The operation G1 ® G := (V'u V2, E17 E2, L'u L?)
equalizes R-nodes of G1 with R-nodes of G5 that have the same set of premises
and conclusion keeping the inferential order of each node, and equalizes F-
nodes of G with F-nodes of Gy that have the same label, and equalizes edges
with the same source, target and label into one.
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Definition 23 A mimp-graph for propositional logic G is a directed graph (V,
E, L) where: V is a set of nodes, L is a set of labels, E is a set of labeled edges
(veV, teL, v'e V), of source v, of target v' and label t.

Propositional mimp-graphs are recursively defined as follows:

mimp Ewvery construction rule for mimp-graphs (Definition 9) is a construc-
tion rule for propositional mimp-graph.

Al If G1 and G5 are propositional mimp-graphs and Gy contains o, linked to
the D-node C and Gy contains (3, linked to the D-node C, then the graph
G that is defined as

1. G = Gy ® Gy ® G3 with the removal of ingoing edges in the node
C' which were generated in the intermediate step (see Figure 5.1,
dotted area in G, ® Gs);

2. an R-node Al; at the top position;

lp; D4 ci conc
3. edges: apy——Al;, B,——AL;, AL—>A; and A,——C,

is a mimp-graph (see Figure 5.1).

Gi1BGBGs

Figure 5.1: The Al rule of the propositional mimp-graph.

AEl If Gy is a propositional mimp-graph and contains edges /\timzm,
/\t;ﬁn) and the node A, linked to the D-node C then the graph G that
is defined as G with

1. the remowval of the ingoing edge in the node C;
2. an R-node AEl; at the top position;

pi (& conc
3. edges: ni——>nEl;, AEl,—a,, and a,,,—C;

is a mimp-graph. There is a symmetric case for AFr.

vIl If Gy is a propositional mimp-graph and contains nodes o, linked to the
D-node C' then the graph G that is defined as G, with

1. the remowal of the ingoing edge in the node C.
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2. an R-node VIl; at the top position;

i Pi 1 r conc
3. edges: VIl;—>V;, a— VI, Vi—say,, Vi— B, and vi—C,

is a mimp-graph. There is a symmetric case for VvIr.

vE If G, G5 and G3 are propositional mimp-graphs, and the graph obtained
by (G1© Gs) ® G3 (intermediate step) contains nodes: vy and o, linked
to the D-node C' (o, twice); and o, and B, are subformulas of v; and are
linked to D-nodes H, then the graph G that is defined as (G1© Gs) & G3
with

1. the removal of ingoing edges in the node C which were generated in

the intermediate step (see Figure 5.2);
2. an R-node VE; at the top position;

Im; rm; M; c; ldisc;
3. edges: 0o,——>VE;, 0,——VE;, vi——>VE;, VE,—>0,, VE,—>H,,

rdisc; conc
, VE,—H, and 0,—C,

is a mimp-graph (see Figure 5.2).

(G1O G2)@BGs

Figure 5.2: The VE rule of the propositional mimp-graph.

Lemma 5 enables us to prove that a given graph G is a propositional
mimp-graph without explicitly supplying a construction. Among others it says
that we have to check that each node of G is of one of possible types that
generate the construction cases of Definition 23.

In order to avoid overloading of indexes, we will omit whenever possible,
the indexing of edges of kind Im, rm, lp, rp, ldisc and rdisc, keeping in mind
that the coherence of indexing is established by the kind of rule-node to which
they are linked.
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Lemma 5 G is a propositional mimp-graph if and only if the following hold:

1. There exists a well-founded (hence acyclic) inferential order < on all rule

nodes of the propositional mimp-graph.
2. Every node N of G is of one of the following ten types:

P It is as in the Lemma 1.

F N has one of the following labels: »;, Aj or vy, and has ezactly two
outgoing edges with label I and r. N has outgoing edges with labels
p, m, M, lm, rm, lp, rp; and ingoing edges with label ¢ and hyp.

I* N has label AL;, one outgoing edge AL——A; and ezactly two ingoing
edges: aml—pmli and ﬁnimli, where o, and [, are nodes type
P or F. There are two outgoing edges from the node Ay: AtLam

and Ay—sB,,.

E* N has label AE;, one outgoing edge AEl;——>a,, where o, (or B, in
the case AEr; is a node type P or F and has exactly one ingoing
edge: N——AE;. There are two outgoing edges from the node A:

l r
Ae—>Cly, and Ne—> ;.

IV N has label VII;, one outgoing edge VIl;—>v, and has ezactly one
ingoing edge: aym——VIl; where am, (or B, in the case VIr;) is a
node type P or F. There are two outgoing edges from the node v;:
vtimzm and vt—r—>[3’n.

EVY N has label VE;, three outgoing edges vE,-Lmr, in%Hu and

in%HS; and it has exactly three ingoing edges: vtLin,

O'TLVE” o, ——>VE; where a,, (or B, in the case VE;) is a
node type P or F. There are two outgoing edges from the node v;:

. h h
vtimzm, Vi—s B, and hypothesis edges: H,~%sq,, and Hsiﬁn.

I, E, H, C They are as in the Lemma 1.

Proof:

=: Argue by induction on the construction of propositional mimp-graph
(Definition 23). For every construction case for propositional mimp-graphs we
have to check the three properties stated in Lemma. Property (2) is immediate.
For property (1), we know from the induction hypothesis that there is an
inferential order < on R-nodes of the propositional mimp-graph. In the new
construction cases Al, AEl, AEr, VII, vIr or VE, we make the new R-node that
is introduced highest in the <-ordering, which yields an inferential ordering on
R-nodes. In the construction case Al, when we have two inferential orderings,

<1 on GG; and <5 on GG5. Then G; @ G5 can be given an inferential ordering
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by taking the union of <; and <, and in addition putting n < m for every
R-node n,m such that n € G;,m € GG5. In the construction case VE, when
we have three inferential orderings, <; on G1, <3 on G5 and <3 on Gs. Then
(G1 ® G3) ® G3 can be given an inferential ordering by taking the union of <,
<9 and <3 and in addition putting n < m < p for every R-node n, m,p such that
neGy,meGy,peGs.

