Y

S
L

.
N o

3
£

e
S

. e

T —————

FORMAL DESCRIPTION
OF PROGRAM[W[NG CONCEPTS

Proceedings of the |FIP Working Conference on
Formal Description of Programming Concepts
St Andrews, N, B, Canada, August 1-5, 1977

edited by

ERICH J. NEUHOLD
University of Stuttgart,
Sturtgart, Germany

HOBTH.HOLLAND PUBLISHING COMPANY
AMSTERDAMSNEW YORK+«OXFORD

Formal Descrictions o Programsing Céétegés{‘%,J, Heuhold (ed.)
North-Holiand Publishing Company, (1578)

Pontificia Universid
Rio de Janeip

designed
for =

ation, enma

and softwar

Tnod

three of the methods and
the other methods may be found in
with a view of an entire system as a
of such models.

The paper concludes
ssible multipeaked tower

1. Introduction

54

much talk about bullding a

Dije8, Bri7?0, ZRsS, Bau73,

level machine in terms of the pr
shown in Figure 1.1.

e ar cally, bottom~up from a raw
3, Goo73]. Each level imple
m 5 0

at that

11ls research was supported
DCR74-08659,

s research was
iinistration, Contract N

258 BERRY, FRLINGER, JOHNSTON, VON STAA

User LISP Program
e

— LISP .Interpreter
“pL/1 Machine"
05/360

NUCLEUS/360

vi @m
e N\
4 \

1360/67 \

\

2067

Figure 1.1

The machines from the lowest level on up are:

1. The vaw IBM 2067 microprogrammable host machine
2. A system 360 model 67 microprogrammed on the 2067
3. A viprtual machine monitor CP 67 which is the 360/87 extended with a numbes
of routines for managing virtual machine
4, A virtual 360, supported by CP 67 which looks like a traditional 360
5, NUCLEUS/360 providing the basic supervisor routines which use the pri
privileged instructions
6. Operating System/360 (08/380) which is NUCLEUS/360 extended by a number oi
useful packages, compilers, utility routines and access methods
7. A PL/: machine supported by compilation of rams into 360 maching
code combined with 0S5 supervisor ca ine" instructions)
A LISP interpreter written in PL/1
. A user's programs written in LISP

&)

Iven cursory examination of the multilayered system shows that the progression
nn
3

m layer to layer is not done in a uniform manner. FTive different methods ca&n

HIERARCHICAL HMACHINE SUPPORT 559

calling pro-
> language.

o)

la
proc:aures doe
sed in moving fros

the user progran
be considered

this paper we first define ISMs and g >
”escribe a portion of the CM sufficient 1 poses The pts of the
mplemented plementing Machi i

and *He
for our method scrlptlonf Dy
. chi

EWOTK
is in

are

4
T rt

contour model i 1 interprets ferent

roach to modeling this parti henomenon and have ch to

other and mixed methods of support

2

M Nondeterministic Information Structure Model

We will define a machine, real or abstract,
tion structure model (NDISM) that

program in the language of the machine wi
shots (instantaneous descriptions, core du
on executions. Each computation starts of

oceeds through successive snapshots S

previcus by execution of some instruc

560 BERRY, "ERLINCER, JUHNSTON, VON STAA
1) € 13 a computatyl

a) C# <> is a o

NN e -

)
) is sformable if and only
)

[os}

is intransformable if and only if S is not transformableyg

nd inductive
hot in the

, S. = F(5,).
1 L4

omputation is
itions;

eguence, S

However, this Suppose <SO,81,SQ,S > 1s a computatlon., Then

3
3
clearly the sequences <8,,5,> and <SO,81,52> all satisfy the initial and

"incomplete' subs
we add the sti
initial subsequen

ions.

Definition 3. Let

1) for all S, in C, 5. ¢ I,

2)

3)

%) & proper
We say that C SO.

