
AN ALGEBRA OF QUOTIENT RELATIONS*

Antonio L. Furtado
Departamento de Informatica
Pontificia Universidade Catolica

do Rio de Janeiro
Rio de Janeiro, Brazil

ABSTRACT

An algebra which operates on partitioned relations
is developed. Relation partitioning is achieved
by defining equivalence relations on n-ary rela-
tions. It is shown that the algebra is as powerful
as the original relational algebra, having the ad-
vantage of a set-processing capability. This fea-
ture provides both greater flexibility in query
specification and efficient query processing.

Computing Reviews Classification: 3.70, 4.33, 4.34

Keywords: Relational Model, Relational Algebra,
Quotient Relations, Quotient Algebra,
Query Language, Intermediate Level Lan-
guage, High Level Query Language.

INTRODUCTION

The algebra of quotient relations endows Codd's re-
lational algebra [1,2] with explicit set-processing
cababilities. The development of this algebra is
motivated by several trends in the current litera-
ture. They are:

o The inclusion of set-processing capabilities
in high level relational languages;

o The emergence of the ANSI/SPARC [3] notion
of a conceptual schema to support several external
schemata such as the relational, network and hier-
archical models; and

o The concern in efficiently evaluating rela-
tional operations and expressions.

Most high level relational query languages provide
some sort of set-processing capability. QUEL [4],
for example, has the SET and AGGREGATE-clauses,
while both SEQUEL [5] and SEQUEL 2 [63 have the
GROUP BY-clause, Further, SEQUEL 2 has replaced
the quantifiers SOME and ALL with a SET operation,
a group-qualifying HAVING-clause, and set compari-
son operators such as IN, CONTAINS, DOES NOT CON-
TAIN, etc. Query by Example [7] incorporates sub-

*The authors wish to express their gratitude to the
Financiadora de Estudos e Projetos, FINEP, under
contract 370/CT and to the National Science Founda-
tion, through grant number MCS 76-03142, for pro-
viding partial support for this work.

Larry Kerschberg
Department of Information

Systems Management
University of Maryland
College Park, MD 20742

setting operations in two-dimensional query speci-
fications, while SYNGLISH [8] provides special
keywords such as SOME, ALL, ONLY, and an EACH-
clause to obtain subsetting and aggregation.

The ANSI/SPARC report suggests a data architecture
consisting of three schemata: the external, con-
ceptual, and internal schema. If the conceptual
schema is to support several differing external
schemata, then it must have a data structure and
operations general enough to translate among them.
Lastly, the efficient evaluation of relational
operations and expressions is essential to the
overall operating performance of a relational sys-
tem [9, 10, 111.

The proposed algebra contributes to elucidating
the above-mentioned points. The set-processing
features of high level languages are incorporated
directly into the algebra via the notion of a par-
tition induced by an equivalence on the attributes
of an n-ary relation. The blocks of partitioned
relations serve as units for relational operators;
their representation in other models could provide
the flexibility required at the conceptual schema
level. Evaluation of relational expressions is
efficient since in many cases, it is sufficient to
examine a representative of a block to determine
whether that block of tuples participates in the
resulting relation.

The paper is organized as follows: Section 2 de-
velops the algebra of quotient relations, or quo-
tient algebra, by introducing an equivalence rela-
tion on an n-ary relation which partitions it into
a collection of disjoint blocks of tuples. Six
primitive operations are defined for the algebra,
and it is shown to be closed under these opera-
tions. Section 3 provides a query specification
template, and several examples are given. Univer-
sal quantification is replaced by a subsetting
criterion allowing logical implication (p + q) to
be stated directly, whereas Codd's relational alge-
bra requires either "division" or a negated version
(NOT Pvq). Further, relational completeness ofthe
quotient algebra is demonstrated. Several exten-
sions to the algebra appear in“section 4, while
implementation and efficiency aspects are treated
in section 5.

THEALGEBRA OF QUOTIENT RELATIONS

The definitions and terminology of this section
follow that of the relational model Cl]. It is

assumed the reader is familiar with the relational
operations; the new algebra is defined in terms of
these operations.

