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ABSTRACT 

An algebra which operates on partitioned relations 
is developed. Relation partitioning is achieved 
by defining equivalence relations on n-ary rela- 
tions. It is shown that the algebra is as powerful 
as the original relational algebra, having the ad- 
vantage of a set-processing capability. This fea- 
ture provides both greater flexibility in query 
specification and efficient query processing. 
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INTRODUCTION 

The algebra of quotient relations endows Codd's re- 
lational algebra [1,2] with explicit set-processing 
cababilities. The development of this algebra is 
motivated by several trends in the current litera- 
ture. They are: 

o The inclusion of set-processing capabilities 
in high level relational languages; 

o The emergence of the ANSI/SPARC [3] notion 
of a conceptual schema to support several external 
schemata such as the relational, network and hier- 
archical models; and 

o The concern in efficiently evaluating rela- 
tional operations and expressions. 

Most high level relational query languages provide 
some sort of set-processing capability. QUEL [4], 
for example, has the SET and AGGREGATE-clauses, 
while both SEQUEL [5] and SEQUEL 2 [63 have the 
GROUP BY-clause, Further, SEQUEL 2 has replaced 
the quantifiers SOME and ALL with a SET operation, 
a group-qualifying HAVING-clause, and set compari- 
son operators such as IN, CONTAINS, DOES NOT CON- 
TAIN, etc. Query by Example [7] incorporates sub- 
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setting operations in two-dimensional query speci- 
fications, while SYNGLISH [8] provides special 
keywords such as SOME, ALL, ONLY, and an EACH- 
clause to obtain subsetting and aggregation. 

The ANSI/SPARC report suggests a data architecture 
consisting of three schemata: the external, con- 
ceptual, and internal schema. If the conceptual 
schema is to support several differing external 
schemata, then it must have a data structure and 
operations general enough to translate among them. 
Lastly, the efficient evaluation of relational 
operations and expressions is essential to the 
overall operating performance of a relational sys- 
tem [9, 10, 111. 

The proposed algebra contributes to elucidating 
the above-mentioned points. The set-processing 
features of high level languages are incorporated 
directly into the algebra via the notion of a par- 
tition induced by an equivalence on the attributes 
of an n-ary relation. The blocks of partitioned 
relations serve as units for relational operators; 
their representation in other models could provide 
the flexibility required at the conceptual schema 
level. Evaluation of relational expressions is 
efficient since in many cases, it is sufficient to 
examine a representative of a block to determine 
whether that block of tuples participates in the 
resulting relation. 

The paper is organized as follows: Section 2 de- 
velops the algebra of quotient relations, or quo- 
tient algebra, by introducing an equivalence rela- 
tion on an n-ary relation which partitions it into 
a collection of disjoint blocks of tuples. Six 
primitive operations are defined for the algebra, 
and it is shown to be closed under these opera- 
tions. Section 3 provides a query specification 
template, and several examples are given. Univer- 
sal quantification is replaced by a subsetting 
criterion allowing logical implication (p + q) to 
be stated directly, whereas Codd's relational alge- 
bra requires either "division" or a negated version 
(NOT Pvq). Further, relational completeness ofthe 
quotient algebra is demonstrated. Several exten- 
sions to the algebra appear in“section 4, while 
implementation and efficiency aspects are treated 
in section 5. 

THEALGEBRA OF QUOTIENT RELATIONS 

The definitions and terminology of this section 
follow that of the relational model Cl]. It is 



assumed the reader is familiar with the relational 
operations; the new algebra is defined in terms of 
these operations. 

(2.1) Definition: 

Let DI, D2, D3, . . . . Dn be sets, not necessarily 

distinct. A relation R on DI, De, D3, . . . . Dn is 

a subset of the expanded Cartesian product 

DI x D2 x . . . x D,; i.e., 

R 4 DI x D2 x D3 x . . . x Dn 

The relation R is said to be an n-ary relation or 
a relation of degree n. Each Dj, j ~{1,2,.., nl, 

is called the jth domain of R. An element t of an 
n-ary relation R ised an n-tuple or simply 
tuple. 