Also, for an
a given SG'

Definition 4,

HIERARCHICAL MACHINE SUPBORT 561

transformab

e calli a com

putat i has
halting computation and we call the intransfors
of the computation.

bDefinition 5. Let M = (I,I_,F) be an NDISM; let
ZetAnation o 0

1) C halts if and only

2)

for some S e I, S

al(C) is defined if and only if C halts,

3) final(C) = S if and only if S is in C

and computation
s. Since
ion of programs
will be considered a
In most machines and langu

re, we assume that for each NI

D
There are snapshot component selection

have been ¢

N
NDI

and output

ing a machine MACH

nctions called input and output,, which
M 1

ect the input and output lists of a s apshot, We also assume that there 1s a
t of input lists, INPUT, and a set of output lists, OUTPUT, in which all possi-
le input lists and output lists of integers, reals, booleans and character

strings

if for some program p in L,

sumption 1. Let M = (I,IO,F) be an

integers, reals,

in both INPUT and

ere exist countable
booleans and character
CUTPUT,

2) there exist functions, input,: I INPUT 1tpu - QUTPU

3} there exists

)
m

4} for all S, €
o

DD.

562 BERRY, ERLINGER; JOHNSTON, VON STAA

of notational simplifications

n the notation in the left column shaii
n in the right column:

8140 € F(Sp)

Notation 1.
be used in

wy

M(S.) the one eleme

3. Contour

s an NDISM
snapshots, has proved *tc be particularly
putational phenomena. These include nested

The contour Johnston [Joh69a, b, 711 i ich, be-
cause of the pictor

suited for 4

declaration pr 1 language 3 4a, OFP78], machines [Org73], and Multics-~
like systems [Joh75 a mo omplete description of its pedagogic use see

[Bry7ub].

The model we use here is ed by medification suggested in

[cowPs73, JBM74]. Because m serating : ¥ itten in languages with
compile or link edit tim il 2 ‘ilers, l.e., those of the

A , We wWill re g static-binding ver-
sion of the contour m g

nology of [Jch?B], we iden

This version

correspond to statements o¥
+

(ol S« N o I« RS SNS SIS
L N T I S e

HIERARCHTCAL FACHINE SUPPORT

1 begin int a;
2 proc p = {int i)void:
3 ar=i;
4 begin int a;
5 ar=2;
6 p(a)
7 end
8§ end
Figure 3.1
ENTERBLOCK
INT
PROC ENTERPROC

ADR,p v///
MAKEPROC ,.

STOD

ENTERBLOCK
aj INT

/" Rret RET LABEL

i ¢ INT

ADR,a
VAL, i
STOD
RETURN

EXITBLOCK

ADR,a
c.2

STOD
VAL,p
VAL,a
CALL,1,0

EXITBLOCK

Figure 3.2

ENTERBLOCK

INT

PROC ///A-»—ENTERPROC

p:=makeproc(});
ENTERBLOCK

Rret IRET LABEL

i INT

a INT

a:=2;
pla)
EXITBLOCK

EXITBLOCK

a:=i
RETURN

Figure 3.3

2.4

3.1
3.2
3.3
3.4

oy a procedurs

ontour, but since

pairing the identifiers declared in

etween Dprocesscers and processes.
iven level a processor is a sell run=-
tructions and effecting the required

CM and distinguish b
1 T

The designations are level-relatl

50 09

ning processing ns

changes) data cell not capable of executing but
serves £ remembering the state of a processor
at some d b distinction is only

is
dered a processor at the

T

el

vrocessors will be the processing
ed through all computations. In
an and does vary through a compu-

any level
deallocated.

the one

r examples there will
chine.

1) an instruc

executed

the stack
the usual

DARCHICAL MACHINE 3UPPORT

ENTERBLOCK
al INT a NS
pl PROC ENTERPROC ———.. ry »/QEKQ\
ADR.p ///Egi;t RET LABEL — \
wkeeroc,/ |1 INT (\
$TOD ADR,a ?Qret% LN
VAL, ~— | | | i 2 [\
ENTERBLOCK STOD B T N
al T | RETURN —
ADR,a —
) J
STOD al 2
VAL,p
VAL ,a
CALL,T,0
EXITBLOCK =]
EXITBLOCK
algorithm record of execution
Figure 3.4
ENTERBLOCK =——————————
a INT
p| PROC ENTERPROC \\\\
ADR, p ////;;j;t RET LABEL \
MAKEPROC ./ | INT \
STOD ADR,)
VAL, i
ENTERBLOCK STOD
al INT RETURN
iDR,a ; L““‘"”"J
.2
STOD
VAL,p
VAL, 2
CALL,1,0 5::::1 45
, Lo
EXITBLOCK) ‘
EXITBLOCK ocutput input