<: Argue by induction on the number of R-nodes of G. Let < be the
topological order that is assumed to exist. Let n be the R-node that is maximal
w.r.t. <. Then n must be on the top position. When we remove node n,
including its edges linked (if n is of type IV) and the node type C is linked
to the premise of the R-node, we obtain a graph G’ that satisfies properties
listed in Lemma. By induction hypothesis we see that G’ is a propositional
mimp-graph. Now we can add the node n again, using one of construction
cases for propositional mimp-graphs: mimp if n is a L node, F node, »E node
or »I node, I" if n is a Al node, E* if n is a AEl node or AEr node, IV if n is a
vIl node or vIr node, E* if n is a VE node. [ ]

5.2
Normalization for propositional mimp-graphs

5.2.1
Elimination of maximal formula

In this section, we describe the normalization process for propositional
mimp-graphs. Eliminating a maximal formula is very similar to the procedure
for mimp-graphs described in Chapter 3, where we considered only the case of
implication, now we define maximal formulas in conjunction, disjunction and

implication:

Definition 24 A maximal formula m in a propositional mimp-graph G is a
sub-graph of G as follows:

— AI followed by AEl. It is composed of (see Figure 5.3):
1. F-nodes: am, B, and Ay, where Ay has zero or more ingoing/outgoing

edgest, e.g. A, could be premise or conclusion of others R-nodes;

2. R-nodes: AI; and AEl;, where AL; has an inferential order lower than

AEl; and there are zero or more mazximal formulas between them?. If

'Represented in the figure by double-headed arrows
2The maximal formulas are represented in the figure by nodes labeled with I and E
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these nodes occur in different branches, a branch must be insertable3

in the other branch or bifurcated by an R-node VE;

l r lp D c
3. edges: Ng—>Qpm, Ag—>Pn, om—AL, B,——AL, AL—Ay,

/\qiv\Ell and AElL->a,.

Figure 5.3: The maximal formula: Al followed by AEI.

There is a symmetric case for Al followed by AFEr.

- VIl followed by VE. It is composed of (see Figure 5.4):

Figure 5.4: The maximal formula: vl followed by VE.

1. F-nodes: Qm, Bn, Vq and o, where v, has zero or more ingo-

ing/outgoing edges*;
2. D-nodes: H, and Hg;

3. R-nodes in ascending inferential order: v1l;and vE;, and there are
zero or more mazimal formulas in branches between them®. If these
nodes occur in different branches, a branch must be insertable in the

other branch or bifurcated by an R-node VE;

3A branch is insertable in other branch when it is bifurcated by a maximal formula: -1
followed by =E

4Represented in the figure by double-headed arrows

SMaximal formulas are represented in the figure by nodes labeled with I and F
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l r p c M
4. edges: Vg—ou,, Vq— LB, an— VI, VI,—v,, v,—VE,
Im rm c ldisc rdisc
O'x—>VEl, O'm—)VEl, VEl—>O'm, VEl—)H,« and VEZ—)HS.

There is a symmetric case for vIr followed by VE.

— »I followed by >E. It is composed of (see Figure 5.5):

1. F-nodes: am, B and »,, where », has zero or more ingoing/outgoing
edgess;

2. the D-node: H,;

3. R-nodes in ascending inferential order: »I; and >E;, and there are
zero or more maximal formulas between them”. If these nodes occur
in different branches, a branch must be insertable in the other branch
or bifurcated by an R-node VE;

disc

¢ i—H,,

l r D c
4. edges: 3>, 3B, Lp—>3L, >L—>

M m c
>—>E, a,—>F; and >E—f,.

Figure 5.5: The maximal formula: -1 followed by >E.

Definition 25 The operation incorporate adds an R-node sequence inside
other R-node sequence where it shares the same formula-graphs premise and
conclusion, then apply the operation defined in Definition 13 to the resulting
graph. Note that Proposition 1 ensures that the result is a mimp-graph.

Note that the actual situation is more complicated than those sketched in
Figures 5.3, 5.4 and 5.5. There are five sub-cases for each maximal formula due
to the presence of disjunction and other maximal formulas. These sub-cases

are treated in the Definition 26 as follows.

6Represented in the figure by double-headed arrows
"Maximal formulas are represented in the figure by nodes labeled with I and E
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Definition 26 Given a propositional mimp-graph G with a maximal formula
m, eliminating a maximal formula s the following transformation of a propo-

sitional mimp-graph:

Elimination of AI followed by AEl. There is a symmetric case for the
elimination of AI followed by AEr. The elimination of the mazimal
formula AI followed by AEL is the following operation on a propositional

mimp-graph:

1. If there are no maximal formulas between R-nodes Al; and AEl; then

follow these steps:
(a) If AL; and AEl are not bifurcated by one VE then (see cases 1
and 2 in Figure 5.6).
i. Remove R-nodes Al; and AEl; and their edges.

. If the F-node Ay only has outgoing edges to sub-formulas

then remove it (see case 2 in Figure 5.6).

Figure 5.6: Elimination of Al followed by AEI: Cases 1 and 2.

(b) Else If Al; represents two R-nodes then (see case 3 in Figu-
re 5.7):

i. Remove the R-node Al; and its edges.
#. Eliminate edges: /\qllek, N—>VEy, and VE,—A,.
ii. If the F-node Ay only has outgoing edges to sub-formulas
then remove it (see case 4 in Figure 5.7).

. Im rm c
w. Add edges: a,,——VEy, a,,——VE, and VE,—a,,.
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Figure 5.7: Elimination of Al followed by AEI: Cases 3 and 4.