(2.1) Definition:

Let DI, D2, D3, Dn be sets, not necessarily

distinct. A relation R on DI, De, D3, Dn is

a subset of the expanded Cartesian product

DI x D2 x . . . x D,; i.e.,

R 4 DI x D2 x D3 x . . . x Dn

The relation R is said to be an n-ary relation or
a relation of degree n. Each Dj, j ~{1,2,.., nl,

is called the jth domain of R. An element t of an
n-ary relation R ised an n-tuple or simply
tuple.

(2.2) Definition:

Let R be an n-ary relation. Corresponding toeach
Dj, j E {1,2, nl is an Aj called an attribute

of R which indicates the & of Dj in the rela-

tion. The attributes of R are distinct.

(2.3) Definition:

Let I denote the collection of attributes of an
n-ary relation R. For a subset A of attributes of

I, we denote the complement of A as A = I - A.

The sequence of A is denoted by 4, where the attri-

butes are arranged in a fixed sequence. The empty
set of attributes is denoted by 4.

(2.4) Definition:

Let R be an n-ary relation and A a subset ofattri

butes of R. The relation :A s R x R is said to

be an equivalence on R if for tuples t, t' E R, --
tsAt' iff t[A1] = t'[A1] A,....A t[Ak] = t'[Ak]

where Al, A,, ALE A.

Thus if tuples t and t' have the same values with
respect to the attributes of A they are equivalent
under zAA' It is easy to show that zA is reflex-

ive, symmetric, and transitive, hence an equiva-

lence relation. As such, we say R is partitioned

f
b A (R is considered a set of tuples) into

iszoint blocks of equivalent tuples (c.f. [12]),
each of wms denoted by

[t] = I t'lt' E R and t' zA t 1

The collection of all blocks, written as

R/A = {[t][[t]C_R and t&R)

is called a quotient relation and is represented
as a table,composed om as depicted in
Table 1.

(2.5) Definition:

Let R be an n-ary relation. For different choices
of A, different quotient relations are obtained.
Together they constitute the family of quotient
relations, Q,, over R;

Q, = tR/A&I3

(2.6) Proposition: If R is an n-ary relation,

then the cardinality of Q, is 2".

This follows directly from the fact that an attri-
bute may or may not participate in a particular A,
so there are 2" possible choices of A, hence one
quotient relation induced by each A.

It can be readily verified that for a given n-ary
relation R, the family Q, is a finite lattice with

universal bounds the quotient relation i(consisting

of a single block, and the quotient relation i in
which each tuple is itself a block (cf. [12]). The
partial order in the lattice is given by thedegree

of refinement. Thus, for any R' E Q, we have

(R'I ^R which means that # is the least refined

(consisting of a single block), R' is more refined

than K but less refined than i which has a tuple
per block.

The algebra to be defined will use quotient rela-
tions exclusively. We assume that an n-ary rela-
tion R in first normal form [l], which is isomor-

phic to fi, is given initially; other members of Q,
are obtained via the following:

(2.7) Definition:

Let R be an n-ary relation with A and B denoting
any two sets of attributes of R, and R' a member
Of QR. The partitioning operator, I , induces a

partition on a quotient relation, while the
de-partitioning, * , eliminates a particular par-
tition. The operators must conform to the follow-
ing rules:

(R'/A)/B 4 (RVB)/A A (RVAUB)

(RI/A) * B & R'/(A-B)

In addition we define Q- A g + and I U A a I; it

follows, for example, that R' * $ = R' = RI/g,

R’/I=i, R’*I=);, and fi * A = $A.

We now introduce the relations to be used in the
examples: R(N,T,O,L), S(N,C,S,T,M), W(N,C,S,T,M),
where:

N - employee name

T - team

0 - operation

L- location

C - employee's category

s- salary

M - manager name

Table 1 shows i, x and i in their tabular represen-
tation (which is identical to the relational repre-

sentation for R, S and W); Z + ${T,Ll depicts #
partitioned by T and L.

Note that a quotient relation may always be de-
partitioned by I before projecting.

