— LENFBIREIEH TR E
55— At

PROCEEDINGS
OF
INTERNATIONAL
COMPUTER

SYMPOSIUM
1978

02;1.06 VOLUME ONE
161p
v

BTR choe BBk 3 F

PROCEEDINGS
OF

INTERNATIONAL COMPUTER SYMPOSIUM 1978

DECEMBER 18-20, 1978
NANKANG, TAIPEI, REPUBLIC OF CHINA

VOLUME ONE

TO CELEBRATE THE 50TH ANNIVERSARY
OF ACADEMIA SINICA

ACADEMIA SINICA PUBLICATION

INTERNATIONAL COMPUTER SYMPOSIUM 1978 -

December 18—20, 1978

Nankang, Taipei, Republic of China

HONORARY CHAIRMAN

DR.S. L. CHIEN
PRESIDENT, ACADEMIA SINICA, R.O.C.

GENERAL CHAIRMAN

DR.JULIUST. TOU
Member of Academia Sinica, R.O.C,
University of Florida, U.S.A.

ADVISORS
L. A. CHEN Vice Minister of Education, R.O.C.
HOWELL S. C. CHOU - President, Computer Society of The Repilblic’of China
YAOHAN CHU Professor, University of Maryland, U.S.A.
H.C. FANG v President, Industry Technology Research Institute, R.O.C.
LT HO ~ Senior Engineer, IBM, US.A.

. N. H KUO Dean, College of Engineering, National Chiao Tung University, R.O.C.

K. C LEE, Director, EDP Center;, DGBAS, Executive Yuan, R.O.C.
S. S SHU Chairman, National Sciéncc Council, R.O.C.

C.CYU Dean, College of Engineering, National Taiwan University, R.O.C.

Proceedings of International Computer Symposium 1978 (Vol. 1)

SPECIFYING EXTERNAL DATA BASE SCHEMAS

) A. L. Furtado
Departamento de Informatica
‘Pontificia Universidade Catolica do Rio de Janeiro

ABSTRACT

A view construct is proposed which con-
sists of a derived relation and the opera -
‘tions defined on it. Attention is focussed
on the update operations, for which the con-
:ditions, effects, and side effects must be
specified.

In order to guarantee that constraints
are preserved, it'is proposed that all sets
of views, constituting the external schema
of each user or class of users, be specified
(and revised when needed) together, by the
enterprise administrator in consultation with
the applicatian administrators. '
[A sihp]e data base environment is descri-
bed and used to illustrate the suggested ap-
‘proach.

1. INTRODUCTION

In this research we assume that a data
base exists as a set of normalized base rela-
tions . On every such relation the follow-
ing primitive operations are available:

- interrogate, which yields the values of
attributes of
lation; .

- insert, which adds tuples to the relation;

indicated tuples of the re-

- delete, which removes indicated tuples
from the relation;

- modify, which changes the values of attri-
butes of indicated tuples of the relation.

The last three are the update operations.
They must be used with caution bacause their
effect is to introduce changes to the data
base. They have no effect however if certain
simple restrictions are violated: insert fails
if duplicate tUp]es would appear in the rela-
tion; delete and modify fail if the indicated

‘ tupTes are not found in the relation.

100

Usually other more complex restrictions
are recognized for specific data bases: in-
tegrity and authorization constraints é53 N
It is in general difficult and costly to en-
Sure that users do not violate these con-
straints when updating the data base.

Our approach is to present to each user
or class of users, as his external schema 4,
a set of views. Our notion of a view refers
not only to a re]ation‘derived from base re-
lations (cf. for example 1,5) but also to
the operations defined on this derived rela-.
tion.

This research has been sponsored by the Con-
selho Nactonal de Desenvolvimento Cientifico
e Tecnologico. Helpful comments from K. Seveik
and C. Saratva dos Santos are gratefully ‘
acknowledged.

Proceedings of International Computer Symposium 1978 (Vol. 1)

One of these operations will be, for all
‘views, the interrogate operation, which is
thus considered to be inherited from the base
relations level, as we shall now indicate. Let

X
v
ed relation in a view V is to be obtained from

be an expression determining how the deriv-

given base relations. An interrogate on V would

then be translated into the (primitive) inter-
rogate operation on the underlying base rela-
tions, using XV to guide this translation.

We shall not use the same strategy for
the update operations. Each update ‘operation
defined in a view V will have a name, and its
expression will include one or more explicit
calls to the primitive update'operations to
be executed on base relations (some of these
base relations may be other than the under-

" 1ying ones, as we shall see next).