(2.2) Definition: 

Let R be an n-ary relation. Corresponding toeach 
Dj, j E {1,2, . . . . nl is an Aj called an attribute 

of R which indicates the & of Dj in the rela- 

tion. The attributes of R are distinct. 

(2.3) Definition: 

Let I denote the collection of attributes of an 
n-ary relation R. For a subset A of attributes of 

I, we denote the complement of A as A = I - A. 

The sequence of A is denoted by 4, where the attri- 

butes are arranged in a fixed sequence. The empty 
set of attributes is denoted by 4. 

(2.4) Definition: 

Let R be an n-ary relation and A a subset ofattri 

butes of R. The relation :A s R x R is said to 

be an equivalence on R if for tuples t, t' E R, -- 
tsAt' iff t[A1] = t'[A1] A,....A t[Ak] = t'[Ak] 

where Al, A,, . . . . ALE A. 

Thus if tuples t and t' have the same values with 
respect to the attributes of A they are equivalent 
under zAA' It is easy to show that zA is reflex- 

ive, symmetric, and transitive, hence an equiva- 

lence relation. As such, we say R is partitioned 

f 
b A (R is considered a set of tuples) into 

iszoint blocks of equivalent tuples (c.f. [12]), 
each of wms denoted by 

[t] = I t'lt' E R and t' zA t 1 

The collection of all blocks, written as 

R/A = {[t][[t]C_R and t&R) 

is called a quotient relation and is represented 
as a table,composed om as depicted in 
Table 1. 

(2.5) Definition: 

Let R be an n-ary relation. For different choices 
of A, different quotient relations are obtained. 
Together they constitute the family of quotient 
relations, Q,, over R; 

Q, = tR/A&I3 

(2.6) Proposition: If R is an n-ary relation, 

then the cardinality of Q, is 2". 

This follows directly from the fact that an attri- 
bute may or may not participate in a particular A, 
so there are 2" possible choices of A, hence one 
quotient relation induced by each A. 

It can be readily verified that for a given n-ary 
relation R, the family Q, is a finite lattice with 

universal bounds the quotient relation i( consisting 

of a single block, and the quotient relation i in 
which each tuple is itself a block (cf. [12]). The 
partial order in the lattice is given by thedegree 

of refinement. Thus, for any R' E Q, we have 

# ( R'I ^R which means that # is the least refined 

(consisting of a single block), R' is more refined 

than K but less refined than i which has a tuple 
per block. 

The algebra to be defined will use quotient rela- 
tions exclusively. We assume that an n-ary rela- 
tion R in first normal form [l], which is isomor- 

phic to fi, is given initially; other members of Q, 
are obtained via the following: 

(2.7) Definition: 

Let R be an n-ary relation with A and B denoting 
any two sets of attributes of R, and R' a member 
Of QR. The partitioning operator, I , induces a 

partition on a quotient relation, while the 
de-partitioning, * , eliminates a particular par- 
tition. The operators must conform to the follow- 
ing rules: 

(R'/A)/B 4 (RVB)/A A (RVAUB) 

(RI/A) * B & R'/(A-B) 

In addition we define Q- A g + and I U A a I; it 

follows, for example, that R' * $ = R' = RI/g, 

R’/I=i, R’*I=);, and fi * A = $A. 

We now introduce the relations to be used in the 
examples: R(N,T,O,L), S(N,C,S,T,M), W(N,C,S,T,M), 
where: 

N - employee name 

T - team 

0 - operation 

L- location 

C - employee's category 

s- salary 

M - manager name 



Table 1 shows i, x and i in their tabular represen- 
tation (which is identical to the relational repre- 

sentation for R, S and W); Z + ${T,Ll depicts # 
partitioned by T and L. 