(c) Else (see case 5 in Figure 5.8)
1. Remove the R-node Al;, and its edges.
1. Eliminate edges: /\quEk, /\qﬂwEk and kaimq.
1. Add edges: amllek, A—>VE; and VEx——>a,.
w. Incorporate the R-node AEl;, as defined in Definition 25, in
the right minor sequence of VEy as last inference.

\rdise

Figure 5.8: Elimination of Al followed by AFE!l: Case 5.
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2. Otherwise eliminate maximal formulas between R-nodes Al, and
/\Ell.

Elimination of vI| followed by VE There is a symmetric case for vIr
followed by VE. The elimination of this maximal formula is the following

operation on a mimp-graph:

1. If there are no maximal formulas in branches between R-nodes VII;
and VE; then follow these steps:

(a) If VIl; and VE; are not bifurcated by one VE then (see cases 1
and 2 in Figure 5.9).
i. Remove R-nodes VI1l;, VE;, H, and H,, and their edges.

. If the F-node v, only has outgoing edges to sub-formulas

then remove it (see case 2 in Figure 5.9).

Figure 5.9: Elimination of v/l followed by vE: Cases 1 and 2.

(b) Else If V1l; represents two R-nodes then (see case 3 in Fig-
ure 5.10):

i. Remove R-nodes VIl;, VE;, H; and H,, and their edges.
#. Eliminate edges: vqlink, Ve—5VEy and VE—v,.
ii. If the F-node v, only has outgoing edges to sub-formulas
then remove it (see case 4 in Figure 5.10).
. Add edges: awlink, 0,—sVE; and VE,—>0,.
v. Incorporate the sequence II"™ of the Figure 5.10, as defined

in Definition 25, in left and right minor subsequences of
VEk.
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"

[
¢
e
s

=

e

Figure 5.10: Elimination of vIi followed by VE: Cases 3 and 4.

(c) Else (see case 5 in Figure 5.11)
1. Remove the R-node V1l;, and its edges.
1. Eliminate edges: quka, vqﬂwEk and kaiwq.
1. Add edges: aml—mek, 0o—5>VE;, and VE,—>0,.
w. Incorporate the R-node VE; with its sub-sequences II™ and
I showed in Figure 5.11, as defined in Definition 25, in the

right minor subsequence of VE, and incorporate the R-node

sequence II™ in the left minor premise of VE.

2. Otherwise eliminate the maximal formulas in branches between R-
nodes vIl; and VE.
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Hij3 R-nodes Sequence from F-node X; to F-node X;

Figure 5.11: Elimination of vII followed by VE: Case 5.

Elimination of »I followed by »FE In order to reduce this, we need the

following rule:

1. If there are no maximal formulas between R-nodes >1; and >E; then

follow these steps:

(a) If »1; and -E; are not bifurcated by one VE then (see cases 1
and 2 in Figure 5.12).

Figure 5.12: Elimination of »I followed by »FE: Cases 1 and 2.
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.

If the D-node H,, discharged by =1;, has n outgoing edges
with label hyp then repeat n-times edges in the minor sub-
sequence of >E;.

Remove R-nodes »1;, sE; and H,, and their edges.
Remove R-nodes »1; and »E;, and their edges.

If the F-node A, only has outgoing edges to sub-formulas
then remove it (see case 2 in Figure 5.12).

(b) Else If »1; represents two R-nodes then (see case 8 in Fig-
ure 5.13):

Figure 5.13: Elimination of »I followed by »E: Cases 3 and 4.

.

Remove R-nodes »1;, »E;, H; and H,, and their edges.
Eliminate edges: -)qllek, >—>VE; and VE,—>,.
If the F-node », only has outgoing edges to sub-formulas
then remove it (see case 4 in Figure 5.13).

Add edges: B—">VEy, Bu—TsVEy, and VE—>B,.

Incorporate the R-node sequence with conclusion o,,, as
defined in Definition 25, in left and right minor sub-

sequences of VEy.

(c) Else (see case 5 in Figure 5.14)

1.

Remove R-nodes »1; and H;, and their edges.
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it. Eliminate edges: —)qllek, >—>VE; and VE,—>>,.

iii. Add edges: B—sVEy, B—rsVEy and VE,—8,.

iv. Incorporate the node -»E;, as defined in Definition 25, in
the right minor subsequence of VEy as last inference and
the R-node sequence with conclusion o, in the left minor

subsequence.

2. Otherwise eliminate maximal formulas between R-nodes =I; and
>E;.

Figure 5.14: Elimination of »I followed by »E: Case 5.

Definition 27 (1) For n; € V, a p-path in propositional mimp-graph is a
. bl bl 1bly,—s Ibl_
sequence of vertices and edges of the form: n; — ny — ... Ng_1

nk, such that ny is a hypothesis formula node, ny is the conclusion formula
node, n; alternating between a rule node and a formula node. Edges [bl;
alternate between two types of edges: the first is lbl; € {rm,Im,m, M,rp,lp,p}
and the second lbl; = c. (2) A branch in propositional mimp-graph is an initial
part of a p-path which stops at the conclusion F-node of the graph or at the
first minor (or left) premise whose magor (or right) premise is the conclusion

of a rule node.

Lemma 6 If G is a propositional mimp-graph with a mazximal formula m and
G' is obtained from G by eliminating m, then G' is also a propositional mimp-

graph.

Proof: 'We use Lemma 5. All nodes in G' are of the right form: P, K, E, I, EV,
IV, E~, I, H or C. We verify that G’ has one ingoing edge with label conc to the
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D-node with label C' and that is acyclic and connected. Finally, an inferential

order on G’ (as defined in Definition 13) between rule nodes must preserve. m

5.2.2
Normalization proof

Just as with mimp-graphs, we shall also construct the normalization proof
for these extended mimp-graphs. This proof is guided by the normalization
measure. That is, the general mechanism from the proof determines that a
given mimp-graph G should be transformed into a non-redundant mimp-graph
by applying of reduction steps and at each reduction step the measure must be
decreased. The normalization measure will be the number of maximal formulas

in the mimp-graph.

