


The Analysis of an Improved Hashing Technique*

Gaston Gonnet
P.U.C., Rio de Janeiro

and

Ian Munro
University of Waterloo
Waterloo, Ontario

Abstract

We discuss the problem of hashing in a full or nearly full table using open
addressing. A scheme for reordering the table as new elements are added is pre-
sented. Under the assumption of having a reasonable hash function sequence, it
is shown that even with a full table only about 2.13 probes will be required, on
the average, to access an element. This scheme has the advantage that the expected
time for adding a new element is proportional to that required to determine that
an element is not in the table. Attention is then turned to the optimal reordering
scheme (which is a maximum flow problem) and the minimax problem of arranging the
table so as to minimize the length of the longest probe sequence to find any element.
A unified algorithm is presented for both of these as well as the first method
suggested. A number of simulation results are reported, the most interesting :being
an indication that the optimal reordering scheme will lead to an average of about
1.83 probes per search in a full table.

1. Introduction

Hash coding techniques are commonly used to

quickly enter and retrieve information from tables.

Indeed, they provide the possibility of retrieving
data from an n entry table in a number of probes
bounded (on the average) by a constant rather than
log log n*%(Gonnet (3), Yao and Yao (10)) for
interpolation search, or log n for binary search.
Recently, very sophisticated analyses of the be-
haviour of hashing techniques have been performed
(Guibas(4), Guibas and Szemeredi(5), Knuth(6),

Paterson(7) ). The thrust of this work has, however,

not been to provide new and better techniques, but
as noted, a more sophisticated analysis of fairly
standard methods. The state of the art of hashing
remains essentially as follows:

(i) If chaining (i.e., the additional storage
of a pointer as part of each record) is
permitted, then the search for an element
which has been hashed to a full table can
be conducted in an average of 1.5 probes.

The permanent retention of pointers in the

*This work was supported by National Research
Council of Canada operating grant A8237, and was
performed while the first author was at the
University of Waterloo.

*%all logarithms are to base 2 unless otherwise
noted

table is very often unacceptable. We will be con-

cerned with the situation in which no such auxili-

ary pointers are allowed, but extra storage may be

used to determine the appropriate insertions to be

made. For many applications this is precisely what
is required.

(ii) The usual technique (when chaining is not
allowed) of entering an element by rehashing
until an empty location is found (simple
open addressing) is quite acaeptable until
the table begins to fill. The average
search time in a full table is, however,
fn(n) + 0(1), and the expected worst case
is 0(n) (i.e., it will probably take 0(n)
probes to find some element, in particular
n/2 for the last one inserted).

(iii) Brent (1) has suggested a method. of reorder-
ing the table slightly as new elements are
inserted. This leads to about 2.49 probes
on the average for a retrieval from a full
table, and an expected worst case of 0(/n).

(iv) An open addressing (i.e., rehashing) scheme
will require at least an average of
(mt+1)/(m+l-n) probes to ascertain that a
particular element is not in a table of
size m with n occupied locations.

The contribution of this paper is a new reorder-
ing scheme which is still practical and leads to an
average of roughly 2.13. probes for retrieval from
a full table and an apparent worst case of 0(log n)

113



probes. Furthermore we examine the problem of

finding the arrangements to minimize the average
retrieval time and to minimize the worst probe
sequence. Simulation results are also presented.

In the analysis of our techniques (as well as
the others) it is assumed that a pseudorandom
number generator is used to hash a key into a
permutation of the integers O through m-1
(where m denotes the table size). This permu-
tation indicates the order in which table locations
are to be searched for the specified key. 1In
actual practice, a good method is that of choosing
the table size, m, to be prime and making the pri-
mary hash location the key (binary number repre-
sented by the bit pattern of the key) modulo m.
Subsequent locations are determined by repeatedly
adding (modulo m) the key (modulo m-1)+1. As shown
by Guibas and Szemeredi (5), this can cause some
problems in the simple open addressing scheme when
the table starts to fill, we argue (and Brent's
and our experiments attest) that under his scheme,
and ours, the search paths do not become long
enough for this to be a noticeable factor.