Figure 3.5

T

R, JUHNSTON, VON'S

BERRY . FEIINE

566

4
(0] 44 O el f i
P . o O @ 0 U] o] mow
s H B w00 i How 0 z 2 9 Wb
(o] O et et oW] o - 4 [elNe) Q et Cy @ et
4 [TR s SRR = e o] o oo et 7]
[1 [e gt @O0 i) Mgy X 4 [ORN]
EET | 9D oy Clyrrd oA Gy s 9] o] w oz o] (eI
won Y o g B 03 — [SER R @ o 4 O
R S I = o 3 A0 e e Uy O -t s} ©
(o3 ORI I = I S e = £3 4 et 4 £ Sy Ly
O et 30 0 [+ aQ o I
O Ly oef et L O ooy & ¢ woo) @ [&] @
A0y O i) b 4 @ LW D O A wed [
+ 0 AUy e @O 4 PR @ v 4 o
oW W o w oW a o Uy e 0w o] —
o] el o & O = et g ot [o o BORRS]
[(RO S R O D 42 g O @]
W O O E 4 [TR [s9 jole] QO e » orf
@ Q RO TS O I S owQ b0 g @ 4
[O [o 3 W o G el
oL Lot 59 SO = O [[s] @ ALy
o Fddaox @ by @ 5o o 4
) [ie gt A [S Tl s ! [I+
oo Q. = (S -~ O Rl o] -4 Q
<) Y RE) A3 fal = O D [4 1]
Q"o o =R B @ @ [
o SR 30 b0 2 =1 oG] Uy
@ ooy OW JERR [NV o] B G D N4 w0 0w
QA e © o @ + £ om0]
D WG £ st P .0 Mg
W 0 wy @ O 0] £t Q 42 =7 [Q0
4 oo el a @ e} @
o oo oo 4 Q 60 Gy 4 o
< Eadh e x 0 Rl oL
jiv) =4 & o 0 (AN (S
oD . = [3@
0 o F o o o MO
o S i G Q @ R
(&) B O ol £ [54]
(&) = WG H O 5 W wEi]
[o~ (G R AN ® @
] os [T @ g o vt
O o) B © e
9 ot e} s
[8} St 1
ORI oy o]
S 2 o
" iy £

o

+ fegps]
g W
3 O g
& 5 & 00
o) RNt o
4] e
@ o
S .l
=) o]
FERES] I
D oq ol
oo o)
< oo 9]
S S Q
s iy jaaN] B
O o0 G <3
Rl @ Q@ s]
o L [SI) 4
= fa [SR=a] 0
by o D
@ e U3]
F
i o i
@3 [
2 [EE
4 4
@
Pt 4
i o

567

UPPORY

ST

i

HIERARCHICAL MACHI

et N0

El
el
O
9]
Q
&

oy

m

(38

2Cutio

ontour
25,

ridli

1 vari

£y

loc

our

cont

ecora

hay

contour,

a4 recsy

o

in the model.

s

See [Joh71, Org73, CDMPS73, and OFP78] for examples of computation

568 BERRY, ERLINGER, JUHNSIUN, V0N STAA

methods of

progranm execu

computation

shots Sg4» Sgl,..., SE.5ve00

ing machine

Md=outputhon

ﬁ§¥outputMgoMg

it

an equivalence

HIERARCHICAL MACHINE SUPPORT 569

marn o
menting

tated simply, it is required
o B 4

sult as the implemented compu

I produce the same cutm

However, in practice, it

1)

hat e
whole computation
2) It is only by lo

tations that two
different
3) More insight into the difference betwe
comparing corresponding snapshots in t
computation,

intermediat f e compu-

n the methods can be g d
he implemented and implementing

erefore we prefer to use a stronger indu

tive statement of the requirements
which implies the holding of the weaker requli

a
rements given above,

O 0
=4

‘E;,ith(Pd,é)=Sd0 . Sdi Md(s%)