Theorem 5 (Normalization) Every propositional mimp-graph G can be re-
duced to a mormal propositional mimp-graph G' having the same hypotheses
and conclusion as G. Moreover, for any standard tree-like natural deduction
I, if G := G (the F-minimal mimp-like representation of I1, c¢f. Theorem 3),

then the size of G' does not exceed the size of G, and hence also II.

Remark 2 The second assertion sharply contrasts to the well-known exponen-
tial speed-up of standard normalization. Note that the latter is a consequence
of the tree-like structure of standard deductions having different occurrences of
equal hypotheses formulas, whereas all formulas occurring in F-minimal mimp-

like representations are pairwise distinct.

Proof: This characteristic of preservation of premises and conclusions of the
derivation is proved naturally. Through an inspection of each elimination of
maximal formula is observed that the reduction step (see Definition 26) of the
propositional mimp-graph does not change the set of premises and conclusions
(indicated by D-nodes H and C) of the derivation that is being reduced.

In addition, the demonstration of this theorem has two primary require-
ments. First, we guarantee that through the elimination of maximal formulas
in the propositional mimp-graph, cannot generate more maximal formulas.The
second requirement is to guarantee that during the normalization process, the
normalization measure adopted is always reduced.

The first requirement is easily verifiable through an inspection of each
case in the elimination of maximal formulas. Thus, it is observed that no
case produces more maximal formulas. The second requirement is established
through the normalization procedure (see Section 5.2.2) and demonstrated
through an analysis of existing cases in the elimination of maximal formulas in

mimp-graphs. To support this statement, it is used the notion of normalization
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measure, we adopt as measure of complexity (induction parameter) the number
of maximal formulas Nmaxz(G). Besides, as already mentioned, working with
F-mimimal mimp-graph representations we can use as optional inductive

parameter the ordinary size of mimp-graphs. [ ]

Normalization Process

We know that a specific propositional mimp-graph G can have one or
more maximal formulas represented by M;, ..., M,,. Thus, the normalization
procedure is:

1. Choose a maximal formula represented by M.

2. Identify the respective number of maximal formulas Nmaz(G).

3. Eliminate M}, as defined in Definition 26, creating a new graph G.
4. In this application one, of the following six cases may occur:

a) The maximal formula is removed (case 1 in all eliminations of

maximal formulas).

b) The maximal formula is removed but the formula node is maintained,
and, Nmaz(G) is decreased (case 2 in all eliminations of maximal

formulas);

c¢) Two maximal formula are removed (case 3 in all eliminations of

maximal formulas).

d) Two maximal formula are removed but the formula node is main-
tained, hence Nmaz(G) is decreased (case 4 in all eliminations of

maximal formulas).

e) The maximal formula is removed, the formula node is maintained and
R-node sequence reordered, hence Nmaz(G) is decreased (case 5 in

all eliminations of maximal formulas).

f) All maximal formulas are removed.

5. Repeat this process until the normalization measure Nmaz(G) is re-

duced to 0 and G becomes a normal propositional mimp-graph.

Since the process of the eliminating a maximal formula on propositional
mimp-graphs always ends in the elimination of at least one maximal formula,
and with the decrease in the number of vertices of the graph, we can say that

this normalization theorem is directly a strong normalization theorem.
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5.3
Proof-graphs for first order logic

In this section we extend mimp-graphs for propositional logic defined in
Section 5.1 to first order logic. This extension can be carried through without
much ado and thus we show the robustness of the concept of mimp-graphs.

In Section 5.3.1 we give the definition of these mimp-graphs for first order
logic, called mimp-fol, starting from definitions for terms, formula graphs of
first order logic, and rule nodes for mimp-fol, then the Section 5.3.2 show two
examples of mimp-fol. The set of transformations for normalization in mimp-fol

is given in Section 5.3.3.

5.3.1
Definition

According to the language of first order logic for Gentzen-Prawitz style
natural deduction (Gentzen 1969) (Prawitz 2006) introduced in Chapter 2, we
extend mimp-graphs (defined in Chapter 3) to first order logic as follows.

— Variables are represented by nodes as follows:

Variale: (X;) with V-Label. {a, b, ... X, ¥, 7 Xy, Xz, .}

It is not necessary to differentiate between free and bound variables, since
this will be made explicit by label in edges of the graph.

— Formulas are represented by formula graphs that are composed by
formula nodes; thus the definition of formula graphs has three added

inductive graphs:

Predicate: Universal quantifier: Existential quantifier:
= v\ Bind o Vbind
(®) W) @)
av/ N N
QM/ \_;% u T,q
L/ \\4 formula node formula node
Argument 1 ... Argumentn (subformula) (subformula)

Figure 5.15 shows how bound variables appear in formula graphs; they are to
be shared as much as possible. Like hypothesis (linked to D-node with label
H) may only be discharged once, variables may not be bound by more than
one quantifier. Also, quantifiers may not bind variables outside their direct
subformula, their scope.

In mimp-fol, rule nodes operate conveniently on the root node (primary
connective) of a formula-graph. Since quantifier rules of mimp-fol affect vari-
ables and we are sharing subformulas and since variables are different before

and after substitution, we cannot share one formula graph as the “before and
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vx (R(x) V S(x)) /v. R(x) v S(x)

{,4{) e’;m.f (S) \}\J @‘\)

b ol
-u;;}"‘/ \u z! u;l

“\

—

Figure 5.15: Bound and free variables in formula graphs.

after” of a substitution. Instead, two subgraphs are required that are different
in the variable that is substituted for. The substitution explicit by an edge
labeled subs.by ( see Definition 28). In the following example we can identify
two formula graphs as the premise and conclusion of a substitution, P and
P[z/t].

argl

(?