2. A Reordering Scheme

The essence of the algorithm is that when a
key to be added to the table hashes to a location
already occupied it is "essentially irrelevant"
which of the two is located there and which is
moved to its next 'choice'. Hence, if only one of
them hashes next to a free location, it is placed
there, while the other retains the original spot.
Extending this idea another step, if both of these
secondary locations are also occupied, there are
(in general) 4 locations at the next "level" to
check.
we perform a breadth first search of the "binary
tree'" generated by the locations and subsequent
rehashes of the keys encountered until an empty
location is found. In the example below, the
element to be inserted, a, hashes to a location
currently occupied by b (b may or may not be in
its "primary'" location). The secondary location

for a 1is occupied by ¢ , and the next location
for b by d . At the third level, however, we
see that b hashes into an empty spot, and so b

is moved there and a is placed in
location. The effect of adding a

retrieval time for all the elements
is equivalent to that of being able
in its third location.

its primary

on the average
in the system
to insert a

Note that rather than searching for an empty
location by sampling without replacement (simple
rehashing on a ) at a "cost" of 1 more probe per
sample whenever a search is performed for a,
we are essentially sampling with replacement
(note the probing of location 9 on two paths),
but at an effective cost of the logarithm of the
number of locations sampled when searches are per-
formed. The fact that an element hashes into a
permutation of the table locations (i.e., a path
from any node in the tree of Figure 1 which always
takes the left branch has no repetitions)does not
significantly help us. We note that an elegant
implementation of the search is achieved by repre-
senting the search tree as an array with the
"2i, 2i+1 ~ heap style" technique of determining
the left and right sons of a node. The binary

Carrying the idea to its logical conclusion,

114

=

(#10) b
2nd a/ Next b
(#9) ¢ (#7) d
next %/// \\next c next E/// \\\\stt d
(#3) e (#~) £ (#4) empty #9) ¢
a 10 9 3
b [——=——— 10 7 4
c 9
d |———=——- 7 9 =
Figure 1

The search conducted in adding a to the table and
the relevent segment of the hashing function.

representation of the heap position of the first
empty location indicates the way in which the table
is to be rearranged.

3. Analyses of the Average Number of Probes Required

For the purposes of the following preliminary
analysis, we assume, that the sequence of probe
positions is random and independent. Under this
assumption, the number of probes, j, needed to find
the first empty position in a table with m loca-
tions containing n elements has a geometric dis-

. . . . j-1
tribution with parameter o, that is (l-a)o s
where o0=n/m is the load factor.

This gives, during the search, an expected
number of probes necessary of 1/(l-a), and an
overall average for the first mn insertions of

u-lln(l—a).

The average depth in the search tree at which

the first empty slot is found is
0

] a-madlios, 3140 = § o
j=1 k=0

k
-l= D(w).

There is no known closed form for D(a),
although the series, being doubly exponential, con-
verges very rapidly for o<l. Furthermore an asym-

ptotic analysis shows that D(1—£)=—(1—€)7%g€ +0(e).

D(a), then, represents the expected length of
the path to locate the new element, plus the in—
crease in length of paths to previously located
elements. From the point of view of determining
the average path length, it is the effective con-
tribution of adding the new element. We conclude,
then, that the expected average path length when
n elements have been inserted is



Here Q. denotes the sum of the probabilities of

n-1 o
%‘ E D(k/n) < % f D(p) dp all binary trees for which a breadth first search
k=0 0 for a free location ends in a chain of length j.
(In terms of Figure 1 this means a right branch
® x Zk—l . . followed by j 1left branches). For example we have
=7 2 = D(a) < D(1) = 2 )
k=0 Q, =« (l—pl(u)) {l+upl(a) + apl(u)pz(a) + ...}

Another quantity which may be of interest is
the expected number of extra moves required during
insertion. Let v(j) denote the number of 1's in
the binary representation of j. Then, by exam-
ining a heap implementation of the scheme, we see
that the average number of moves required when