‘R NT0 L

b17 x
al3 x
a 1 12 y
al7 x
c23 x
c 2 12 y
d23 x

e23 x

V
SNCSTM

i N C S T M

a 1201 b

b 2 301 u

c 1252 d

d 2 202 u

e 2 202 d

Table 1: Tabular

f 1231 b
g I 151 b

h 1202 d
i 1182 d

j 1152 d

representat
v v v

ion of R, S, W, Z

(2.9) Definition:

ZNT 0 L Let e denote any one of the set comparison opera-

minthe set{=,~,~,~>,~,c,~,.,~,<)

al3 x which may be modified by an overwritten "/" de-

noting negation. The last four operators may be

modified by "." (to be explained later). The

operator ' 2' means that the two sets being com-

Note that the tuples are grouped into blocks of
equivalent tuples. Further, a "flat file" repre-
sentation is maintained since we are partitioning
by sets of attributes rather than sequences of
attributes which would imply an order:

The remaining operators of the quotient algebra are
projection, restriction, Cartesian product, and
union. Although they have counterparts in the con-
ventional algebra., they differ from them in several
ways:

l Quotient relational operators must provide
appropriately partitioned resultant quo-
tient relations,

l Quotient relational operators deal with
blocks of quotient relations as their units
(cf. the notion of congruence in [E]).

a e- comparison operators used in restric-
tion operate on sets of tuples rather than
just values.

We now present the remaining operators and dis-
cuss how the partitions affect the operators and
the evaluation of expressions.

Let R and S be-n-ary and m-ary relations, respec-
tively. Consider the quotient relations R' E Q,

and S' E Q, partitioned by attribute sets A and 8,

respectively. Further let C and D be other attri-
bute sets of R;
(see (2.3)).

C and 2 are sequences of C and D

(2.8) Definition:

Th-e projection, T + R' [C], is defined only if
Ad_ C, in which case T is partitioned by A.

Blocks are treated as units by the operators, and
in the case of projection each block is projected
on C and possible duplicate tuples are eliminated.

pared have at least one element in common, while

" 5 " means they are disjoint.

(2.10) Definition:

The restriction, T + R' [C e _D], is defined so

that a block [t] of R' participates in T only if

[t][c] e [t][z], provided that the underlying

domains of C and 2, are e-comparable.

The resultant quotient relation T is still par-
titioned by A.

(2.11) Definition:

The Cartesian product, T + R'@ S' , is defined

such that for i E C1,2, k1 and j E (1,2,., ~1,

a block [t]ij of T is defined as

IItli j = Crli X [‘lj,

where: x denotes the Cartesi.an product of the

conventional algebra; [r]l, Cr]2, Ir]k denote

the blocks of R'; and 1311, k.12, [sl, denote

the blocks of S'.

In the operator of (2.11) the individual blocks of
R' and S' are treated as relations to form a block
of T. Note that T is partitioned by the disjoint
union A 6 8.

(2.12) Definition:

The union, T + R' 0 S', is defined only if A = B
and domains corresponding to the attributes in R'
and S' are pairwise compatible [2]. Union merges
the pairs of blocks from the operands that are
equivalent under the conmon partitioning scheme,
and also keeps the unpaired blocks from each
operand.

The union T + R'@ S' is partitioned by A (or

equivalently by B).

QUERY SPECIFICATION IN THE QUOTIENT ALGEBRA

Query specification in the quotient algebra fol-
lows a standard format consisting of three well-
defined steps. They are:

o The operand relations are parti-
tioned.

o An association between blocks of the oper-
ands is specified.

o The associated blocks are then tested by
means of a generalized comparison operator.

A number of examples illustrate the use of the
algebra to specify and process queries. To avoid
ambiguity when attributes with the same nameappear
in a resulting relation, subscripts will be used.
Braces will be omitted in the case of partitioning
by singleton sets.

(3.1 .) Ql: Find the pairs of teams and locations,
such that the team has participated in
all operations taking place at a loca-
tion; together with each team give
also all its employees.

A

Operations

A + ~[N.T,o]/T

B + :[O,L],L

C+A@B

Comaents

operations grouped by team

operations grouped by location

all pairs team-location are
potential candidates

D + CC& 2 W[N,T.LI test if team operations include all
operations at the location and
project on attributes of interest.

N T 0

b
a : :
a 1 12

3

a 1 7
C

5 : ‘i
e 2 3

D
N T L

C
N T 01 02 L

I
b 17 X
a 1 .3 : x
a

:I: 7 x
t 1 7

X
: x

a 13 X
a 1 12 : x
a 17 3
b17 12 ;
a
a : 1: 2 ;
a 1 7 12 Y
c23 7 x

i i l23
X

: x
e 23 7 x
C 2 3 X

:
2 12 : x

X

e i 33 i
c23 2;
C 2 li :2 y
d 2 3 12 y

,-e 2 3 12 y

Table 2: Processing Q1

(3.2) Qz: Find the managers who earn more than
their employees.