‘s’ f’ ar \ub.w. by
L‘VI‘." \

\

T
i
1€ bind

O N P\ H_T‘q:f;l(\

S

Figure 5.16: Premise and conclusion of a substitution.

Now we have the set of rules added in the extension:

Definition 28 A mimp-fol G is a directed graph (V, E, L) where: V is a set
of nodes, L is a set of labels, E is a set of edges (ve V, t e L, v' € V), where
v 18 the source and v’ the target.

The mimp-fol is defined recursively as follows:

pmimp FEvery construction rule for propositional mimp-graphs (Definition 23)

is a construction rule for mimp-fol.

VI If Gy is a mimp-fol, containing a node: ., linked to the D-node C, then
the graph G is defined as Gy with
1. the remowal of the ingoing edge in the node C;
2. an R-node VI; at the top position,
3. duplicating: the graph of a,, with the substitution of x for t

(am[z/a]);
4. an F-node Vy;
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1y V- Introduction V- Elimination
‘I formula node formula node
Q (premise) (premise)
» P P
O 22 Variable (VR [y Variable
\-..T-" \‘_‘_Y—’r \\“'—,!
ol ul ol
v v
formula node formula node formula node
(conclusion) (conclusion) (conclusion)

3- Introduction 3- Elimination

formula node delimiter node

(premise) (discharged hypothesis)
: formula node ™ formula node
P ; o Ndlis minor premise
: (major premise) ‘?f’c (mi " prom )
< term i e anra
:\3{ }' _____ 'y Variable .\“‘J}! ',-**-9“' m
w1 S 3EF-22r  variable
3 e
L4

v
formula node v
(conclusion) formula node

(conclusion)

P c par bind u
5. edges: ap—VI;, VI,—=5V,, VI,—5t, Vi—x, Vi—san[z/a],
subs. by conc
a——x and V;—C;

is a mimp-fol under the proviso that ‘a’ does mot occur in any variable
node of the branch (see Figure 5.17).

()22 0)

i

ﬁffew -
= ~E Paluew  subs by

TR
VI e
Ne I‘

-

Figure 5.17: V-Introduction Rule.

VE If Gy is a mimp-fol and contains the edge ¥i—>ay,, and the node V, linked
to the delimiter node C then the graph G is defined as G with
1. the remowal of the ingoing edge in the node C.
2. an R-node VE; at the top position;
3. duplicating: the graph of ., with the substitution of x for t-

(om[t/z]);
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4. edges: YV, ZSVE;, VE——an[t/z], VE; termnew t, 222y and
am[t]z]255C,

is a mimp-fol (see Figure 5.18).

e stbs. by
{\ vE ,.L—""":E‘i’i{{‘ﬂ' \

S,

‘Sﬂcu. are i\t :lll,

Figure 5.18: V-Elimination Rule.

3L If G, is a mimp-fol and contains the node o, linked to the D-node C' then
the graph G is defined as G1 with

1. the remowval of the ingoing edge in the node C.

2. an R-node 31; at the top position;
3. duplicating: the graph of «,, with the substitution of t for x

(am[z/t]);
4. edges: am—=53L, AL 3, 3L

subs. by conc
t——2x and 3,—C,

e t, 3 g z, EI1ti>0~’m[$/t];

is a mimp-fol (see Figure 5.19).

|
Are
Oy :
ﬁ)’;frw T \
B fertaiw sups by
{‘ 3l :"'—‘ |

i

Figure 5.19: 3-Introduction Rule.
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dE If Gy and G are mimp-fol, and the graph obtained by G1®G, (intermediate
step) contains nodes: 3; and o, linked to the D-node C; and «, is linked
to 3; by EItL»am and o, 1s linked to D-node H,, then the graph G is
defined as G, ® Gy with

1. the removal of the ingoing edges in the node C which were generated
in the intermediate step (G, ® G3);

2. an R-node 3E; at the top position;

m M,
3. edges: o,——3E;, J—>

di subs. b
E| DIAENy 5 S A

par c
ElEi, EIEiﬂm, aEiﬂ)O},

conc
a and o,—C;

is a mimp-fol (see Figure 5.20).

Figure 5.20: 3-Elimination Rule.

LI If Gy is a mimp-fol and contains the node 1 linked to the D-node C' then
the graph G is defined as G with

1. the remowal of the ingoing edge in the node C.
2. an R-node LI; at the top position,

conc

3. edges: LI—=*>q,,, 1251 T, and am—sC,

is a mimp-fol.
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5.3.2
Examples

By means of these examples we shall first of all show how our graphs
represent deductions. Figure 5.21 shows a small proof with quantifiers, where
the term-edge indicates the replaced term ¢ in the inference scheme 31 that has
the conclusion 3yP(y) and the premise P(y)[t/y] = P(t). The substitution is
indicated by means of the subs-edge.

£

2
X ‘~sg:b.1. by

%
\\
\ ferm
N

v RS ‘\‘
~‘ 'S¢ -“_.mb. by \

obm

[P#)]*
WPy) ~ B

JyP(y) A B =

JzP(x) JyP(y)
JyP(y)

3}
[ &y

IE,1

Sl e e =

Figure 5.21: Example in proof-graphs for FOL

hY

N e ind \

b ferm |

. ] <

SN s Wise Y & AN

A N - W\
! ho T~ arg J

e 4
\ Seae

9 l.‘f‘”-z’,'\'--___lln f - L ¢ 714_1 s
[VyF(tby)] VE S = - argZl “_/ .s'h‘!’.'.\i by
F(tl tz) L i o [ L — | \
ol g o S e N e
aF (21,t2 Pl ST T A
[EIa:VyF(w,y)]l Vy13a:1F(ac1,y1) B by I{Vlg‘:li'__i’-— ! e ; X subs. b_l.-/
1 Sl \ /
Vyidz1 F(z1,
y13z1F(z1,51) >l

IzVyF(z,y) > Yy 3z F(z1,91)

Figure 5.22: Example in mimp-graphs for FOL
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5.3.3
Reductions for mimp-fol

To obtain a normal derivation from any deduction, we transform it step
by step, until no elimination rule is below an introduction rule. This process
is called normalization, thus we give a set of transformations for first order
logic proofs which preserve the information content of the original proof.
We emphasize that for previous schemes of reduction (propositional logic),
conclusions of maximal formulas remain shared, but now we have reduction
schemes with added conclusions, we can compare it to the reduction scheme
for natural deduction in Definition 3. Note that II[¢/a] represents the resulting
graph of replacing the label a on variable nodes by the label .