Note that a quotient relation may always be de- 
partitioned by I before projecting. 

‘R NT0 L 

b17 x 
al3 x 
a 1 12 y 
al7 x 
c23 x 
c 2 12 y 
d23 x 

e23 x 

V 
SNCSTM 

i N C S T M 

a 1201 b 

b 2 301 u 

c 1252 d 

d 2 202 u 

e 2 202 d 

Table 1: Tabular 

f 1231 b 
g I 151 b 

h 1202 d 
i 1182 d 

j 1152 d 

representat 
v v v 

ion of R, S, W, Z 

(2.9) Definition: 

ZNT 0 L Let e denote any one of the set comparison opera- 

minthe set{=,~,~,~>,~,c,~,.,~,<) 

al3 x which may be modified by an overwritten "/" de- 

noting negation. The last four operators may be 

modified by "." (to be explained later). The 

operator ' 2' means that the two sets being com- 

Note that the tuples are grouped into blocks of 
equivalent tuples. Further, a "flat file" repre- 
sentation is maintained since we are partitioning 
by sets of attributes rather than sequences of 
attributes which would imply an order: 

The remaining operators of the quotient algebra are 
projection, restriction, Cartesian product, and 
union. Although they have counterparts in the con- 
ventional algebra., they differ from them in several 
ways: 

l Quotient relational operators must provide 
appropriately partitioned resultant quo- 
tient relations, 

l Quotient relational operators deal with 
blocks of quotient relations as their units 
(cf. the notion of congruence in [E]). 

a e- comparison operators used in restric- 
tion operate on sets of tuples rather than 
just values. 

We now present the remaining operators and dis- 
cuss how the partitions affect the operators and 
the evaluation of expressions. 

Let R and S be-n-ary and m-ary relations, respec- 
tively. Consider the quotient relations R' E Q, 

and S' E Q, partitioned by attribute sets A and 8, 

respectively. Further let C and D be other attri- 
bute sets of R; 
(see (2.3) ). 

C and 2 are sequences of C and D 

(2.8) Definition: 

Th-e projection, T + R' [ C ], is defined only if 
Ad_ C, in which case T is partitioned by A. 

Blocks are treated as units by the operators, and 
in the case of projection each block is projected 
on C and possible duplicate tuples are eliminated. 

pared have at least one element in common, while 

" 5 " means they are disjoint. 

(2.10) Definition: 

The restriction, T + R' [ C e _D ], is defined so 

that a block [t] of R' participates in T only if 

[t][c] e [t][z], provided that the underlying 

domains of C and 2, are e-comparable. 

The resultant quotient relation T is still par- 
titioned by A. 

(2.11) Definition: 

The Cartesian product, T + R'@ S' , is defined 

such that for i E C1,2, . . . . k1 and j E (1,2,., ~1, 

a block [t]ij of T is defined as 

IItli j = Crli X [‘lj, 

where: x denotes the Cartesi.an product of the 

conventional algebra; [r]l, Cr]2, . . . . Ir]k denote 

the blocks of R'; and 1311, k.12, . . . . [sl, denote 

the blocks of S'. 

In the operator of (2.11) the individual blocks of 
R' and S' are treated as relations to form a block 
of T. Note that T is partitioned by the disjoint 
union A 6 8. 

(2.12) Definition: 

The union, T + R' 0 S', is defined only if A = B 
and domains corresponding to the attributes in R' 
and S' are pairwise compatible [2]. Union merges 
the pairs of blocks from the operands that are 
equivalent under the conmon partitioning scheme, 
and also keeps the unpaired blocks from each 
operand. 

The union T + R'@ S' is partitioned by A (or 

equivalently by B). 