Servicing this query requires using the I'." modi-
fier. In comparing two setsS1 and S2 with any of
(5, -c , 5 , >I, one may want to test the condition
for one or all members of either set. For example:

some element of S1 < all elements of S2

which is equivalent to testing if (Cf. [13]):

min (Sl) < min (Sp)

Herein the modifier "." is used on the side (sides)
of the e-operator where the word all would appear.
The various possibilities are shoFin Table 3.

some all

I 1
some C,<,',' _ _ 1 <.,I. 1'* I'. 1

all

I

.< ,.(,.>,.> - *<.,.5.,.7.,.7.

Quantified comparisons Table 3:

The quotient algebra specification for Q2 is:

Operations Comnents

A + $N,S] each employee as a possible manager

B +&MI/M employees grouped by their managers

c + (ABB)CN=M] association of manager-employees

0 + C[Si >.S,][N] condition concerning salaries

Table 4: Processing Q2

(3.3) Q3: Find the employees in "acceptable"
teams, where a team,is acceptable 'if

all its present employees (in X) earn
at least ;s much as the prospective

ones (in W).

Operations Comnents

A + $N,s,T]/T present employees grouped,by team

B + I?[N,$,T]/T prospective empluyees groupe,d by team

c + (A@B)CT,=TJ association by same team

D + C[S,.,.SZ]CNI.TI]@ merge present and prospective
employees for tekns satisfying

C[S,~).%I[N~rT~l the salary condition.
,. .

4

A
N S T N S T N T

Table 5: Processing Qs

The preceding queries were designed to show the
ease of query specification in the quotient algebra.
Of particular importance is the specification se-
quence: operand partitioning, association, and con-'
dition test, which parallels query specification in
the relational calculus [Z]. Consider, for example,
query Qs (ignoring the final merge, for simplicity)
as a calculus expression:

association (between blocks)

(S.w): s[T] = w[T] A

v s"iw' ((s'[T] = s[T] A w'[T] = w[T-j) + s\[[S]~w'[s,l)
\ /

partitioning (of operands) condition test

The quotient algebra allows a more natural query
specification than the relational algebra because
in the former, logical implication, p-f q, may be
expressed directly, while in the latter it must be
expressed as NOT p v q. As an example, Q1 (3.1)
would be expressed in the relational algebra as:

Operations

A + R[T] x R[O.L]

B + A[T,O,L] - R[T,O,L]

C + R[T,L] - B[T.L]

0 + (R[N,TI[T=TIC)CN,T.Ll

Comments

all possible combinations

tuples non-existent in R[T,O,L]

teams having participated in all -
operations at a location

append employees to accepted pairs

We conclude this section with the

(3.4) Proposition

The quotient algebra is relationally complete in
the sense of [El.

Proof: We express each relational algebra opera-

tion in terms of an equivalent quotient algebra

expression.

relational algebra

projection: R@]

restriction: R[& a LJ

join: R[i e BJS

division: R@ 5 8Js

Cartesian product: R x S

union: RUS

intersection: RflS

difference: R-S

QUOTIENT ALGEBRA EXTENSIONS

Practical usage may require more than the minimal
set of six operators described in section 2. Other
operations could be introduced whenever convenient,
their definition being given in terms of the basic
ones. Obvious choices are the join, intersection
and difference operators; some other possible can-
didates are:

l Conditional expressions, involving more
than one comparison and including logical connec-
tives, have been suggested [9, lo] for use with
restriction and join.

l Transitive closure is another useful opera-
tion. Consider a binary relation V G N x M,where
N is employee name and M is manager name. In
order to find the pairs consisting of an employee
and his manager's manager, we write in the present
algebra:

A + ((~OV)CM,=N,I)[N1,Mp]

which may be merged with V to give, for each em-
ployee, the two levels of managers to whom he re-
ports:

B+i@A

This process may be repeated to m levels of man-
agement. Generalizing further, if m is unbounded,
additional levels would be added until the result
for k + 1 levels contained the same pairs as for
k levels.

