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User LISP Program
e

— LISP .Interpreter
“pL/1 Machine"
05/360

NUCLEUS/360

vi @m
e N\
4 \

1360/67 \

\

2067

Figure 1.1

The machines from the lowest level on up are:

1. The vaw IBM 2067 microprogrammable host machine
2. A system 360 model 67 microprogrammed on the 2067
3. A viprtual machine monitor CP 67 which is the 360/87 extended with a numbes
of routines for managing virtual machine
4, A virtual 360, supported by CP 67 which looks like a traditional 360
5, NUCLEUS/360 providing the basic supervisor routines which use the pri
privileged instructions
6. Operating System/360 (08/380) which is NUCLEUS/360 extended by a number oi
useful packages, compilers, utility routines and access methods
7. A PL/: machine supported by compilation of rams into 360 maching
code combined with 0S5 supervisor ca ine" instructions)
A LISP interpreter written in PL/1
. A user's programs written in LISP

&)

Iven cursory examination of the multilayered system shows that the progression
nn
3

m layer to layer is not done in a uniform manner. FTive different methods ca&n
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calling pro-
> language.
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proc:aures doe
sed in moving fros

the user progran
be considered

this paper we first define ISMs and g >
”escribe a portion of the CM sufficient 1 poses The pts of the
mplemented plementing Machi i
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for our method scrlptlonf Dy
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are

4
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contour model i 1 interprets ferent

roach to modeling this parti henomenon and have ch to
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2

M Nondeterministic Information Structure Model

We will define a machine, real or abstract,
tion structure model (NDISM) that

program in the language of the machine wi
shots (instantaneous descriptions, core du
on executions. Each computation starts of

oceeds through successive snapshots S

previcus by execution of some instruc
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1) € 13 a computatyl

a) C# <> is a o

NN e -

)
) is sformable if and only
)

[os}

is intransformable if and only if S is not transformableyg

nd inductive
hot in the

, S. = F(5, ).
1 L4

omputation is
itions;

eguence, S

However, this Suppose <SO,81,SQ,S > 1s a computatlon., Then

3
3
clearly the sequences <8,,5,> and <SO,81,52> all satisfy the initial and

"incomplete' subs
we add the sti
initial subsequen

ions.

Definition 3. Let

1) for all S, in C, 5. ¢ I,

2)

3)

%) & proper
We say that C SO.

Also, for an
a given SG'

Definition 4,
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transformab

e calli a com

putat i has
halting computation and we call the intransfors
of the computation.

bDefinition 5. Let M = (I,I_,F) be an NDISM; let
ZetAnation o 0

1) C halts if and only

2)

for some S e I, S

al(C) is defined if and only if C halts,

3) final(C) = S if and only if S is in C

and computation
s. Since
ion of programs
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In most machines and langu

re, we assume that for each NI

D
There are snapshot component selection

have been ¢

N
NDI

and output

ing a machine MACH

nctions called input  and output,, which
M 1

ect the input and output lists of a s apshot, We also assume that there 1s a
t of input lists, INPUT, and a set of output lists, OUTPUT, in which all possi-
le input lists and output lists of integers, reals, booleans and character

strings

if for some program p in L,

sumption 1. Let M = (I,IO,F) be an

integers, reals,

in both INPUT and

ere exist countable
booleans and character
CUTPUT,

2) there exist functions, input,: I INPUT 1tpu - QUTPU

3} there exists

)
m

4} for all S, €
o

DD.
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of notational simplifications

n the notation in the left column shaii
n in the right column:

8140 € F(Sp)

Notation 1.
be used in

wy

M(S.) the one eleme

3. Contour

s an NDISM
snapshots, has proved *tc be particularly
putational phenomena. These include nested

The contour Johnston [Joh69a, b, 711 i ich, be-
cause of the pictor

suited for 4

declaration pr 1 language 3 4a, OFP78], machines [Org73], and Multics-~
like systems [Joh75 a mo omplete description of its pedagogic use see

[Bry7ub].