QUERY SPECIFICATION IN THE QUOTIENT ALGEBRA 

Query specification in the quotient algebra fol- 
lows a standard format consisting of three well- 
defined steps. They are: 

o The operand relations are parti- 
tioned. 

o An association between blocks of the oper- 
ands is specified. 

o The associated blocks are then tested by 
means of a generalized comparison operator. 

A number of examples illustrate the use of the 
algebra to specify and process queries. To avoid 
ambiguity when attributes with the same nameappear 
in a resulting relation, subscripts will be used. 
Braces will be omitted in the case of partitioning 
by singleton sets. 

(3.1 .) Ql: Find the pairs of teams and locations, 
such that the team has participated in 
all operations taking place at a loca- 
tion; together with each team give 
also all its employees. 

A 

Operations 

A + ~[N.T,o]/T 

B + :[O,L],L 

C+A@B 

Comaents 

operations grouped by team 

operations grouped by location 

all pairs team-location are 
potential candidates 

D + CC& 2 W[N,T.LI test if team operations include all 
operations at the location and 
project on attributes of interest. 

N T 0 

b 
a : : 
a 1 12 

3 

a 1 7 
C 

5 : ‘i 
e 2 3 

D 
N T L 

C 
N T 01 02 L 

I 
b 17 X 
a 1 .3 : x 
a 

:I: 7 x 
t 1 7 

X 
: x 

a 13 X 
a 1 12 : x 
a 17 3 
b17 12 ; 
a 
a : 1: 2 ; 
a 1 7 12 Y 
c23 7 x 

i i l23 
X 

: x 
e 23 7 x 
C 2 3 X 

: 
2 12 : x 

X 

e i 33 i 
c23 2; 
C 2 li :2 y 
d 2 3 12 y 

,-e 2 3 12 y 

Table 2: Processing Q1 

(3.2) Qz: Find the managers who earn more than 
their employees. 

Servicing this query requires using the I'." modi- 
fier. In comparing two setsS1 and S2 with any of 
(5, -c , 5 , >I, one may want to test the condition 
for one or all members of either set. For example: 

some element of S1 < all elements of S2 

which is equivalent to testing if (Cf. [13]): 

min (Sl) < min (Sp) 

Herein the modifier "." is used on the side (sides) 
of the e-operator where the word all would appear. 
The various possibilities are shoFin Table 3. 

some all 

I 1 
some C,<,',' _ _ 1 <.,I. 1'* I'. 1 

all 

I 

.< ,.(,.>,.> - *<.,.5.,.7.,.7. 

Quantified comparisons Table 3: 

The quotient algebra specification for Q2 is: 

Operations Comnents 

A + $N,S] each employee as a possible manager 

B +&MI/M employees grouped by their managers 

c + (ABB)CN=M] association of manager-employees 

0 + C[Si >.S,][N] condition concerning salaries 

Table 4: Processing Q2 

(3.3) Q3: Find the employees in "acceptable" 
teams, where a team,is acceptable 'if 

all its present employees (in X) earn 
at least ;s much as the prospective 

ones (in W). 

Operations Comnents 

A + $N,s,T]/T present employees grouped,by team 

B + I?[N,$,T]/T prospective empluyees groupe,d by team 

c + (A@B)CT,=TJ association by same team 

D + C[S,.,.SZ]CNI.TI]@ merge present and prospective 
employees for tekns satisfying 

C[S,~).%I[N~rT~l the salary condition. 
,. . 

4 
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Table 5: Processing Qs 

The preceding queries were designed to show the 
ease of query specification in the quotient algebra. 
Of particular importance is the specification se- 
quence: operand partitioning, association, and con-' 
dition test, which parallels query specification in 
the relational calculus [Z]. Consider, for example, 
query Qs (ignoring the final merge, for simplicity) 
as a calculus expression: 

association (between blocks) 