The total increment.in the number of accesses
is given by

Dr@) = 1+ +a’s (o) + a’pl (@p, (@

inserting a new element is + aapi(a)pi(u)p3(u) + ...
o . l )
I w@E)-1) -yl and the average number of accesses is then
j=1

o
- K K D* (a) = [ D*(t) dt
= dt T W7 ) = M@ 0

k=0 Taking the limit as 6*0 in the above equations
we derive an infinite system of differential equa-
Again, we know of no closed form for M(a), tions. For small o we can find the solution in
but it converges rapidly for o<l . The expected terms of a power series in o, obtaining
number of moves of elements already in the table
per insertion to fill a table up to a load factor Dx(a) = 1 + a/2 + u3/4 + a4/15 - us/lg
of a (for large n) is
o +176%/105 + 53077720 - ...
M(a) = & (} M(pYdp = = T 27y, (1+u2k) -1
e H PIP = 4 " This series does not provide a reasonable
k=0 method of determining D*(a) for O near to 1,
— — but we can obtain reasonably good numerical approx-~
= M(a) < M(1) = &n(4)-1 =.386294... imations by numerically integrating the system of

differential equations. Table I shows D*(a) and

This indicates, of course, that complicated M¥(a) obtained by numerical integration.

sequences of moves happen very rarely.

Average number of accesses and moves for

The approximation of the distribution number ) :
Binary Tree hashing

of probes needed to make an insertion as geometric
is rather good for a load factor of .8 or less.

Indeed if it held for a=l1 we could expect to — v
be able to access information from a full table in & D) (@)
an average of 2 probes. Unfortunately this approxi-
mation leads to an error of a few percent as the
table becomes very full. A flaw in the model is 020 110209 0.01159
that it does not take into account the fact that 0.40 1.21746 0.04192
short chains of probe positions tend to grow more 0.60 1.36362 0.09124
quickly than "at random". Following an approach 0.80 1.57886 0.17255
similar to Brent (1), we define pi(a) to be the 0.85 1.65554 0.20264
probability that given that a key, K, is in h, -0.90 1.75084 0.24042
. 0.29200
the sth position of its hash sequence, the 0.95 1??232 0.30526
next i probe positions, h , h 5 seey B s 0.96 : :
od stl” "st2 sti 0.97 1.95143 " 0.32015
are occuplec. 0.98 1.99525 0.33733
, If we insert &n keys into the file and ignore 0.99 2.04938 035819
0(8%) contributions, we derive the following equa- 1.00 2.13414 0.38521
tion
) Table 1
(#6) p; (atd) - ap, () =
Gai creation of a new =
( chéi;) ne We observe that the numerically computed _M*(a)
8 i-1 i-j is, in each case, slightly smaller than M(0).
+ 1-a Z o (Pj(“) - Pj+1(a)) (extension of a This may appear inconsistent, but is explained by
j=0 chain by random the fact that long chains do not require more moves.
i-1 placement)
+ 2 ai"j"l Q. (extensions produced by moves A number of simulations were performed in
j=0 J inside the "binary tree")

115



order to test the accuracy of our analysis*. Table
II shows a typical experiment on a table of size
997 with various load factors (the * terms indicate
95% central confidence limits). It is tedious,

but not difficult, to rework our predictions of
average behaviour for the non-asymptotic case and
see that for all intents and purposes the limiting
behaviour is achieved with tables of a few hundred
elements. For this reason we are able to compare
our experimental results with predicted asympotic
behaviour. Note that in all cases our theoretical
average is well within the confidence interval of
the experimental, and furthermore it is not con-
sistently higher or lower. The average p.q.o.
(priority queue operations in the implementation)
column is a good measure of the cumulative time
required for all the insertionms. Another point of
interest is that our preliminary analysis predicts
an average of about 1.56 probes for a large table
with o = .8. We note this is not far off our

is roughly 1.70) and .13 at 100%, since our pre-—
liminary analysis predicts an average of 2.

Table ITI indicates the behaviour of our scheme
on full tables.

Another interesting observation is the behaviour
of the average of the maximum number of probes
needed to access any element in a full table. From
the analyses of the insertion scheme we see that as
the table becomes full the depth of search required
for an insertion will become ~ fo0g n on the aver-
age. Based on this we can expect the length of the
longest probe sequence required to access an ele-
ment to be O0(Rog n) as well. Our experimental
results in Table III suggest that this may well be
very close to £og2(n) + ¢ (where ¢ is roughly 1).