The model we use here is ed by medification suggested in

[cowPs73, JBM74]. Because m serating : ¥ itten in languages with
compile or link edit tim il 2 ‘ilers, l.e., those of the

A , We wWill re g static-binding ver-
sion of the contour m g

nology of [Jch?B], we iden

This version

correspond to statements o¥
+
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1 begin int a;
2 proc p = {int i)void:
3 ar=i;
4 begin int a;
5 ar=2;
6 p(a)
7 end
8§ end
Figure 3.1
ENTERBLOCK
INT
PROC ENTERPROC

ADR,p v///
MAKEPROC ,.

STOD

ENTERBLOCK
aj INT

/" Rret RET LABEL

i ¢ INT

ADR,a
VAL, i
STOD
RETURN

EXITBLOCK

ADR,a
c.2

STOD
VAL,p
VAL,a
CALL,1,0

EXITBLOCK

Figure 3.2

ENTERBLOCK

INT

PROC ///A-»—ENTERPROC

p:=makeproc(});
ENTERBLOCK

Rret IRET LABEL

i INT

a INT

a:=2;
pla)
EXITBLOCK

EXITBLOCK

a:=i
RETURN

Figure 3.3

2.4

3.1
3.2
3.3
3.4
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ENTERBLOCK
al INT a NS
pl PROC ENTERPROC ———.. ry »/QEKQ\
ADR.p ///Egi;t RET LABEL — \
wkeeroc,/ |1 INT ( \
$TOD ADR,a ?Qret% LN
VAL, ~— | | | i 2 [\
ENTERBLOCK STOD B T N
al T | RETURN —
ADR,a —
) J
STOD al 2
VAL,p
VAL ,a
CALL,T,0
EXITBLOCK =]
EXITBLOCK
algorithm record of execution
Figure 3.4
ENTERBLOCK =——————————
a INT
p| PROC ENTERPROC \\\\
ADR, p ////;;j;t RET LABEL \
MAKEPROC ./ | INT \
STOD ADR, )
VAL, i
ENTERBLOCK STOD
al INT RETURN
iDR,a ; L““‘"”"J
.2
STOD
VAL,p
VAL, 2
CALL,1,0 5::::1 45
, Lo
EXITBLOCK ) ‘
EXITBLOCK ocutput input

Figure 3.5
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ALGORITHM
CONTOUR C1

In this case,
interpreted,

struction of

a fetch, incremen

1) In the
2) In the
a) the
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5) a
1)
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See figure
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@
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Ind
o
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record are

processor sitting
interpreter ready

processor of the 1
identical content, and

schematic diagram
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—begin
=31 ENTERBLOCK
while n INT n N
sysin|REF FILE sysin .
fetchie 4 i - Y -
N ADR,n = !
case R B |
\ VAL,sysin __—1" gL |
) READINT-"" / g
STCD —
: } : / W;/‘\\
| EXITBLOCK ,
4 /
'READINT : i
\ y
4 current et ' gi::jmij::J //
4 ! o i
\| |Inst VALsysin % 5 s
= =i % (
esac i
od ] § | |
L-end
Figure 5.3
—beqi
=edin ENTERBLOCK
while n INT } n
sysin|REF FILE sysin —
fetch: - i
case ADR,n //L:j F“UJ
VAL ,sysin 1 A=
READINT //
STGD / ]
. / ] \
EXITBLOCK
'READINT':
. *
\
K current — !
\| [inst  |ReADINT Eé 5 i
3 = L ;
esac N 2 % i
od \wl [ Q
L
—end

Figure 5.4
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begin ENTERBLOCK
?;fhﬂe n INT n 3
fetch sysin|REF FILE sysin —
ete 3<\ .
N ADR,n S
as . s L
Q@ \ VAL,sysin T AL
! STOD 5
g EXITBLOCK — é
"READINT' : §
|
\ current et
\ inst READINT
snap 1
es5ac
od e
A L
~—end
Figure 5.5
ENTERBLOCK
n INT n I,
sysinf REF  FILE sysin }
: - |
ADR,n ] | 5
VAL,sysin - |
READINT <— | —] kf\\~,/,J
STOD Ny
EXITBLOCK
Figure 5.7
ENTERBLOCK
n INT n o
sysin|REF  FILE sysin é
a0, 7T
VAL,sysin - /
READINT — 5|
STOD <4/
EXITBLOCK