(S.w): s[T] = w[T] A 

v s"iw' ((s'[T] = s[T] A w'[T] = w[T-j) + s\[[S]~w'[s,l) 
\ / 

partitioning (of operands) condition test 

The quotient algebra allows a more natural query 
specification than the relational algebra because 
in the former, logical implication, p-f q, may be 
expressed directly, while in the latter it must be 
expressed as NOT p v q. As an example, Q1 (3.1) 
would be expressed in the relational algebra as: 

Operations 

A + R[T] x R[O.L] 

B + A[T,O,L] - R[T,O,L] 

C + R[T,L] - B[T.L] 

0 + (R[N,TI[T=TIC)CN,T.Ll 

Comments 

all possible combinations 

tuples non-existent in R[T,O,L] 

teams having participated in all - 
operations at a location 

append employees to accepted pairs 

We conclude this section with the 

(3.4) Proposition 

The quotient algebra is relationally complete in 
the sense of [El. 

Proof: We express each relational algebra opera- 

tion in terms of an equivalent quotient algebra 

expression. 

relational algebra 

projection: R@] 

restriction: R[& a LJ 

join: R[i e BJS 

division: R@ 5 8Js 

Cartesian product: R x S 

union: RUS 

intersection: RflS 

difference: R-S 

QUOTIENT ALGEBRA EXTENSIONS 

Practical usage may require more than the minimal 
set of six operators described in section 2. Other 
operations could be introduced whenever convenient, 
their definition being given in terms of the basic 
ones. Obvious choices are the join, intersection 
and difference operators; some other possible can- 
didates are: 

l Conditional expressions, involving more 
than one comparison and including logical connec- 
tives, have been suggested [9, lo] for use with 
restriction and join. 

l Transitive closure is another useful opera- 
tion. Consider a binary relation V G N x M,where 
N is employee name and M is manager name. In 
order to find the pairs consisting of an employee 
and his manager's manager, we write in the present 
algebra: 

A + ((~OV)CM,=N,I)[N1,Mp] 

which may be merged with V to give, for each em- 
ployee, the two levels of managers to whom he re- 
ports: 

B+i@A 

This process may be repeated to m levels of man- 
agement. Generalizing further, if m is unbounded, 
additional levels would be added until the result 
for k + 1 levels contained the same pairs as for 
k levels. 

(I Reduction of quotient relations by decom- 
posing them into quotient relations of lesser de- 
gree has some theoretical and perhaps future prac- 
tical interest. The reduction is somewhat 
analogous to division in the natural numbers, i.e., 
where a number Z is divided by D to obtain a quo- 
tient Q and a remainder R such that Z = QxD+R. 
Thus quotient relation Z is to be reduced into 
quotient relations Q and D and some remainder re- 
lation R. 

Consider Z + fi[: T,L,O] with R as given in table 1. 

The computations: 



Operations 

D + ![L,O]/L 

Q + ((:jr{T,L)ox/L)c(L~,o~) 2 

(L&)l)CT.LJ 

R + (;/{T.L&)[(TI,LI) $ (T21L2)1 

'z+ (((Q@D)[L1=L2l)Ci2l@R)*I 

yield the results in table 6. 

Comments 

projection 

similar to division, 
with second operand 
partitioned by non- 
empty set of attributes. 

difference with respect 
to a specified set of 
attributes. 

reconstruction of ; 

Table 6: Example of reduction 

For an n-ary relation Z and attribute sets A, 8, 
such C = All5 and AU B = I, the above expressions 
generalize to: 

Further, whenever C = $ the formulas for D, Q and 

for the recomposition of 8 become: 

so that the formula for Q becomes equivalent 
(cf. (3.5)) to division in the relational algebra. 

IMPLEMENTATION CONSIDERATIONS 

Two factors influence efficiency in processing quo- 
tient relations: expression evaluation and parti- 
tion implementation. The first deals with proces- 
sing a single "big operation" consisting of: 

o The partitioning of operand relations. 