Elimination of VI followed by VE In this reduction step are only pre-
served nodes and edges in the graph represented by II, the formula graph
Q. the edge amﬂga, the variable node with label a and the remain-

ing graph represented by a cloud, then this label a on variable nodes is
replaced by t(II[t/a]).

Elimination of 3I followed by FE Now, we preserve the graph represented
by II, the formula graph «,,, the edge amirit, the variable node with
label ¢, the graph II’, the formula graph o,, then the label a on variable
nodes is replaced by t (II'[t/a]).

then this label a on variable nodes is replaced by t.
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6
Experimenting with mimp-graphs in other logics.

In this chapter, we start with a brief overview of Deep Inference,
focusing on the propositional fragment only. Then, we present our proof-graphs
definition for SKS,, a deductive system for classical propositional logic, that is
presented in the calculus of structures (Briinnler 2004). Thereafter we will move
to describe the Bi-intuitionist Logic and present a proof-graph representation
for this logic.

6.1
Proof-graph for Deep Inference

Deep inference is a proof-theoretic methodology where proofs can be
freely composed by the logical operators, that is inference rules are applied
anywhere deep inside a formula, not only at the main connective, contrarily to
traditional proof systems, such as natural deduction and the sequent calculus
(Gentzen 1969).

In this section, we overview a formalism which allows deep inference
based on a deductive system for classical propositional logic called SKS,, that
is presented in the calculus of structures (Briinnler 2004). The translation
of derivations of a Gentzen-Schiitte sequent system into this system, and
vice versa, establishes soundness and completeness with respect to classical

propositional logic as well as cut elimination.

6.1.1
The system SKS,

As presented in (Briinnler 2004), SKS, is defined below.

Formulas for propositional logic are generated by the grammar

Su=f|t|la|[S,....S]](S,...,8)]|S,
N—— N——
>0 >0
where f and ¢ are the units false and true, [S,...,S] is a disjuntion and
(S,...,S) is a conjunction. Atoms are denoted by a, b, .... Formulas are denoted
by S,P,Q,R,T,U,V and W, and S is the negation of the formula S. Formula

contexts, denoted by S{ }, are formulas with one occurrence of { }, the empty
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Associativity: [R,[T],U]=[R,T,U] (R,(T),0) = (R,T,U)
Commutativity: [R,T] = [T, R] (R, T)=(T,R)

Units: [ttl=t (f,))=f (LR)=R [f,R]=R

|

=t t / [R_>T] = (RaT)
(R,T)=[R,T] R=R

Negation:

Context Closure: if R=T then S{R}=S{T} and R=T
if R=T then R=T

Table 6.1: Syntactic equivalence of formulas.

context or hole. The formula S{R} is obtained by replacing the hole in S{ }
by R. The curly braces are omitted when they are redundant, e.g., we shall
write S[R,T] instead of S{[R,T]}. A formula R is a subformula of a formula
T if there is a context S{ } such that S{R} is T

Formulas are (syntactically) equivalent modulo the smallest equivalence
relation induced by the equations shown in Table 6.1, where R, T and U are
finite sequences of formulas, and 7' is non-empty. Formulas are in negation
normal form if negation occurs only over propositional variables. For example,
the formulas [a, b, c] and (4, (b,¢)) are equivalent: the first is not in negation
normal form, the second is. Contrarily to the first, in the second formula,
disjunction and conjunction only occur in their binary form.

The letters denoting formulas, i.e. S, P, @), are schematic formulas.
Likewise, S{ } is a schematic context. An inference rule p is a scheme written
p% where V and U are formulas that may contain schematic formulas and
schematic formulas and schematic contexts. If neither U nor V contain a
schematic context, then the inference rule is called shallow, otherwise it is
called deep.

The inference rules of the symmetric system for propositional classical
logic is shown is given in Table 6.2. It is called system SKS,, where the first
S stands for ‘symmetric’, K stands for ‘klassisch’ as in Gentzen’s LK and the
second S says that it is a system in the calculus of structures. Small letters
are appended to the name of a system to denote variants. In this case, the g
stands for ‘general’, meaning that rules are not restricted to atoms: they can
be applied to arbitrary formulas.

The calculus of structures is symmetric in the sense that for each rule in
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the system, the dual rule is also in the system. The dual of an inference rule is
obtained by exchanging premise and conclusion and replacing each connective
by its De Morgan Dual.

The rules s, w] and c| are called respectively switch, weakening and
contraction. Their dual rules carry the same name prefixed with a ‘co-’, so
e.g. wt is called co-weakening. Rules |, w|, c| are called down-rules and their
duals are called up-rules. The dual of the switch rule s is the switch rule itself:

it is self-dual. For example

wp L) a] b),d] _ cT

a0 is dual to [a a]
[ ] ([ ,b],d)
down-rules up-rules
i S{t} it S(R,R)
S[R,R] S{f}
S([R,U],T)
" S[(R,T),U]
! o SIB)
S{R} S{t}
S[R,R] S{R}
4 stmy VSR, R

Table 6.2: System SK.S,

6.1.2
Proof graphs for deep inference

Our proof-graphs introduced in Chapter 3, explore, basically, the sub-
formula sharing and, with this facilitate, the normalization procedure elimin-
ation of maximal formulas. We propose directed graphs associated with SK.S,
derivations, called deep-graphs, do not define a normalization procedure; how-
ever our graphs are a very convenient tool for defining and understanding
several of its aspects. Our aim now is quickly provide the necessary notions

about deep-graph.
Definition 29 L is the union of the three sets of labels types:

