
S I G P L A N N o t i c e s 94 1976 D e c e m b e r

SPECIFIC,iT!O~ ,iND UNIFORM REFERENCE TO DATA. STRUCTURES IN PL/I

Daniel Sehwabe
snd

Carlos J~ Lucena
Departamento de Informatica

Pontif{cia Universidade Cat$1ica
Rio de Janeiro - Brasil

Th~:ough the use of a modified concePt of cluster [I, 2] 'we pro-
pose the association of the notions of abstract data types and uniform
refarence to ~ata structures to PL/I. Thef proposed programming mechanisms
enhance PL/I by the addition of two new linguistic dimensions: a specification
level and a cemn:on base]angl~age to handle the implementation Of data
structures. This report informaily describes the syntax and semantics of
the added constructs and gives an example of their use.

INTRODUCT! ON

An effective way of testing a new programming mechanism is to
embed it in a ~;eli~known progranuning language, instead of forming a
siguilicant nu,~ber of users in yet another completely new programming
language, it seems better to evaluate a new modeling capability (pro-
grsmming construct) through its presentation in the context of a very
familiar notatien (a frequently used language). Our research group has
repeatedly used this approach with encouraging results [3, 4, 5].

The features we propose in the sequel were first introduced in
an altogether innovatiw~ language design [6] and then transferred into PL/I

for the purpose of testing.

The cluster approach is due to Liskov and Zilles [I] and
consists of some language features to mode], and implement abstract types
~n terms of operations applicable to objects of the type in such a way that
the user needs to be concerned only with the abstract behavior of the
type as presented by the" operations.

The model we propose requires the decomposition of a program
into three levels (as in [7]) :

SIGPLAN Not i ce s 95 1976 D e c e m b e r

i.

if.

At the first level, the user describes (specifies) an algorithm in a
very high level notation implied by the possibility of defining
abstraci: ~latf~t'.fpe~ (either off~the-she!f or custom ta~lored
abstraction).

At the second level the user describes the access mechanisms involved
in the so-called general level of the represenfat~oll whici~ is chosen
to imp]e~ent the abstract type (cluster type i). The general]evei of
the representation is defincd in terms of a set of standard operations
which provide a uniform way of handling most implementation level
(concrete) data structures (still undefined at this point).

iii. At the thir~J level the standard operations on the general representation
are modfeli~d by a differ~mt cluster (type 2) that makes use of the
"low~st level" f~_..ature~s of the host language. This is the i mpleme1~tation
or cohere[it, level of tbc represent~tion.

We hsve argued elsewhere [2] that from the points of view of
prow~bility, ef£iciency and portability, the above approach has ~Lany
advant~es.

2. THE NOTATION AT THE DIFFERENT LINGUISTIC LEVELS

An abstract type, in our extended version of PL/I, is declared
in the following way.

DCL name (parameter list) ABSTRACT TYPE;

A v~riab!e can then be defined by writing

DCL vat name;

Whenever o_p is a valid operation (defined for type name), it can be applied
to a variable of this type by writing

name@op (vat, parameter listO;

A cluster that defines the general level of the representation (access path
level) has the following form (cluster type i):

SIG]PLAN N o t i c e s 96 1976 D e c e m b e r

name: CLUSTER ON REPi (parameter list)~IS oPl,...,Opn ;

[declaration of global (to the cluster) variables]

CREATE

DCL r REP;

[create body]

ENDCREATE

oPl: PROC (parameter list) RETURNS (type);

[declaration of local variables]

[oPl body]

END oPl;

OPn: 'PROC., .

END name;

At this]evel all the primitive PL/I data types can be used with
the exception of poi~ter and based variables. This is meant to delay the use
of implementation details to the concrete representation leve][9].The CREATE
block (procedure) is activated by the declaratien DCL var name; used at the
specification level.

In the definition abeve we wrote DCL r REP; to mean that r is
of whatever concrete representation is used (recall that an arbitrary concrete
representation is operated upon by a set of stanJard operations). The set of
stan6ard operations on a concrete representation are used in the definition
of the semantics of the oPi (i ~ i ~ n). WRen the abstract type being
modelled implies more than one level access path
(e.g. sets of sets of integers) the header of the cluster must indicate tbat
in the following form

name: CLUSTER ON REP i (REPi_l(...(parameter list)...)) IS oPl,...,OPn;

In that case, r will stand for the outermost REP.

Thedeclaration of global and local variables may contain the
definition of abstract types, thus making general representation clusters
accessible from ~ithin other general representation clusters.

The operations in the general representation clusters may be
defined over two (or ~re) variables of the same type: a typical example is
the assignment operation . In this case, we require that the concrete

representations used for each a~gument be the same. In this respect we
follow Low [8].

S I G P L A N N o t i c e s 97 1976 D e c e m b e r

A cluster that defines the concrete representation level (type
2) has the following form:

repr: REP (parameter list) USES <template> ;

[declaration of global (to the cluster) variables]

CREATE

[create body]

ENDCREATE

ADD: PROC (parameter list);

[declaration of local variables]

[body of standard operation ADD]

ENDADD;

SUB: PROC...