Figure 5.8
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=
output input
—begin
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while
fetch: E—"L{:R
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od e — output input
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Figure 5.6
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In enmasterization, the implemen
implementing language is called the
computing system, it is not u
direct control over some or all the resources of the sys
the various input/output devices, etc. Consegquently, o T
ystems, instructions giving the user direct access to these rescurces e.g., load
processor, start read, start write, etc., are made i user progran is
not allowed to execute privileged instructions, but a master or SUPervisor program
is allowed to exrecute privileged instructions. In order for the user program to
access one of these resources, it must somehow request the supervis

1o access
the rescurce on its behalf, performing the resource related operation, and
reporting back to

aster Or supervisoc
esirable to g to the us
1

o

e user program when the operation is completed.

One method of requesting supervisor help requires one processor and no processes.,

instruction wi n s whict the supers
its behalf. a trap occeurs

to the supervisor. rocedu call combined with a processor
mode change ~ from user mode. Control returns to the user program at
the Instruction tl ervisor call by means of a speci

changes the processor's mo from master to user mode.

Also causing traps are such svents as time slice end, illegal op code, attempted
use of privileged instruction by user, etc.

To model this phenomenon, in the algorithm of ti enting machine must be a

wStpictly speaking ¢ a computation to a computation, but
rather on a snapshot it is easy to construct the correct
¢ from the one descri o es t
the statement labeled T

&
in Mg until m.ip doe
slightly t

but convenient view of ¢ from now on.

e t ¥
"If Cg is not finite then length (Cg) is taken as <.
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readint:

s
TUrT

stored

sToY

in
y resets
le subcells of

this instruct

llocated.

i
label and mo

3) STARTREAD
RAASLEREL <
and walt un

read is sto

stack.

i)

Observe that because a fr
processor's current mode
cessor's mode from the save
visor routine or In routine
are possible.

As a consequence of the d

machine, whose language L 10

the supervisor call, is r t
language Lg comprises all including

i.e. the user lan

IS¢

¢
i
?

§

record and

Figures 6.2 through ©.5 show a sequence of some skel
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Sy§-
COgrAn.
s for

contour.
(=]

cedure value register to the processor and initial-
ing to the supervisor routine entry polnt and an
outer block record contour.

user mode.

illustration of this A mapping.

two models is equally as straightforward. Consider the

in the implementing machine., Remove from this sequence a

snapshots in which the

processor is in master mode to obtain the sequence
1 ¢ ¥ t
Cg = 8 g vevs SEuseen
g gO’ gl’ > g]’

a3
O
s}

Then form the ilmplemented computs

re value register from the processor,
aystem outer block code the code for the supervisor

ig necesgarily U) from the progessor.
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ENTERPROC———|

ENTERBLOCK
system N
routines g:::{ (;:%
I tor
m L
1 output input
EXITBLOCK
/
/
n o/
N
ENTERBLOCK
system
routines
<ttt U

—TT to

l output input

Nret |RTLBL

mode |RIT

code {IP

VAL, code
BRANCH

SRETURN

EXITBLOCK

Figure 6.6
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ENTERBLOCK

system routines
including
extractint [

ENTERBLOCK
n INT

AﬁR,n
SVC,readint—="
STOD

-

EXITBLOCK

777

extractint |

ENTERPROC—_—]

EXITBLOCK

input

Figure 6.7

ENTERBLOCK

system routines
including
extractint

ENTERBLOCK
ni INT

ADR,n
SYC,readint |

STOD = |

N

/

extractint] , |

A

5

EXITBLOCK

ENTERPROC <

EXTTBLOCK

input

Figure 6.8
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the implemented machine.