— R-Labels is the set of inference labels: {i}, it, wl, wt, ¢}, ct, s, =V, =",
:al, :aT, :fl} =tl, :fT’ :f/\l’ :tVl’ =t/\T’ :f/\T}
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— F-Labels is the set of formula labels: {t, f} for units false and true, the

letters {a,b,c,...} for atoms, and {(.),[,]} for connectives ,

— E-Labels is the set of edge labels: {l (left), v (right), p (premise), c

(conclusion)},

Formula: ®
False: (ﬂ

Conjunction:
y O e
~ \
\(

Atom: @
True: (? )

Disjunction:

1 //@\,

e .
S

formula node
(right subformula)

formula node
(left subformula)

formula node
(right subformula)

formula node
(left subformula)

Figure 6.1: Formula nodes in Deep-graphs

Definition 30 A deep-graph G is a directed graph (V, E, L) where: V is a
set of nodes, L is a set of labels, E is a set of labeled edges (ve V, te L, v'e
V) of source v, target v’ and label t and is identified with the arrow -0

Deep-graphs are recursively defined as follows:
Basis A formula graph p is a deep-graph.

Rule If Gy is a formula graph with root node R,,' and Gy is a deep-graph
that contains a node T, then the graph G that is defined as G1 ® Gy with

one R-node r; at the top position and the edges: R 2%y and 1y 25T,

where r; is one of the rules sketched below, is a deep-graph

Structural Rules

We use the terms R,,, T;, and U, to represent the principal connective of the formulas
R, T and U, respectively.
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identity cut weakening

contraction co-contraction

o)

Logical Rules

Commutativity

Units

co-weakening
X,

lt \I
4,
twi;)
~ ’

:

switch

78
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6.1.3
Summary

We can say that deep-graph preserve the symmetry of Calculus of Struc-
tures: (i) all rules have one premise and one conclusion (vertical symmetry),
(ii) there are dual rules, e.g. the identity rule and cut rule, weakening and
co-weakening, (iii) the constant node f is symmetrical with ¢;

We intend, as future work, to propose a normalization procedure for
deep-graphs, where we will use the technique of reduce cuts similar to what

one does in normalization for propositional mimp-graphs.
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6.2
Bi-intuitionistic logic seen from mimp-graph

6.2.1
A Brief review of bi-intuitionistic logic

Continuing with our aim of studying the complexity of proofs and provide
more efficient theorem provers, we propose a proof-graph version for Bi-
intuitionistic logic. We start with a brief overview of Bi-intuitionistic logic and
then we present a proof-graph representation for this logic in the fragment
composed by the implication and co-implication

Bi-intuitionistic logic is the extension of intuitionistic logic with the co-
implication < (also known as “subtraction” and “exclusion”), which is dual to
implication -, the formula C'«< B is read as “B co-implies C” or as “C excludes
B”. Bi-intuitionistic logic can also be seen as the union of intuitionistic logic
(lacking co-implication) with dual-intuitionistic logic (lacking implication).

Bi-intuitionistic logic was first studied by Rauszer as a Hilbert-style sys-
tem and a sequent calculus (Rauszer 1974) (Rauszer 1977). In (Restall 1977),
another sequent calculus is obtained by extending the multiple-conclusion se-
quent calculus for intuitionistic logic with co-implication rules dual to the
implication rules, but it neither the sequent calculus of Rauszer are fully cut
eliminable. Thus only cut-free calculi for Bi-intuitionistic logic either use ex-
tended sequent mechanisms such as labels (Pinto & Uustalu 2009), variables
(Goré & Postniece 2010) or nested sequents (Goré, Postniece & Tiu 2010), or
display calculi that rely on residuation (Goré 1998).

In this section we follow one kind of bi-intuitionistic propositional logic
(2Int) recently conceived by Wansing (Wansing 2013) that combines a notion
of dual proof (falsification) in addition to the more familiar notion of proof
(verification) in Natural Deduction. A falsification of an implication (A » B)
is a pair consisting of a verification of A and a falsification of B, whereas
the verificationist must specify verification conditions for co-implications.
Thus, Wansing proposed one single-conclusion system in natural deduction
(N2Int), where introduction and elimination rules are dualized for intuitionistic

propositional logic.

Definition 31 Let ¢ be a denumerable set of atomic formulas. Elements from
¢ are denoted by p, q, T, p1, P2, ..., etc. Formulas generated from ¢ are be
denoted by A, B, C, D, Ay, A,, ..., etc. The propositional language 2Int is

defined in Backus-Naur form as

Au=pi | L[ T|(AAA) | (AvA)| (A > A)| (A< A).
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In 2Int 1 is primitive, the co-negation —A of A is defined as (T« A) and
—~A of Ais defined as (A » 1).

Intuitionistic rule and its dual intuitionistic rule:

I - T AB A B
A A AAB AV B
AAB ~ AvB AAB ~ Av B
A A B B
A o~ A B ~ B
Av B AAB AvB AAB

[4] [B] [A] [B]

ANB C C = AsrB C C

C C

[A] [A] B

H ~ i AA>B ., A B<A
_B B B B
A->B B« A

Falsification of implications and verification of co-implications:

Z? A-> B A- B
A-> B A B
A B A« B A< B
A« B A B

Table 6.3: N2Int: a inference system in Natural Deduction for 2Int

Table 6.3 gives the rules of the N2Int, where the introduction and
elimination rules for intuitionistic propositional logic are dualized by replacing
T, 1, A, v, and > by their respective duals and single lines by double lines.
Besides, we added the suggested rules by (Wansing 2013) for the falsification
of implications and the verification of co-implications (see Table 6.3).