An efficient implementation of this algorithm,
which was used to obtain the simulation results, is
described with the optimal allocation algorithm.

Simulation of "Binary tree” hashing

Size of table = 997

number of files (sample size) = 250

occup. number of theor. average average average

factor records average accesses max. acc. p.q.0.

80% 798 1.5789 1.580614£0.00302  6.184+0.114 2563.1+15.0

90% 897 1.7508 1.74778+0.00381  7.272+0.128 4206.3+31.6

95% 947 1.8804 1.87867+£0.00433  8.31640.152 6365.1+£68.4

99% 987 2.0494 2.04991+0.00431  9.692+0.161 14250.4:242,
Table 11

improved and experimental results. Above this load,
however, the difference becomes more significant
reaching roughly .05 at 90% (the estimated average

4. The Optimal Arrangement
It is not difficult to construct examples in
which our ordering scheme does not provide the best

-Binary Tree hashing with a full table

file sample average average average
size files accesses max. acc. p.q.0

19 1000 1.8903+0.0138  5.083+0.0914 106.11+2.26

a1 1000 2.0053+0.0105  6.438+0.0984 331.25+6.41

10! 400 2.0758+0.0107 7.855+0.156 1229.8+33.1

499 100 2.1358+0.0104 10.78+0.357 12612.4462.

997 50 2.13466+£0.00958  11.02+0.443 31587.41487.

Table I11

*These, and all ‘the other hashing experiments per-
formed, used the double hashing scheme noted in
Section 1 to generate the hash probe sequences. This
was done in order to make extensive testing feasi-
ble. We claim that for all the insertion schemes
that we use, there will be rfio noticable difference
between this scheme and that of random probe se-
quences. Appendix 1 contains a comparison of the
two methods of probe sequence generation for fairly
small tables.

possible arrangement of a set of keys, given their

hash sequences. This is a result of the fact that

a key tentatively assigned to the ith location in
its probe sequence can never be moved to an earlier
one, regardless of the new keys added to the table.
However, one might wonder how far from the cost of
the optimal arrangement the one outlined above
tends to be. Before making a camparison we briefly
discuss the problem of determining to optimal
arrangement.



The problem of optimal allocation is, as
Rivest (9) has also observed, a special case of an
assignment or minimum cost network flow problem
(Edmonds and Rarp (2)). In the terminology of net-
work flows, we can construct a directed networks
with nodes

i) a source, s, and terminal node t

ii) the keys Ki

iii) the locations Zi
and arcs with cost A at a particular time
(s,ki) ;A(s,ki) 0¥ Ki
(Q,i,t) ;A(Zi,t) 0¥ Q'i
(Ki,!@j);A(Ki,!%j)= P

not assigned

empty
if Ki is not assigned to

%. and K, probes to &, in
J 1 J

its pth probe

(Qj,Ki);A(Qj,Ki)= -p if Ki is assigned to JLJ,

in its pth probe.

The assignment of a new key is tramnslated to
an augmentation of the flow from s to t. This
is done by finding a minimum cost path from s to.
t.

In hashing terms this is equivalent to finding
a minimum cost path (way of rearranging) from an
unassigned key to an empty table location. For
example consider the probe sequences for the keys
Kl to K4 indicated below

probe positions

Kl -1, 4 , 3 , 2
K2 - 2 , 3 , 4 , 1
Ky > 2, 4, 1, 3
K4 > 4 ,-2 , 1 , 3
After we assign Kl -+ 13 K2 + 2 and K4 + 4 (that

is an optimal partial assignment) the resulting
network is

-1

K; £ " =)
e,

s K >t
K, —€ -~ %,

(some arcs are omitted for clarity)

Now if we are to insert K3 we discover that a

minimum cost path is s > K, -~ 22 +> K, »> 23 >t

3 2
The cost of this path is 2 and the final assign-
ment is

117

1 1
Ky 7 4y
Ky, > %
K, >4,

which is optimal.