SELECT: PROC...

END repr;

At the above representation level the programmer can make use
of full-PL/l. The symbol <template> stands for the PL/I data types used to
implement the concrete representation. We have defined the following set of
standard operations:

ADD (adds an element to the defined in terms of the <template>)

SUB: subtracts an element
SELECT: selects an element
INSERT: inserts a new element

REPLACE: replaces an old element
LINK: links two sub-structures
DETACH: detaches two sub-structures
COPY: generates a copy of the structure
SUCC: finds the successor of a given element
PRED: finds the predecessor of a given element

These operations can be easily axiomatized as in [2].

The CREATE block initializes the concrete representation. In the
general representation level, the declaration of any variable as being of
type REP (or REPi) causes the activation of the corresponding CREATE block of
the concrete representation cluster.

SIGPLAN N o t i c e s 98 1976 D e c e m b e r

To allow for more flexibility, clusters of the second and third
levels may have parameters. These parameters contain the basic (primitive to
PL/I) types of which the ABSTRACT TYPE is formed. This is reasonable since
the general representation cluster--describes an access path that is indepen-
dent from the types of the elements in accesses• Evidently, these types must
be passed to the concrete representation cluster, since it is there that
these types will ultimately appear•

3. HINTS ON THE TRANSLATION TQ STANDARD PL/I

In this section we g~ve a brief description of how an equivalent
set of programs in standard PL/I can be obtained from our proposed extension.

Before the translation actually stsrts, it is necessary to
associate a concrete representation cluster to every variable in the
specification level that is declared as being of ABSTRACT TYPE. This
association is accomplished by the statement

ASSIGN REP repr TO vat

The idea is to have each variable of ABSTRACT TYPE actually
declared as a pointer variable; this variable will point t~ an instance of
the concreterepresentation that is constructed through the operations in
the general representation cluster (type i). Since all concrete representation
clusters have the same standard operations, the actual procedures are
distinguished by prefixing the cluster name to the operation. A call to these
operations uses an interface program that in turn calls the actual operation
in the concrete representation cluster being used. Thus,

DCL var name;

translates into

and

DCL var POINTER;

var = nameCREATE;

name~op(var,parameters)

SIGPLAN N o t i c e s 99 1976 December

generates
CALL nameop (var ,b ,pazms) ;

The parameter b is an integer used to identify the concrete
representation cluster. This integer number is unique to each of these
clusters.

Each operation in the general representation cluster, such as

op: PROC (parms)RETURNS (REP);

is translated to

name op : PROC (r, s ,parms) RETURNS (POINTER) ;
DCL r POINTER,s BIN FIXED;

Inside a cluster, a mention of any of the standard operations
such as r@ADD(parms) is translated to CALL ADD (r,s,parms). In this case,
s is the integer that will distinguish the appropriate operation in the
concrete representation cluster. For each variable that uses this concrete
representation the assigned unique integer is passed as a parameter in calls
to the operations of this cluster.

The declaration

estr: REP (parms) uses <template>;

is translated into

DCL <template> BASED (ptestr);

and each of the standard operations will be prefixed by the name of the
cluster, e.g., estrADD (r,s,parms). In addition, appropriate information
is included in the interface program.

l~e body. of the CREATEbloek (which is translated into a function) must
contain an ALLOCATE statement for the template. Also, since all global
variables in the concrete representation cluster are part of the structure,
they are gathered in a PL/I BASED structure.

All these points will be illustrated in the following example.

4. EXAMPLE

The following sample program uses an abstract type stack (the
favorite example of most of the authors in this area).

The main program is presented in the sequel.

EX: PROC OPTIONS (!!AIN) ;
DCL stack(type ABSTiL%CT TYPE;
DCL p stack(BIN FIXED);

IF input='(' TUEN stack@push (p ,k)
ELgE IF input=')' THEN DO;

PUT SKIP LIST(k,stack@top(p));
stack@pop (p) ;
END

SIGPLAN Not ices 100 1976 D e c e m b e r

This would be part of a program that prints pairs of positions
of parentheses in a string. The general representation cluster implementing a

stack would be

stack: CLUSTER ON REPI (type) IS push,pop,top;

CREATE

DCL r REP;

ENDCREATE

push : PROC (elem);

DCL elem type;

REP~ADD (r, '-', elem) ;

RETURN
END push;

pop : PROC ;

REP@SUB(r, '-') ;

RETURN

END pop ;

top : PROC RETURNS (type) ;

RETURN (REP@SELECT (r ,0)) ;

END top ;

END stack;

In this cluster, ADD, SUB and SELECT refer to operations in a
concrete represen£ation level. It is clear that push, pop and top use the
(fixed) semantics of the former operations. Finally, we show part of a
concrete representation cluster that implement a linked list.

list : REP(type) USES

I node ~

2 value type,

2 next POINTER;

DCL (head,laSt) POINTER,

size BIN FIXED ;