Fd

utationy,
mputation

Pu
Lo}

same result

§113
m
Du

ede)

ing ¢
uce the

T
+

mputation s
ormer

=
I

prod

lemen

the
L

not o
i

snapst
ng co

£

3

al
v

il

I

£i
ement
C881D
g

=
o
P

Tl

£t

i

some finite number of implementing
i

mplemen

1T

12D

R, JOHNSTON, VO STAA
s

HEE
Final

FRLT

BERRY,

which

ion
do

+3

caels

nod

T

g

VErSd.

ol
of

hod

+to char
0 Som
cterize
the met
san

S
ke

ng model

e O

v

[

SUDDOI

slemen

} e

kit

method ©

53

e

ted

nt

€L
£
@©
-

ion ©

+

SXEeCUT

=

ions,
scord ©

ot
QT

s
T of

o
A

¥

snap

e
u,

RARCHICAL ‘MACHINE

HIE

eprenced"

£

the

means

@ e
bt
U1
=oa
O .

t*,ip#nil do

rrent®

ile cu

T

W

in

kS

"

inst.opcod

case

ent

execute

i3

41

el

etc

£
i

.

33

ushes addre

£ inst ¢

is

argl o

pusn

+

5]
=)
o

g

O

bel

4
w3
.
i)
9]
=

e5ac

end

BERRY . ERLINCER)TIOHNSTON, VON BTAA

ALGORITHM
CONTOUR C1

In this case,
interpreted,

struction of

a fetch, incremen

1) In the
2) In the
a) the
the
5) a
1)

c)

oy
'

See figure

representation of

.
&
&
STOD ¢ assign integer to n ©
.
.
.

o
-

[
o
£
o
W
@
¢l
i
Ind
o

algorit
record are

processor sitting
interpreter ready

processor of the 1
identical content, and

schematic diagram

HIERARCHICAL MACHTNE S

UPPORT 573
—begin
=31 ENTERBLOCK
while n INT n N
sysin|REF FILE sysin .
fetchie 4 i - Y -
N ADR,n = !
case R B |
\ VAL,sysin __—1" gL |
) READINT-"" / g
STCD —
: } : / W;/‘\\
| EXITBLOCK ,
4 /
'READINT : i
\ y
4 current et ' gi::jmij::J //
4 ! o i
\| |Inst VALsysin % 5 s
= =i % (
esac i
od] § | |
L-end
Figure 5.3
—beqi
=edin ENTERBLOCK
while n INT } n
sysin|REF FILE sysin —
fetch: - i
case ADR,n //L:j F“UJ
VAL ,sysin 1 A=
READINT //
STGD /]
. /] \
EXITBLOCK
'READINT':
. *
\
K current — !
\| [inst |ReADINT Eé 5 i
3 = L ;
esac N 2 % i
od \wl [Q
L
—end

Figure 5.4

574 BERRY, ERLINCER, JOHNSTON. von 874K

begin ENTERBLOCK
?;fhﬂe n INT n 3
fetch sysin|REF FILE sysin —
ete 3<\ .
N ADR,n S
as . s L
Q@ \ VAL,sysin T AL
! STOD 5
g EXITBLOCK — é
"READINT' : §
|
\ current et
\ inst READINT
snap 1
es5ac
od e
A L
~—end
Figure 5.5
ENTERBLOCK
n INT n I,
sysinf REF FILE sysin }
: - |
ADR,n] | 5
VAL,sysin - |
READINT <— | —] kf\\~,/,J
STOD Ny
EXITBLOCK
Figure 5.7
ENTERBLOCK
n INT n o
sysin|REF FILE sysin é
a0, 7T
VAL,sysin - /
READINT — 5|
STOD <4/
EXITBLOCK

Figure 5.8

HIERARCHICAL MACHINE SUPPORT

5758

=
output input
—begin
: <]
while
fetch: E—"L{:R
case B
‘READINT' ...
current -]
inst s =
snap 4]
esac
od e — output input
.» L
L end

Figure 5.6

578 BERRY . PRLINGER . JOHNSTON, VON STAA

In enmasterization, the implemen
implementing language is called the
computing system, it is not u
direct control over some or all the resources of the sys
the various input/output devices, etc. Consegquently, o T
ystems, instructions giving the user direct access to these rescurces e.g., load
processor, start read, start write, etc., are made i user progran is
not allowed to execute privileged instructions, but a master or SUPervisor program
is allowed to exrecute privileged instructions. In order for the user program to
access one of these resources, it must somehow request the supervis

1o access
the rescurce on its behalf, performing the resource related operation, and
reporting back to

aster Or supervisoc
esirable to g to the us
1

o

e user program when the operation is completed.