In finding the minimum cost path from s to ¢t,
if (a) we keep in a priorit; Jueue the nodes visited
with their respective partial cost, (b) we inspect
the minimum-partial-cost location first, and (c) we
start from an optimal allocation, then the first
empty table location found will lead to a minimum
cost path. (a path from Qj to li, where li is

empty has cost >0).

With these considerations, an algorithm that
performs the optimal assignment can be coded in
pseudo Algol 68 (with some redundancies) as follows:

*

n is the number of keys to locate in the table,
m is the number of table entries,
key(1:m+1) contains the key number in location i; 0 if not occupied,
cost(l:m+1) contains number of probes used to locate key in location,
sigma(l:m+1) is used to find a minimum cost path,
path(l:m) is used to record a minimum cost path.
*
for i to m+1 do key(i) := 0; cost(i) := 0; sigma(i) := 0 od;
zero := -m-1;

for p to n do
sigma(m+1) := zero;
key(m+1) := source_key(p);
clear heap;
j:=m+1l; ppos:=1;

while true do
heap < {j,ppos+1,sigma(j)-zero-cost(j)+ppos+1};
k := probe(key(j),ppos);
if sigma(j)-cost(j)+ppos < sigma(k) then
sigma(k) := sigma(j)-cost(j)+ppos;
path(k) := §;
if key(k) = O then break while fi;
heap < {k,1,sigma(k)-zero—cost(k)+1} fi;
{i.ppos.} <= heap

od;
while k < m+1 do
j 1= path(k);

key(k) := key(j);
cost(k) := cost(j)+sigma(k)-sigma(j);

ki=j
od;
zero ;= zero-m-l;

od;

th -
Probe (Key,p) = 2 gives the p probe position
of Key. The vector, cost, can be avoided if we are

able to easily compute probenl(Key,l) = p. The
vector, path, is only needed to perform a simple

and efficient trace-back through the minimal path.
Note that the function should not be linear probing,
since for that scheme any ordering produces the
same average number of accesses (Peterson (8)).

To implement a priority queue we use a heap
which stores records of three components, the last



element representing the ordering value for the
priority queue. The use of the variable, zero, is
to avoid the initialization of the partial cost
vector, sigma, for each key. It is worth noting
that if we change the statement

heap + {K,1,sigma(K)~-zero-cost (K)+1}
to

heap + {K,cost (X)+1, sigma(K)~zero+l},
in the code above, we obtain an algorithm that only
searches for an optimum by moving keys forward
in their probe sequence. This is, except for the
order in which a level of the binary tree is in-

spected, our previous algorithm.

The following tables summarize simulation re-
sults performed with the optimal algorithm

5. Minimax Arrangements

Another natural problem is that of arranging a
set of keys in a table such that the length of the
longest probe sequence to access any element is
minimized. Among all possible minimax configurations
we would, of course, like to find the one which pro-~
duces the minimum average number of accesses. The
simulations reported in Section 1 indicate that our
original scheme produces an average worst case of
about .f0g n in a full table. Connet (3) has demon-
strated that for the minimax allocation the average
length of the longest probe sequence is bounded
below by 2n(n) + 1.07... + o(1).

With a small variation in the optimal algorithm
of the preceding section we can derive a minimax
allocation. The change is simply not to insert a
record in the heap when its probe position exceeds
the current minimax. Since, in the creation phase,
we do not know the value of the minimax we try the
procedure for minimax values of 1, 2, ... until it
does not fail (i.e. the heap never empties before
finding an empty table position). The bound noted
above suggests that the run time will be multiplied
by fn(n). As a practical approach, we can improve
this by finding the smallest value for the minimax
such that at least n different table locations
appear in the first minimax probes of the n keys.

The following algorithm constructs a minimax
optimal hashing table based upon the above remarks.

Simulation results for Optimal Hashing
Size of table = 997

occup. number of average average average
factor records accesses max. acc. p.q.0.
80% 798 1.489024+0.00416 4.4£0.112 7456.£230.
90% 897 1.61039+0.00432 5.1467+0.0888  27973.41431,
95% 947 1.68918+0.00586+ 5.68+0.118 79757.+£4052.
99% 987 1.78514£0.00583* 6.773:£0.126 223262.+6931.