In a graphical presentation of derivations in N2Int, a single square
brackets [ ] indicates the cancellation of an assumption (a formula taken to be
true) and double-square brackets [ | in order to indicate the cancellation of a

counterassumption (a formula taken to be false).
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6.2.2
Proof-graphs to bi-intuitionistic logic

We propose proof-graphs to bi-intuitionistic logic for fragment {», <} in
the mimp-graph style and we call it 2Int-graphs. In this way, 2Int-graphs are
composed of the following objects:

1. The formula graphs that are composed by the formula nodes showed in

Figure 6.2;
Proposition: @ False: @ True: @
Implication: Co-implication:

ZO) PON
TN )
formula node formula node formula node formula node
(left subformula) (rigth subformula) (left subformula) (rigth subformula)

Figure 6.2: Formula nodes in 2Int-graph

2. A certain number of rules which are of the following types:

Intuitionistic absurdity 1; and its dual rule 1.

®

&)

s s
e :\ 12
,Mv . Dual » P
L) 4 L
e Te
5 (£
i @
formula node formula node
(conclusion) (conclusion)

Implication Elimination -E and its dual rule <E

formula node formula node
formula node @ (premise) formula node (premise)

(premise) (premise) /
r @Iﬁ\ .

formula node formula node
(conclusion) (conclusion)

Implication Introduction »I and its dual <
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delimiter node
(discharged counter-
assumption)
formula node h formula node

~formbla node

je=====- (premise)

delimiter node
(discharged
assumption

formula node formula node
(conclusion) (conclusion)

?, A - and S rules

formula node formula node  formula node formula node formula node formula node
(premise) (premise) (premise)  (premise) (premise) ;  (premise)

formula node formula node formula node
(conclusion) (conclusion) (conclusion)

«I, A< and <5 rules

formula node formula node formula node formula node formula node formula node
(premise) (premise) (premise) p (premise) (premise) ; (premise)

/. i)
Ny,
‘:_;\*\
A<

formula node formula node formula node
(conclusion) (conclusion) (conclusion)
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6.2.3
Examples

In the following figures we have examples of the translation of a derivation
in N2Int to 2Int-graphs.

[(B> B)« A
T A -
T<A 1
(B> B)<A)> (1« A)

g [1<A]
B> B A
(B> B)«<A
(T<A) > (Bo>B)<A) "

&

Figure 6.4: Translation of derivation in N2Int to 2Int-graph

6.2.4
Observation

The application of a mimp-style representation to Bi-intuitionistic logic
(2Int) aims to verify that using this graph representation results in a reduced
size of the proofs with respect to traditional ways of presentation in Natural
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Deduction (N2Int). It also allows a better understanding of the proving
process, due to the intuitive graphical interpretation the graphs provide.
For example, the use of the delimiter node hypothesis (assumptions and
counter-assumptions) has also proven useful. In particular, it has made duality
identification manageable and more elegant, in such way semantic properties

of logical connectives are determined by the rules nodes.
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Conclusions and future works

Our proof-graph representation, which we call mimp-graph, defined in
Chapter 3, was introduced through definitions and examples, mainly devised
for extracting proof-theoretic properties from proof system.

That is, we have tackled one of our research tracks. Mimp-graph preserves
the ability to represent proofs in Natural Deduction and its minimal formula
representation is a key feature of the mimp-graph structure, because as we
saw earlier, it is easy to determine maximal formulas and upper bounds on the
length of reduction sequences leading to normal proofs.

Thus a normalization theorem can be proved by counting the number
of maximal formulas in the original derivation. The strong normalization is a
direct consequence of such normalization, since any reduction decreases the
corresponding measures of derivation complexity.

The results presented for mimp-graph are naturally extended for pro-
positional mimp-graphs in Chapter 5. We also get strong normalization for
normalization process that is proved by counting the number of maximal for-
mulas in the original derivation.

Other merit of the present thesis is the treatment of sharing for inference
rules, in addition to formula sharing, developed in Chapter 4, representing
graphs more compactly, which is performed during the construction process of
the graph. This feature is very important, since we intend to use this mimp-
graph approach in automatic theorem provers.

In the construction process when similar formulas are found, the process
of producing the unifier would consume linear time. We do not implement a
process of searching for similar formulas in our graph but we estimate that the
resources consumed in such searching would be compensated by the reduction
of necessary resources to build the proof-graph.

Other contribution is the representation in graphs for first order logic.
With our approach, we get a better view on the behaviour of variables inside
a proof: variable binding in both quantifiers and inferences.

Our experimentation with other logics as deep inference has resulted in

a representation for Calculus of Structures and that it preserves the symmetry
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of Calculus of Structures: (i) all rules have one premise and one conclusion
(vertical symmetry), (ii) there are dual rules, e.g. the identity rule and cut
rule, weakening and co-weakening, (iii) the constant node f is symmetrical
with ¢. Our proof-graph representation also has the ability to access sub-
formulas, allowing the inference rules to be applied in any place deep inside
a formula graph, just like deep inference. So, we get for our graph the same
good characteristics of deep inference. We intend, as future work, to propose
a normalization procedure for deep-graphs, where we will use the technique
of reducing cuts similar to what is done in normalization for propositional
mimp-graphs.

The application of a mimp-style representation to Bi-intuitionistic logic
(2Int) aims to verify that using this graph representation results in a reduced
size of the proofs with respect to traditional ways of presentation in Natural
Deduction (N2Int). It also allows a better understanding of the proving
process, due to the intuitive graphical interpretation the graphs provide.
For example, the use of the delimiter node hypothesis (assumptions and
counter-assumptions) has also proven useful. In particular, it has made duality
identification manageable and more elegant, in such way semantic properties
of logical connectives are determined by the rules nodes.

Finally, we left the details of an efficient implementation of these graphs
for future work. This is a preliminary step into investigating how a theorem

prover based on graphs can be more efficient than usual theorem provers.
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