8. The Tower of //3YSBABEL [Bib??, Sam 69, MLB76]

In this final chapter, we reconsider the entire multilevel system given in figure
1.1 and give a new view of it.

First consider any two consecutive levels of the system. There is a ¢ map from
the snapshots of the lower (implementing) level to the corresponding snapshots of
the upper (implemented) level.

IMPLEMENTED
SNAPSHOT

i

IMPLEMENTING
SNAPSHOT

Figure 8.1

1) given a component x in the lower level snapshot, x is at least partially
covered by each component v of the upper level snapshot in whose construc-
tion under ¢ x participates.

2) given a component v in the upper level snapshot, y at least partially
covers each component x of the lower level snapshot which participates in
v's construction under ¢.

This contortion may be a bit contrived and tortuous especially for support methods
involving compilation and, in any case, if the lower level snapshot represents an
intermediate state in the transition from an upper level snapshot to the next.
However, in principle this contortion should always be possible.

For example, the application of the ¢ map for single process interpretation con-
verts the snapshot of figure 5.3 to that of figure 5.7. This conversion results
in the superimposition shown in figure 8.2,

In this kind of a superimposition any vertical line that cuts both snapshots pas-
ses through an implemented cell and its representation in the implementing
snapshot,

In general, the lower level snapshot will be physically larger than the upper, as
the lower level snapshot usually has extra code and data, e.g., an interpreter
and its own variables, which help the implementation but which do not directly
represent anything in the upper level. In no case, will the lower level snapshot
be smaller than the upper.

Carrying this superimposition to the entire multilevel System of figure 1.1, we
get something similar to our Tower of //SYSBABEL shown in figure 8.3. 1In it any
vertical line cutting through all of the snapshots cuts through a cell in the LISF
interpreter snapshot at the top level and such succeeding lower level's represen-
tation of it, The lowest level computation is moving the fastest; each lower
level must do, perhaps, many steps to push the next higher level through one step;
and the highest level ig moving the slowest. The picture is that of a multi-
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Andrei Ershov: Is your model observational or implementational?

Berry: Observational.

Jack Dennis: You have given us some tools and some descriptive models. What
should we learn from your work?
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Berry: What we have gained is a clearer understanding of what actually happens
in a system. For instance, we have clarified the difference between a process
and a processor at a given level.

pennis: I did some thinking some years ago about hierarchical models, and was
Ted to the conclusion that the fewer level, the better, because the user program
which is executing at the outermost level depends on the correctness of all of
the levels below it. If you are interested in simplicity, and confidence that
systems work correctly, it seems that you should reduce the number of levels.

Berry: I agree we should try to keep the number of levels down. The purpose of
what I present is to show what exists. Perhaps by understanding what exists, we
can see what should exist.

Lawrence Flon: I don't understand why many levels cause difficulty, because the
program is correct if it can be shown to operate correctly given that the topmost
level satisfies its specifications.

Dennis: You are correct. But the more complex and elaborate the implementation
is, the more likely it is that the implementation does not reflect its specifi-
cations. So one worries about the confidence the user of an outer level machine
has that the machine meets its specifications. My plea is that the underlying
hardware be much more accommodating to the program structure and methodology
desireable at the user level. Then the overall structure of the system will be
simpler, increasing user confidence in its correct operation.

Malcolm Newey: Jack seems to be arguing against modularity. He proposes pushing
all the levels into one level.

Dennis: That hurts me very much, of course. The whole machine should support
modularity of programming at the outermost level. To me, modularity is the
ability to take programs that have been written and use them as bullding blocks
to.build other programs which in turn become new building blocks, etc. There is
no such relationship in the levels of an onion.

Berry: 1In a sense, a module may be thought of as presenting a machine, and the

act of composing a higher level module as construction of a higher level machine
(as described in the models in the paper). This seems to be what he (Newey) is

implying by his comment.

Dennis: If you regard the onion as representing a modular scheme for building
larger elements out of simpler ones, then I challenge you to take two levels of

the onion and define some sensible way of combining them to form a new level.

Berry: Yes, they're not composable. Maybe that's why nobody likes these systems.