Table 1V~

Simulation of Optimal Hashing for full tables.

file sample average average average
size files accesses max. acc. p.q.0
19 1000 1.72895+£0.0107  4.385+0.0710 224.13+5.46
41 500 1.78283+0.0111  5.296+0.105 888.34:26.2
101 200 1.79837+0.0105 6.3+0.175 4611.+157.
499 50 1.82381+0.0110 7.92+0.358 89937.+4334.
997 50 1.82794+0.00639  8.98+0.382 332365.£12373.
Table V

118



*

n is the number of keys to locate in the table,
m is the number of table entries,
key(I:m+1) contains the key number in location i; 0 if not occupied,
cost(1:m+1) contains number of probes used to locate key in location,
sigma(l:m+1) is used to find a minimum cost path,
path(1:m) is used to record a minimum cost path.
*/
uniq := 0;
for i to m do key(i) := 0 od;
for col to m while unig<n do
minmax := col;
for p to n do
k := probe(source_key(p),col);
if key(k) = O then
key(k) := 1; uniq := unig+1 fi

od
od;
start:
for i to m+1 do key(i) := 0; cost(i) := 0; sigma(i) := 0 od;
zero := -m-1;
for p to n do

sigma(m+1) := zero;
key(m+1) := source_key(p);
clear heap;
j = m+l1; ppos:=1;
while true do
if ppos<minmax then
heap < {j,ppos+1,sigma(j)-zero-cost(j)+ppos+1} fi;
k := probe(key(j),ppos);
if sigma(j)-cost(j)+ppos < sigma(k) then
sigma(k) := sigma(j)-cost(j)+ppos;
path(k) := j;
if key(k) = O then break while fi;
heap < {k,1,sigma(k)-zero—-cost(k)+1} fi;
if empty_heap then minmax := minmax+1; go to start fi;
{i.ppes,} < heap

od;
while k < m+1 do
j := path(k);

key(k) := key(j)
cost(k) := cost(j)+sigma(k)-sigma(j);

k=j
od;
zero 1= zero-m-1;

od;

The tables below report our simulations of minimax hashing.

Simulation results for Minimax Optimal Hashing
Size of table = 499  Sample size = 100

occup. number of average average average

factor records accesses max. acc. p.q.o.

80% 399 1.49378+0.00670 340 4464.+198.

90% 449 1.64829+£0.00785  3.05+0.0429 22120.£1744.

95% 474 1.69945+0.00704  3.99+0.0196 41644.4+2787.

99% 494 1.788244+0.00774  5.124+0.0893 77304.+£4815.
Table VI

119



Simulation of Minimax Optimal Hashing for full tables.

file sample average average average

size files accesses max. acc. p.q.0

19 1000 1.74858+£0.0111  3.929+0.0622 241.04+7.35

41 600 1.79638+0.0102  4.665+0.0877 938.2+31.2

101 250 1.80737+0.0102  5.528+0.140 4851.+£231.

499 100 1.82998+0.00807  7.38+0.287 91915.43396.
Table VII

6. Conclusion

We have examined the problem of arranging ele-
ments in a hash table to reduce both the average
and expected value of the maximum number of probes
required to access an element. The main results
are summarized in Figure 2.

2

&

o Simple Double Hashing

~

& 4
~ Brent's Method—
8

~

8

- -Our Method

§_ optimal Arrangement

e (experimental only

g | chaining

8

ER

2

© Ton® w10 brm b.s%  boms  Beo b0 .70 . Gom  1.000

A comparison of the average number of probes
required to retrieve records, in large files,
which have been inserted using various methods,

as a function of the load factor, a.

Figure 2

The thrust of our work is definitely towards
the concept that rather fr.1 hash tables using open
addressing can still be extremely efficient struc-
tures and competitive with chaining techniques.