The purpose of these more elaborate
"higher-level" update operations is to en-
force the constraints in different ways that

take advahtage of the characteristics of each

operation. The expression of an operation in-
cludes, besides the effects directly intended
by the-user, the conditions that must hold
for the operation to be executed and the side
effects of the operations. Side effects are
updates not directly intended by the user.
1Anvoperation o must be designed in such a way
that, if the conditions Pc hold then the
execution of the effects EU and side effects
SG can be proved to preserve.the setéof all
constraints C, or in the notation of ~':

P0 {Ec s Sc} C

Both conditions and side effects may refer to
base relations that do not contribute to the
derivation of V. ' ‘

The point is that if all update opera-

tions are so designed we shall never have to
check the constraints directly. Also further
advantage can be taken of the fact that the

update operations are not independent in ge-

neral; often the execution of an operation ¢

affects positively the conditions PU. for an
operation o' to be executed. In such cases,
if it is costly to test our initially speci-
fied PG.., we can redesign it to involve
the verification of the favorable effects or
side effects of o (Whose presence imply that
the initially designed PG. is true).

It should be clear that the proposed ap-
proach relies on the assumption that all the
sets of views in a data base are designed
together, by the same person or group of per-
sons, and that the sets of views remain re-
latively stable. They should be designed to-
gether because of their interdependence and
the possibility of unwanted interference
among users. The persons designfng-the_views
in an integrated way would be the enterprise
administrator in consultation with the appli-
cation administrators 4 , hot the users them-
semves; note that a user may not be interest-
ed (or authorized)to know of certain condi-
tions and side effects of operations. The re-
lative stability is to be expected from the
ample freedom left to interrogates (for ac-
commodating unanticipated queries) within
the derived relations in the views. It ap -
pears to be a realistic decision to restrict
the updates more severely, and require that
each new type of update operation be discussed
with respect to the existing ones 8

As has been shown, our notion of views
extends the’usuai one. For us a view is not

only a "window" 5 to give access tc informa-

" tion, but also a "“shade" to hide information

Proceedings of International Computer Symposium 1978 (Vol. 1)

that is irrelevant or not authorized to the
user, and a "screen" to prevent illegal up-
dates 3 . '

In this paper this notion of views will
be developed, with a particular emphasis on
the update operatidns. Section 2 describes

our view construct as‘a,convenﬁent programming
languages feature. Section 3 describes a sim-
ple data base to be used-for i1lustrating the
proposed approach. Section 4 presents the
views des1gned for the example data base.
Section 5 considers briefly the case where a
user is both interested in and authorized to
find out about the conditions and side effects
involved in update operations. Section 6 con-

tains the conclusions.
2. THE VIEW CONSTRUCT

As indicated, views are to be designed
by the enterprise administrator in consulta~-
tion with the application administrators. The
design involves two parts:

- the specification of the derived relation
in terms of its name and attributes, and of
the update opeFations in tefms of their
names and parameters; this part is visible
to the users, and corresponds to the displays
section in the view construct below;

- the definition of the derived relation in
terms of its underlying base relations,
and of the update operations in terms of
their conditions, effects and side effects
with respect to the underlying base rela -
tions and possibly other base relations
(involved in the conditions and side ef =
fects); this part is in principle not vi=
sible to the users, and corresponds to ﬁhe
expressions section in the view construct
‘belows

We now introduce the structure of the view

construct
view name
displays

tuples attributes of the tuples of
the view

operations names and parameters of
each update operation

expressions

tuples how the tuples of the view
are derived from the tuples
of base relations

operations for each operation, its.
conditions '
effects
side effects

end name

An interrogation operation is assumed to
be available in all views, referring in un -
restricted ways to the view attributes appear-
ing in the displays section. The primitive in-
terrogate, insert, delete, and modify opera-
tions are not directly available to the users
being utilized only inside the expressions
section.

In this paper we shall not commit our -

selves to any formal syntax for the design of

views. In the examples of sect10n 3 we shall
employ a qua51 -patural languages in pract1ce.
some language in this general style seems to
be appropriate for the design phase, especial
1y.when recalling that the administrators in
charge will not have a professional program-
ming background as a rule.