One method of requesting supervisor help requires one processor and no processes.,

instruction wi n s whict the supers
its behalf. a trap occeurs

to the supervisor. rocedu call combined with a processor
mode change ~ from user mode. Control returns to the user program at
the Instruction tl ervisor call by means of a speci

changes the processor's mo from master to user mode.

Also causing traps are such svents as time slice end, illegal op code, attempted
use of privileged instruction by user, etc.

To model this phenomenon, in the algorithm of ti enting machine must be a

wStpictly speaking ¢ a computation to a computation, but
rather on a snapshot it is easy to construct the correct
¢ from the one descri o es t
the statement labeled T

&
in Mg until m.ip doe
slightly t

but convenient view of ¢ from now on.

e t ¥
"If Cg is not finite then length (Cg) is taken as <.

IACHINE "SUPPORT

3

HIERARCHICAL

DECLA

g ©
@ [
Py Oy ot
2] +
g own s
2
LG S
ool
B e &
p=) O
O oW =]
(ORI B BN B
bl Q =N >
o el Yt I
o O [%] o
oo omoa o,
St @ D =)
g e %)
Ly el
[[
(ST o] L3
je RN =I] 2
AR g el
z g
14 (&)
af s
& vl
[/ =
o [
[eR)
P =]
78 1
O O £4
e} o &b o
By O o
Sy 10 P
@ o [an
fud
ot D £
e e [
Si 8 a
&) =3
o o
]
et
v) O 4 o]
[T et
] T 0 <.
- EOE @
N 9y
8] @ O
6} Pt
— [
A at
1S 4
@ i
+ 2 .
o Qg
] L0
u P
5 ["
- D Dy \r“.
=1 ER) e
ooy T3
£4 .~ - ¢
) et @ . m @
Q L B I WA [SIY
4 O e (SR A
iy 1) [RN T I B
[T B LT
b0 Simn L] (Y » e @ L
30 @ Tu_“p £l
)
) j=3
£
SO
et ey

to ¢

i

nc

Lo Dra

.
T

code ¢
ddress

[
code as a

7

IT
P
<

s, B
e, I
get
use

is!
&~
<
&
&

mod
<ot

B

code

NCH

L
™
5
]

il
ECLAR

VAL,

BRA

D

578 SERRY, ERLINGER, JOHNSTON, VON STAA

readint:

s
TUrT

stored

sToY

in
y resets
le subcells of

this instruct

llocated.

i
label and mo

3) STARTREAD
RAASLEREL <
and walt un

read is sto

stack.

i)

Observe that because a fr
processor's current mode
cessor's mode from the save
visor routine or In routine
are possible.

As a consequence of the d

machine, whose language L 10

the supervisor call, is r t
language Lg comprises all including

i.e. the user lan

IS¢

¢
i
?

§

record and

Figures 6.2 through ©.5 show a sequence of some skel

579

NESUPPORT

T

RARCHICAL MACH

HIE

ndut

. M U1 quLjoRalxe

A3079.L1X3

RuL3004IX9* YA

08*

’

NYNLIYS
0° LY TV

QYIULIVN
QYIULYVLS

3077v: JULpESI

HONVYE
9p02* YA

d1 1 8pod

L1g} spou

197 1Y

pm;%

=

- J0dddIIN

TP O0UYIUNG

*

- TULPEIA DAS

%20719L1X3
00LS
u*yay

i
+

INT M:

A20T9Y3 NG

JUL]ORAIXD
Burpnioul
58ULIN04 WBYSAS

pieliptit AL E

Figure 6.2

andut

!

f— ~ W JULGORAIXD

L

AJ074L1X3

qULIIRAIXD* YA
08° 20Ty FULPES

> 3P0 A

‘

NINLIYS
0°LTIVD

QYI4LIVM
W ERIRLER

HONYYE

411 apoo

119 8pou

IRER:

n«wxz

S~ 30udu3iNg

¥

3= 304 dU3 NG

e

T qous

TUTPEBA° OAS

A30741L1X3

uyay

[N 9]