(I Reduction of quotient relations by decom-
posing them into quotient relations of lesser de-
gree has some theoretical and perhaps future prac-
tical interest. The reduction is somewhat
analogous to division in the natural numbers, i.e.,
where a number Z is divided by D to obtain a quo-
tient Q and a remainder R such that Z = QxD+R.
Thus quotient relation Z is to be reduced into
quotient relations Q and D and some remainder re-
lation R.

Consider Z + fi[: T,L,O] with R as given in table 1.

The computations:

Operations

D + ![L,O]/L

Q + ((:jr{T,L)ox/L)c(L~,o~) 2

(L&)l)CT.LJ

R + (;/{T.L&)[(TI,LI) $ (T21L2)1

'z+ (((Q@D)[L1=L2l)Ci2l@R)*I

yield the results in table 6.

Comments

projection

similar to division,
with second operand
partitioned by non-
empty set of attributes.

difference with respect
to a specified set of
attributes.

reconstruction of ;

Table 6: Example of reduction

For an n-ary relation Z and attribute sets A, 8,
such C = All5 and AU B = I, the above expressions
generalize to:

Further, whenever C = $ the formulas for D, Q and

for the recomposition of 8 become:

so that the formula for Q becomes equivalent
(cf. (3.5)) to division in the relational algebra.

IMPLEMENTATION CONSIDERATIONS

Two factors influence efficiency in processing quo-
tient relations: expression evaluation and parti-
tion implementation. The first deals with proces-
sing a single "big operation" consisting of:

o The partitioning of operand relations.

This stage can be done in parallel, with

each operand handled separately.

o The association between operand blocks. In

a block, tuple values for partitioning at-

tributes are obviously the same. Since the

association between blocks depends only on

such "representative values", this stage

can be performed very efficiently.

I) The testing of a e-condition. Here improved

performance may be obtained because not all

tuples need be examined in certain cases

(e.g. when "$' is used to compare sets, we

may "accept" the block as soon as the first

match occurs). Also, for order comparisons,

the minimum and maximum values of sets can

be determined separately for each operand;

then only one comparison is needed to test

the condition.

Certain efficiency considerations often made con-
cerning the relational algebra are also applicable
here. Clearly, one should avoid actually comput-
ing a Cartesian product; by looking ahead to the
next (simple) operations (especially projections)
one may verify if the desired result will in fact
be a concatenation of tuples, or a merge, or if
one of the operands is simply used to restrict the
other (see Q1. Qa, and Qz, respectively, and cf.
the "keep" feature in [14]).

Partitions can be implemented in several ways; two
are: pointer arrays and aggregate inverted lists.
A pointer array P indicating the first tuple in
each block of a quotient relation can be used if
the tuples have been grouped by some sorting on
the partitioning attributes. If physical re-
arrangement of tuples were undesirable, P could
point to another pointer array Q which would indi-
cate tuple rearrangement.

Aggregate inverted lists for a set of attributes A
are obtainable, for example, by intersecting the
inverted lists for the individual attributes in A
(if such inverted lists are available).

A sort routine may be a major tool in an implemen-
tation. Sorting on the attributes in A (in any
sequence) is one way to perform the partitioning;
sorting also on "pivot" attributes may be useful,
leading to algorithms linear in the number of com-
parisons [ll]; sorting on attributes in A in a
specified sequence can provide a hierarchical pre-
sentation of the data for output.

Lastly, the quotient algebra could be implemented
quite efficiently on a special purpose processor
such as RAP, the Relational Associative Processor

6

[15]. The "mark bits" associated with each tuple
could indicate the block to which it belonged. Re-
lation partitioning would be extremely fast due to
RAP's associative processing capability, and its
versatile instruction set, powerful enough to sup-
port the quotient algebra.

CONCLUSIONS ACKNOWLEDGEMENTS

A relationally
tions has been
tions comprise
departitioning

complete algebra of quotient rela-
presented. Six fundamental opera-
the algebra: the partitioning and
operators, together with projection,

The authors are grateful to M. Stonebraker,
C. J. Date, E. Neuhold, and B. Shneiderman for
several helpful discussions. Any errors are of
course the authors' sole responsibility.

restriction, Carteslan product, and union.

By endowing the relational model with set-
processing capabilities, the quotient algebra in-
corporates features present in high level query
languages. It is hoped that the algebra could
serve as an intermediate language into which the
high level languages might be translated.