This stage can be done in parallel, with 

each operand handled separately. 

o The association between operand blocks. In 

a block, tuple values for partitioning at- 

tributes are obviously the same. Since the 

association between blocks depends only on 

such "representative values", this stage 

can be performed very efficiently. 

I) The testing of a e-condition. Here improved 

performance may be obtained because not all 

tuples need be examined in certain cases 

(e.g. when "$' is used to compare sets, we 

may "accept" the block as soon as the first 

match occurs). Also, for order comparisons, 

the minimum and maximum values of sets can 

be determined separately for each operand; 

then only one comparison is needed to test 

the condition. 

Certain efficiency considerations often made con- 
cerning the relational algebra are also applicable 
here. Clearly, one should avoid actually comput- 
ing a Cartesian product; by looking ahead to the 
next (simple) operations (especially projections) 
one may verify if the desired result will in fact 
be a concatenation of tuples, or a merge, or if 
one of the operands is simply used to restrict the 
other (see Q1. Qa, and Qz, respectively, and cf. 
the "keep" feature in [14]). 

Partitions can be implemented in several ways; two 
are: pointer arrays and aggregate inverted lists. 
A pointer array P indicating the first tuple in 
each block of a quotient relation can be used if 
the tuples have been grouped by some sorting on 
the partitioning attributes. If physical re- 
arrangement of tuples were undesirable, P could 
point to another pointer array Q which would indi- 
cate tuple rearrangement. 

Aggregate inverted lists for a set of attributes A 
are obtainable, for example, by intersecting the 
inverted lists for the individual attributes in A 
(if such inverted lists are available). 

A sort routine may be a major tool in an implemen- 
tation. Sorting on the attributes in A (in any 
sequence) is one way to perform the partitioning; 
sorting also on "pivot" attributes may be useful, 
leading to algorithms linear in the number of com- 
parisons [ll]; sorting on attributes in A in a 
specified sequence can provide a hierarchical pre- 
sentation of the data for output. 

Lastly, the quotient algebra could be implemented 
quite efficiently on a special purpose processor 
such as RAP, the Relational Associative Processor 
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[15]. The "mark bits" associated with each tuple 
could indicate the block to which it belonged. Re- 
lation partitioning would be extremely fast due to 
RAP's associative processing capability, and its 
versatile instruction set, powerful enough to sup- 
port the quotient algebra. 
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restriction, Carteslan product, and union. 

By endowing the relational model with set- 
processing capabilities, the quotient algebra in- 
corporates features present in high level query 
languages. It is hoped that the algebra could 
serve as an intermediate language into which the 
high level languages might be translated. 

Conversely, the algebra may influence language de- 
sign. Recent human factors research [16] indicates 
that certain SEQUEL features involving the GROUP 
BY-clause, correlation variables and computed vari- 
ables are difficult to use, even by sophisticated 
users. The quotient algebra's query format sug- 
gests that relation partitioning be performed first, 
followed by association and condition testing. 
This fact could be incorporated into a language 
such as SEQUEL, as shown by a SEQUEL and COBOL-like 
syntax to represent QL(3.1): 

PARTITION R[N,T,O] BY T GIVING A 

PARTITION R[O,L] BY L GIVING B 

ASSOCIATE A,B GIVING C 

SELECT N,T,L 

FROM C 

WHERE SET (C[O,]) CONTAINS SET (C[O,]). 

Partitioned relations and the quotient algebra are 

possible candidates as data structure and opera- 

tions for conceptual schema. For example, if R 

is an n-ary relation with A a collection of attri- 

butes of R such that a is functionally dependent 

Cl] on A, i.e. A + A, then the blocks of R' + i/A 

can be represented as CODASYL set occurrences; the 

common element in each block of R'[& becomes the 

owner record, while the elements of R'[A] become - 

the respective member records. Functional depend- 

ence ensures that an element of R'[A] appears in - 

only one block, and therefore cannot have more 

than one owner as required L-171. A full develop- 

ment of this area is a topic of ongoing research. 
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