A30719Y3 NS

JULIORAIXD
Burpnout
saULINoL WesAs

N0019Y3INT

Figure 6.3

T
H207811x3 andut ¥O0T81THI
P
\ .
| . |, _
: “v 7 NUNLYS hMMHHHHL NUNLIAS
0 L TIVD 0 L TV0
f/s:sx MULI0RAIXS YA . AULIORATXD* YA
j QYRILIVN avId LIV
vy LuyLS QyIULIYyLs
w 08907 FULPERa 08007 FULPESA
e % HONYYE HONVYE
=T = 1] | 9po2* Ty 3po2* YA
— RS d1| 8poo dl | ®pod
g S 118 Bpow 118 spouw
A e] ey = 197 14] 1949
o T D0YYIING © > O0UdUILINT
R 5 I S
jwa)
o
R RETE R L ELE]
e .y AI01GLIXI - P AI018LINE
_qols L 0015
FULPEIA* NS 5 TULPEaA* IAS
utyay Ut HOY
[[0 v T4
RRIORETEINE pRIVRECEINE
L L L L JULIORAIND JULIDRAIND
| JuLoRdlxs Buipnioul —~ Buipniout
SBULINOL welsAs STULIN0L WOLSAS
2 ERIRENEIDE FRRENEITE]

gure 6.5

-
[

HIFRARCHICAL MACHINE ‘SUPPORT 581

Sy§-
COgrAn.
s for

contour.
(=]

cedure value register to the processor and initial-
ing to the supervisor routine entry polnt and an
outer block record contour.

user mode.

illustration of this A mapping.

two models is equally as straightforward. Consider the

in the implementing machine., Remove from this sequence a

snapshots in which the

processor is in master mode to obtain the sequence
1 ¢ ¥ t
Cg = 8 g vevs SEuseen
g gO’ gl’ > g]’

a3
O
s}

Then form the ilmplemented computs

re value register from the processor,
aystem outer block code the code for the supervisor

ig necesgarily U) from the progessor.

582

BERRY; ERLINGER, JOHNSTON, VON STAA

ENTERPROC———|

ENTERBLOCK
system N
routines g:::{ (;:%
I tor
m L
1 output input
EXITBLOCK
/
/
n o/
N
ENTERBLOCK
system
routines
<ttt U

—TT to

l output input

Nret |RTLBL

mode |RIT

code {IP

VAL, code
BRANCH

SRETURN

EXITBLOCK

Figure 6.6

HIERARCHICAL MACHINE SUPPORT

ENTERBLOCK

system routines
including
extractint [

ENTERBLOCK
n INT

AﬁR,n
SVC,readint—="
STOD

-

EXITBLOCK

777

extractint |

ENTERPROC—_—]

EXITBLOCK

input

Figure 6.7

ENTERBLOCK

system routines
including
extractint

ENTERBLOCK
ni INT

ADR,n
SYC,readint |

STOD = |

N

/

extractint] , |

A

5

EXITBLOCK

ENTERPROC <

EXTTBLOCK

input

Figure 6.8

584 BERRY, ERLINGER, JOHNSTON, ‘VON STAA

the implemented machine.

8. The Tower of //3YSBABEL [Bib??, Sam 69, MLB76]

In this final chapter, we reconsider the entire multilevel system given in figure
1.1 and give a new view of it.

First consider any two consecutive levels of the system. There is a ¢ map from
the snapshots of the lower (implementing) level to the corresponding snapshots of
the upper (implemented) level.

IMPLEMENTED
SNAPSHOT

i

IMPLEMENTING
SNAPSHOT

Figure 8.1

1) given a component x in the lower level snapshot, x is at least partially
covered by each component v of the upper level snapshot in whose construc-
tion under ¢ x participates.

2) given a component v in the upper level snapshot, y at least partially
covers each component x of the lower level snapshot which participates in
v's construction under ¢.

This contortion may be a bit contrived and tortuous especially for support methods
involving compilation and, in any case, if the lower level snapshot represents an
intermediate state in the transition from an upper level snapshot to the next.
However, in principle this contortion should always be possible.