After designing all the views it is ne-
cessary to verify that the update operations
indeed preserve the constraints, are mutual-
1y compatible, and are suff1c1ent to handle
the data base

102 -

Proceedings of International Computer Symposium 1978 (Vol. 1)

Then comes an implementation phase which
may proceed through tép-down refinement from
the views wrftten in quasi—natura] Tanguage.
This phase of course does not require the
participation of the administrators above,
except that it is necessary that the imple-
mentors verify (and pass some evidence to the
administrators) that as finally programmed
the views correspond to the design. Also,
the data base administrator might be consult-
ed with regard to the efficiency of the imple-
mentation.

) Our view cdnsthuct is comparable to
other constructs such as clusters, forms,

and modu]es'g’m’”’]z”13 . On the other hand,
recent work in data base languages seems par-
ticularly compatible with 1ines followed

here % our operations are 1ike the func-
tions in 3 in style.

Once implemented, a view can be stored
in a library 9 and made available to the
authorized user or class of users. Some sort
of open statement may bring it from the 1i-
brary into the users applications programs
(the "client" modules) T1 . We expect that
the different applications program that will
appear, be changed, or vanish during a data
base's lifetime will have their needs sati-
sfactorily met by a set’ of views that will
remain relatively stable (some problems re-
lated to changes will be briefly discussed
in the context of the example in section 4).

After opening a view in his program, a
user can declare one or more variables bound
to the view. Here there is a major differen-
ce between the usual typed variables and the
typed variables for shared data Y The
Jatter instead of values of the type given
in the declaration contain references to the

shared objects containing the values. Such re-
ferences are elsewhere called cursors ! ; to
the treatment of cursors in ! all we have to
add here is that besides the explicit cursor
available to the user, allowing him to refer
to tuples in.the view, there must occur the
automatic creation and setting of one "inter-
nal" cursor per base relation in the view.
This recalls that views are "virtual"
objects that are materialized through the base
relations, and that updates on one view af-
fect other views derived from common base’
relations. The fundamental consequence of
this fact is that the behavior of a view
canﬁot be explained solely by the operations
defined on it;.tuples appear, are changed, or
vanish from the view due to operations defined
in other views. Thus a view cannot be consi-
defed in isolation as an intelligible unit

~of study, which sharply distinguisheé views

from other constructs for incorporating "ab-

. stractions". This argument Teads again to the

necessity of designing together the collection
of all the sets of views given to each user,
which constitute the entire data base.

3. A SIMPLE DATA BASE ENVIRONMENT

As an example data base environment, we
consider the personnel segment of a small ma-
nufacturing enterbrise. While the example is
intended to suggest realism, it is highly
simplified, and certainly does not cover the
breadth of situations that may arise in more
detailed enterprisé descriptions.

A. The Base Relations

The attributes treated in our examp:i
are: '

N - name of employee
s.- salary .

Proceedings of International Computer Symposium 1978 (Vol. 1}

- job title

- skill

- task

- project

- leader of a-project

~ U -4 X G

The base relations which représent the rela-
tionships among entities with these attribu-

tes are :

EMP(N,S,J) - employee's name, salary
and job title

REQ(T,K) - requirement of a skill to
do a task

ASN(N,T,P) - assignment of .an employee
in a project to a task

MNG(P,L) - management of a project

' . by a leader
CAP(N,K) - capabilities (skills) pos-

sessed or acquired by
employees

Figure 1 indicates the presence of at-
tributes in relations diagramatically.

EMP CAP

ASN

about these special employees.

C. The Activities of the Enterprise

The personnel manager hires employees
by associating a salary (at least the minimum
wage), and a job title with their name, and
may fire employees, but only if they are not .
currently assigned to any project.

The engineering manager initiates new
projects by specifying their names and the
name of the initial leader of each. He may
replace the Teader of a project, or suspend
a project by leaving it with no leader. No
employees may continue to be assigned to a
project that is suspended.

A suspended‘project may be permanently
terminated by the enginéering manager, or may
be restarted by assigning a new leader.

Various tasks compose each project, and
the engineering manager is responéib]e for
indicating what skills are required of an em-

REQ

MNG

- Figure 1. The base relations and .their attributes

B. The Users

The users authorized to Jperform updéte
operations are the employees holding the po
sitions

personnel manager,
engineering manager,
training manager,

and Tleader of some project.

Relation EMP does-not hold information

104

ployee to perform each task. The engineering
manager also associates employees with pro-
jects (but not suspended ones), and termina-
tes such associations.

Employees acquire new skills through
training, but lose old skills through lack
of use or changing technology. The training
manager is responsible for recording the
skills currently possessed by each employee.