CREATE

ALLOCATE node SET(head);

node.value=0;

• node.next =NULL;

last =head ;

size =0;~

SIGPLAN N o t i c e s ;4~1 1976 D e c e m b e r

SELECT: PROC(i) RETURNS(type);

DCL (i,j) BIN FIXED;

DCL (k,m) POINTER;

IF i > size THEN RETURN(UNDEF); /*UNDEF is undefined value*/

k = head+node.next;

DO j = 0 TO i WHILE(k~=NULL); /*search for i th elementS/

m = k;

k = k +node.next;

END;

RETU~N(m+node.value);

END SELECT;

ADD : PROC(pos,elem);

ECL pos CHAR(1),elem type;

DCL pt pointer;

ALLOCATE node SET(pt);

pt+node.value = e]em;

pt + node.next = NULL;

size = size + I ;

IF pos = '+' /* File in the Iast position*/

THEN DO;

last ÷node.next=pt~

last=pt;

END;

ELSE IF POS = '-'

THEN DO; /* File in the first position*/

head +node.next=head;

head=pt;

END;

ELSE CALL ERROR;

RETURN;

END ADD;

END list;

The variable UNDEF stands for a representation of an undefined
value. Assuming that ~e want to use a list to implement the stack, our

SIGPLAN Notices 10Z 1976 December

specification level program should be preceded by

ASSIGN REP list TO p

Supo~ing that list has an .~.dentification number I (which means
that all c~]Is refering to it will contain an iB argument) the following
tramslations would be generated in the specification level program:

EX: PROC OPTIONS (biA!N) ;

DCL p POINTER;

p=stackCREATE (iB) ;

:[F input ='(' THEN CALL stackpush(p,IB,k);

ELSE IF input=')' THEN DO;

PUT SKIP LIST(k,stacktop(p,IB));

CALL stackpop (p,IB) ;

END

END EX;

appear as

In tile general representation cluster for stack, push would

stackpush: PROC (r, s, elem) :

DCL r POINTER,s BIN F~D,

CALL ADD (r, s, '- ', elem) ;

RETURN ;

END stackpush;

Finally, w~ show part of the translated concrete representation
cluster.

list: PROC;

DCL

I node BASED(S1)

2 value BIN FIXED,

2 next POINTER;

DCL

I aux BASED ($2)

2 head POINTERs

2 last ~ R ,

2 s i z e ~ I.~;

SIGPLAN N o t i c e s 103 1-976 D e c e m b e r

|i~CRZJtTml R~C(b) R~TURNS (POIWnZR) :

DCL pt POINTER,b BIN FIXED;

ALLOCATE aux SET(pt);

ALLOCATE node SET(head) ;

RETURN (pt) ;

END IistCREATE;

list SELECT: PROC (r, s,i) RETURNS (BIN FIXED) ;

DCL r POINTER, s BIN FIXED;

DCL (i,j) BIN FIXED;

DCL (k~m) POINTER;

DCL temp POINTER;

IF i >r +slze THEN RETURN (UNDEF) ;

temp=r + head ;

k = temp +node.next;

DO j=0 to i WHILE(r-~=NULL);

m=k;

k=k +node.next ;

END ;

RETURN (m + node. value) ;

IistSELECT; END

END list;

In this procedure, the pointer variable temp is used because
PL/I does not allow expressions like r+head +node.next.

SIGPLAN Notice s 104 1976 D e c e m b e r

~IqZR~CES

[I] l.iskov, B.; Zilles, S. - Programming with Abstract Dat A Type s - in
SIGPLAN Symposium on very high lev~l languages. March, 1974.

[2] Lucena, C.J.;Schwabe, D.; Berry, D. - Issues in Data Type Construction
Facilities - Technical Report n9 4/75 '''L Pontificia Universidade
Catollca, Rio - August, 1975.

[3] Furtado, A.L.; Pfeffer, A. - P~ttern Matching for Structured Pro~rammin~
~n PL/I - Seventh Asilomar Conference on Circuits, Systems and
Com~u~ers. 1973.

[4] Furtado, A.L.; Santos, C.S. - G/PL/~ DExt@qd~n~ PL/I for Graph Processln~
Fourth Symposium on Computer and Information Science, 1972.

[5] Bauer, J.C.P.; Furtado, A.L. - ~xtendin~!he Control Structures of PL~ -
PUC Technical Report.

[6] Carvalho, S.; Lucena, C.J.; Sehwabe~ D.; Rosa, P. - An Overview of the
PEP Langu~g e - a Language for POrtability~ Efficiency and pr0vability
To appear.

[7] Earley, J. - Relational Level Data Structures for Prosranm~ing Languases -
Acta Infor~mtica - 2, 1973.

[8] Low, J.R. - Automatic Coding - Choice Of Data Structures - Stanford
University, Computer Science Dept., 1974 - STAN-CS-74-452.

[9] Berry, D.M. - Correctness of Data Representations: Pointers - Internal
l~morm~lum 143,' UCLA Co~uter Scim l~pt., 1975.