For example, the application of the ¢ map for single process interpretation con-
verts the snapshot of figure 5.3 to that of figure 5.7. This conversion results
in the superimposition shown in figure 8.2,

In this kind of a superimposition any vertical line that cuts both snapshots pas-
ses through an implemented cell and its representation in the implementing
snapshot,

In general, the lower level snapshot will be physically larger than the upper, as
the lower level snapshot usually has extra code and data, e.g., an interpreter
and its own variables, which help the implementation but which do not directly
represent anything in the upper level. In no case, will the lower level snapshot
be smaller than the upper.

Carrying this superimposition to the entire multilevel System of figure 1.1, we
get something similar to our Tower of //SYSBABEL shown in figure 8.3. 1In it any
vertical line cutting through all of the snapshots cuts through a cell in the LISF
interpreter snapshot at the top level and such succeeding lower level's represen-
tation of it, The lowest level computation is moving the fastest; each lower
level must do, perhaps, many steps to push the next higher level through one step;
and the highest level ig moving the slowest. The picture is that of a multi-

HIERABCHICAL MACHINE SUPPORT

AL
UL spsin
READINT L
S7o0
/wz:ewc/«

) S
TN T ERELOCE
£ ST

while

Sotels

are

RE—INT

TOWER OF //SYSBABEL
Figure 8.3

586 BERRY, ERLINGER, -JOUNSTON; VON STAR

geared (old-fashioned) adding mach
them) where the lowest level

+he

highest

gear, and the lowest level gear mu
one tooth.

move

a. Conclusion
S SPRCAUSION

We have a**emo*ed to characterize the multi
Information Structure Model point of view.

pporting one machine by ancther. We then
framework for considering a method of supp
ing and cne implemented, together w*th WO mapy
map, between them. Then three
in terms of the two models and
view of a multilevel system as

[Bau?E} Bauer, I. L. (ed)., Advanced Course on Software Engineering, Berlin:
Springer Verlag (1973).

[Bry7ua] Berry, D. M., "On the Design and Specification of the D“ograﬂm*ng
Language Oregano," Computer Science Department, UCLA, UCLA-ENG-7388
(19743,

[Bry74b] Berry, D. M., '"The Use of Information Structure Models Programming

in
and Teaching of Programming Languages,' Proceedings of Second

c
Jerusalem Conference on Information Technolops (August 1874).

[Bry75} Berry, D. M., "Definition of the Contour Hodel in the Vienna Defini-
tion Language,' MEM Note #40, Computer Science Dept., UCLA (October
1975).

[BEJS??] Berry, D. M., M. Erlinger, J. B. Johnston, A. von Staa, '"Models of

Hinrarchical Machine Support: Interpretation, Enmasterizat on,
Virtualization, Software theﬁswon, and Compilation," IM #155,
Computer Science Dept., UCLA (1977).

[Bri7o] Brinch Hansen, P., "The Nucleus of a Multi-Programming System," CACM
13:4 (April 1970).

[CDMPS?S] Chirica, L.M., T. A. Dreisbach, D. F. Mar tin, J. G. Peetz, and A.
Sorkin, "Two PARALLEL Euler Run Time Models: The Dangling Reference,
Imposter Environment and Label Problems," Proceedings of ACM Symposium
on High Level Language Computer Ay %chltecture, SIGPLAN Notices 8:11
(1973).

[pen73] Dennis, J. B., "The Design and Construction of SoFftware Systems," in
Bau73 (1973)

[pijes] Dijkstra, E. W., "The Structure of 'THE! Mult iprogramming System,"
CACM 11:5 (May, 1968).

[Goo73] Goos, G., "Hierarchies," in Bau73 (1973).

[Joh69a] Johnston, J. B., "Structure of M fultiple Activity Algorithms,” Proceed-
ings Third Annual Princeton Conf erence on Information Sciences and

Systems (1969).

[Johsan] Johnston, J. B., "Structure of Multiple Activity Algorithms,” Proceed-
ings of Second ACM Symposium on Operating Systems Principles (19697,

[aBM74]

[Jon75]

[Wweg71]

[zre8]

[sam6a]

[MLB76]

[Bib??]