The principal method discussed has the advantages
of fast retrieval and insertion (on the average)
even when the table is almost completely full.
terms of both the expected number of probes to
access an element and the potential overhead in

In

120

making an insertion, it lies halfway between Brent's
limited search for an "insertion route" and the op-
timal assignment. In practice, it seems quite a
reasonable scheme. If, however, the table is more
than 80% full and to be referenced an extremely
large number of times, it is probably worthwhile
finding the optimal assignment.

There are a number of interesting problems still
open. Clearly the most interesting would be a proof
that 1.83 or so probes are required, on the average,
for retrieval from a full but optimally arranged
table. Tight analyses of the expected maximum probe
sequence for an access under our scheme or the opti-~
mal average strategy are also of interest.

References
1. Brent, R.P., "Reducing the Retrieval Time of

Scatter Storage Techniques', CACM 16, 2 (Feb.
1972), pp. 105-109.

2. Edmonds, J. and R.M. Karp, 'Theoretical Improve-
ments ih Algorithmic Efficiency for Network Flow
Problems', JACM Vol. 9, No.2, April 1972, pp.
248~-264

3. Gonnet, G.H., Interpolation and Interpolation

Hash Searching, University of Waterloo, Computer:
Science Dept. Research Report 76-02.

4. Guibas, L.J., "The Analysis of Hashing Algorithms
that Exhibit k-ary Clustering," Proc. 17th Annual
IEEE-FOCS Symp., Houston, Texas, Oct. 1976, pp.
183-196.

5. Guibas, L.J., and E. Szemeredi, "The Analysis of
Double Hashing," Proc. 8th ACM Symp. on Theory
of Computing, Hershey, Pennsylvania, May 1976,
pp. 187-191.

6. Knuth, D.E., The Art of Computer Programming,
Vol. III, Sorting and Searching, Addison-Wesley,
Don Mills(1973).

7. Paterson, M.S., "On the Analysis of Hashing

Schemes," CMU Conference on Algorithm Analysis,
April 1976.



8. Peterson, W.W., "Addressing for Random-Access Appendix I
Storage', IBM Journal of Research and Develop-

ment, 1,4 (April 1957), pp. 130-146. From the work of Guibas(4,5)it is known that
double hashing can be noticably worse than the use
9. Rivest, R.L., "Optimal Arrangement of Keys in a of "random" probe sequences in full tables if the
Hash Table'", to appear JACM. naive insertion scheme is used. However, all tech-
niques discussed in this paper tend to yield short
10. Yao, A.C., and F.F. Yao, "The Complexity of probe sequences to access elements, even when the
Searching an Ordered Random Table', Proc. 17th table is full. Hence, we claim, and note the math-
Annual IEEE-FOCS Symp., Houston, Texas, Oct. ematical details can be worked out to justify, that
1976, pp. 173-177. for our purposes there is no significant difference
between random permutations and double hashing, except
Acknowledgement from the point ‘of view of overhead. In actually
using a hash table, the cost of generating (and re-
The authors thank Richard Lipton and Sianley taining) random probe positions is prohibitive for
Eisenstat for many fruitful discussions on the large tables. Hence all experiments noted in the
subject of optimal hash assignments. body of the paper were performed using double hash-

ing. The table below shows the results of simula-
tions performed with rather small tables using
double hashing (d.h.) and random permutations (r.p.)
Note that not only do the average number of probes
and average maximum number of probes agree to within
this confidence limits in all cases, but also that
in some cases the average for double hashing just
happened to be lower than for random permutations.

Comparison 6f “Binary tree” hashing using
double hashing vs. random permutations.

model file sample average average average
size files accesses max. acc. p.q.0
d.h. 19 1000 1.8903+0.0137  5.083+0.0914 106.11+2.26
I.p. 19 1000 1,9006+:0.0142 5.06+0.0904 107.2:£2.26
d.h. 41 1000 2.0053+£0.0105  6.438+0.0984 331.25+6.41
r.p. 41 1000 1.9997+0.0101 6.406:0.0942 333.2146.23
d.h. 101 400 2.0758+0.0107 7.85540.156 1229.8+33.1
r.p. 101 400 2.0861+0.0108 7.978+0.179 1292.7+36.7
Table VIII

121