Conversely, the algebra may influence language de-
sign. Recent human factors research [16] indicates
that certain SEQUEL features involving the GROUP
BY-clause, correlation variables and computed vari-
ables are difficult to use, even by sophisticated
users. The quotient algebra's query format sug-
gests that relation partitioning be performed first,
followed by association and condition testing.
This fact could be incorporated into a language
such as SEQUEL, as shown by a SEQUEL and COBOL-like
syntax to represent QL(3.1):

PARTITION R[N,T,O] BY T GIVING A

PARTITION R[O,L] BY L GIVING B

ASSOCIATE A,B GIVING C

SELECT N,T,L

FROM C

WHERE SET (C[O,]) CONTAINS SET (C[O,]).

Partitioned relations and the quotient algebra are

possible candidates as data structure and opera-

tions for conceptual schema. For example, if R

is an n-ary relation with A a collection of attri-

butes of R such that a is functionally dependent

Cl] on A, i.e. A + A, then the blocks of R' + i/A

can be represented as CODASYL set occurrences; the

common element in each block of R'[& becomes the

owner record, while the elements of R'[A] become -

the respective member records. Functional depend-

ence ensures that an element of R'[A] appears in -

only one block, and therefore cannot have more

than one owner as required L-171. A full develop-

ment of this area is a topic of ongoing research.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Codd, E. F., "A Relational Model of Data for
Large Shared Data Banks", Comm. ACM, Vol. 13,
No. 6, June 1970, pp. 377-387.

Codd, E. F., "Relational Completeness of Data
Base Sublanguages",
R. Rustin.

Data Base Systems ed. by --

ANSI/X3/SPARC Study Group on Data Base Man-
agement Systems Interim Report, m,
ACM-SIGMOD, Vol. 7, No. 2, 1975.

Stonebraker, M. R. and Wong, E., "INGRES: A
Relational Data Base System", Proc. National
Computer Conference, AFIPS Press, 1975.

Chamberlin, D. And Boyce, R., "SEQUEL: A
Structured English Query Language", _Proc.
ACM-SIGMOD Workshop on Data Description, --
Access, and Control, May 1974, pp. 249-264. --

Chamberlin, D..D., et al, "SEQUEL 2: A Unified
Approach to Data Definition, Manipulation,
and Control", IBM Research Report RJ 1798,
San Jose, June, 1976.

Zloof, M., "Query by Example", Proc. AFIPS
National Computer Conf.,

--
AFIPS Press,

Montvale, N.J., 1975, pp. 431-445.

Kerschberg, L., Ozkarahan, E. A. and Pacheco,
J. E. S., "A Synthetic English Query Language
for a Relational Associative Processor", z.
Second International Conference on Software
Engineering, San Francisco, Oct.71976, pp.
505-519,

Pecherer, R. M., "Efficient Evaluation of
Expressions in a Relational Algebra:, m.
ACM Pacific 75 Regional Conf.,
K 44-49.

April, 1975,

Smith, J. M. and Chang, P. Y., "Optimizing
the Performance of a Relational Algebra
Database Interface”, Corn. ACM, Vol. 18,
No. 10, Oct. 1975, pp. 568-579.

Furtado, A. L. and Brodie, M. L., "A Data
Structure for Fast Relational Algebra Opera-
tions", Technical Report 7/76, Catholic
University of Rio de Janeiro, 1976.

12. MacLane, S. and Birkhoff, G., Algebra,
Macmillan Co., New York, 1967.

13. Boyce, R. F. et al, "Specifying Queries as
Relational Expressions: The SQUARE Data
Sublanguage", 'm. ACJ, Vol. i8, No. 11,
Nov. 1975, pp. 621-628.

14. Tsichritzis, D., "LSL: A Link and Selector
Language", Proc. ACM-SIGMOD International
Conf. on Management of Data, June, 1976, --
pp. 123-134.

15. Ozkarahan, E. A., Schuster, S. A., and Smith,
K. c., "RAP - An Associate Processor for Data
Management", Proc. AFIPS Conf - --.’ Vol. 44,1975,
pp. 379-387.

16. Reisner, P., "Use of Psychological Experimen-
tation as an Aid to Development of a Query
Language", IBM Research Report RJ 1707, San
Jose, 1976.

17. Nijssen, 6. M., "Set and CODASYL Set or
Coset" in Data Base Descri tion (edited
by Douque and NlJssen North Holland/American

-?-)-J--

Elsevier, 1975. -

8