[ow7u]

DISCUSSION

HIERARCHICAL MACHINE SUPBORT 587

Johnston, J. B., "The Contour Model of Block Structured Processes,”
n

Johnston, J. B., "Identifier and Enviromment Bindings in Nested
Declaration Computations," Proceedings of Seventh Annual Princeton
Conference On Information Science and Systems (1973).

Johnston, J. B., D. M. Berry, and D. P. Murphy, "Expression Stack
Management in Nested Declaration Computations,' Proceedings Eighth
Annpual Princeton Conference on Informaticn Sciencec and Systems
(197u).

Johnston, J. B. "A Model of the Connective Structure of Segmented
Virtual Storage Systems," NMSU-CS-TR-75-01, Computer Science Dept.,
New Mexico State University (January 1975).

Liskov, B. H. and S.N. Zilles, "Programming with Abstract Data Types,"
SIGPLAN Notices 18:11 (April 1974).

Manthey, M. J., "Nested Interpreters and System Structure,' Matematisk
Institute, Aarhus Universetet (September 1975)

Organick, E. I., _Computer System Organization: The B5700/B6700
Series, New York: Academic Press (1973).

Organick, E. I., A. I. Forsythe, and R. P. Plummer, Programming
Language Structures, New York: Academic Press, in press.

Tou, J. T., and P. Wegner (Eds.), Proceedings of ACM Conference on
Data Structures in Programming Languages, SIGPLAN Notices 6:2
(February 1971).

Wegner, P., "Data Structure Models for Programming Languages," in TW71.

Zurcher, F. W. and B. Randall, "Iterative Multi-Level Modelling - A
Methodology for Computer System Design," IFIP Congress '68 (August
1968).

Sammet, J. E. Programming Languages: History and Fundamentals, Englewood
Cliffs: Prentice Hall (1969)

Marcotty, M., H. F. Ledgard, G. V. Bochmann, "A Sampler of Fopmzl
Definition™, C. Surv. 8:2 (June 1976).

Hertz, H. H. (Ed.), The Pentateuch and Haftorahs (Second Ed.) London:
Soncino (1964).

Jensen, K., and N. Wirth, PASCAL User Manual and Report, Berlin:
Springer Verlag (1974)

Andrei Ershov: Is your model observational or implementational?

Berry: Observational.

Jack Dennis: You have given us some tools and some descriptive models. What
should we learn from your work?

588 DISCUSSION

Berry: What we have gained is a clearer understanding of what actually happens
in a system. For instance, we have clarified the difference between a process
and a processor at a given level.

pennis: I did some thinking some years ago about hierarchical models, and was
Ted to the conclusion that the fewer level, the better, because the user program
which is executing at the outermost level depends on the correctness of all of
the levels below it. If you are interested in simplicity, and confidence that
systems work correctly, it seems that you should reduce the number of levels.

Berry: I agree we should try to keep the number of levels down. The purpose of
what I present is to show what exists. Perhaps by understanding what exists, we
can see what should exist.

Lawrence Flon: I don't understand why many levels cause difficulty, because the
program is correct if it can be shown to operate correctly given that the topmost
level satisfies its specifications.

Dennis: You are correct. But the more complex and elaborate the implementation
is, the more likely it is that the implementation does not reflect its specifi-
cations. So one worries about the confidence the user of an outer level machine
has that the machine meets its specifications. My plea is that the underlying
hardware be much more accommodating to the program structure and methodology
desireable at the user level. Then the overall structure of the system will be
simpler, increasing user confidence in its correct operation.

Malcolm Newey: Jack seems to be arguing against modularity. He proposes pushing
all the levels into one level.

Dennis: That hurts me very much, of course. The whole machine should support
modularity of programming at the outermost level. To me, modularity is the
ability to take programs that have been written and use them as bullding blocks
to.build other programs which in turn become new building blocks, etc. There is
no such relationship in the levels of an onion.

Berry: 1In a sense, a module may be thought of as presenting a machine, and the

act of composing a higher level module as construction of a higher level machine
(as described in the models in the paper). This seems to be what he (Newey) is

implying by his comment.

Dennis: If you regard the onion as representing a modular scheme for building
larger elements out of simpler ones, then I challenge you to take two levels of

the onion and define some sensible way of combining them to form a new level.

Berry: Yes, they're not composable. Maybe that's why nobody likes these systems.