Proceedings of International Computer Symposium 1978 (Vol. 1)

Each leader of a project determines how
‘employees associated with his project are as-
signed to tasks. An employee must possess all
the skills required for each task assigned
to him.

D. Constraints

From the description of the activities
of the enterprise, we can reasonably formula-
te a number of constraints:

1. Salaries must be at least equal to

the minimum wage

2. A hired employee must have exactly
one salary and job title at a time

3. Only. hired employees can be asso-
cijated with projects)

4. Only hired employees can have their
skills recorded in the data base

5. A project can have at most one leader
at a time

6. A project must have an initial leader
when it is created

7. Only projects without a Teader can
be terminated

8. Employees can only be associated with
projects that currently have a leader

9. Only employees that are not current-
1y associated with any project can
be fired

10. To perform a task an employee must
have all the skills required for the
task.

There are different ways to express the
same constraint. For example, constraint 5
could be ph%ased in terms of the functional
dependence P -~ L, noting also that the rela-
tionship between these two attributes is par-
tial (i.e. the leader stays "undefined" while
a project remains suspended). Constraint 3
N in ASN is a subset
of N in EMP. Constraint 10 is also expres -
sible in terms of- subsets, in a slightly more

can be expressed as :

complex way involving partitioning (grouping

tuples by equality with respect to certain
attributes).

4, DESIGNING THE EXTERMAL SCHEMAS

We shall now, for the simple example of
the previous section, draw the external sche-
mas of the recognized users. First we intro -
duce the few conventions adopted, and then,
for each user, we shall exhibit his schema
by way of a diagram, give the meaning of the
views in the schema, and then develop the
views according to the framework introduced
in Section 2; we give all views because, as
argued, their design must be interdependent,
but the reader may choose to examine only a
few as examples.

Finally, some remarks are made to illu-
strate how the constraints are incorporated
into the update operations, and how the de-
sign ‘reacts to certain changes.

A. Conventions

Each view was given a distinct name, re-
gardless of the possibility that two views 1in
the schemas of different users might be iden-
tical. Note however that the characterization
of views includes the allowable operations on
them; in this sense no two views in our exam- .
ple are identical. In particular, in the
diagrams, dotted lines lead to attributes that
can only be interrogated.

For convenience we gave to the attributes
the same names-used for the related-attribu-
tes in the base relations. One might prefer to
assign names more meaningful to each. user.

As said, the primitive operations for
base relations appear in the operations ex -
pressions; however the interrogate operation,
needed for retrieving attribute-values of
tuples existing in the base relations, will

Proceedings of International Computer Symposium 1978 (Vol. 1)

not be mentioned explicitly. As to the primi- view V-FREE
tive update operations they will be mentioned 'd1591ays
explicitly; the reader is asked to note that tug1es (N,S,d)
in some cases they will affect more than one operations hire (n,s,J)
base relation tuple. fire(n)

We shall not indicate what happens if . expressions
conditions for an operation are not fulfilled, tuples from EMP such that n does not
some general "fail" notice being assumed. appear in ASN

The notation "' will be used for the operations - hire' N -
undefined value, and "-" is a place-holder SEE%%Eﬁg%%:nfoaﬁgp]e mn
standing for any value of the- corresponding s > min.wage
attribute. effects:insert (n,s,j)

. into EMP

The "macro" delete' (n,t,p), appearing
in the expressions of a number of operations,
stands for :

side effects: none
- fire
conditions: none
- if (n,t,p) is the only tuple in ASN effects: delete (n,-,-)

with the given n and p from EMP .

then modify (n,t,p) into (n,*,p) in ASN Sidiogffegts: delete (n,-)

else delete (n,t,p) from ASN end V-FREE
This strategy prevents the detaching of an
employee from a task in a project from de- ‘View V-BUSY
stroying the.information-that he is still as- displays
sociated with the project (even wheén not at- tuples (N,S,J)
tached to any task in the project). EEE£§§§1925

tuples from EMP such that n appears

‘B. Personnel Manager's Schema in ASN)

end V-BUSY
V-FREE V-BUSY B
™~ 2N C. Engineering Manager's Schema

V-NEED V-QUAL V-PROJ ~ V-DISTR

-
~p !

Figure 2. The personnel manager's schema

V-FREE(N,S,J) - employees not associated with
projects

V-BUSY(N,S,J) - employees associated with at

o Teast one project .

_Figure 3. The engineering manager's
schema

- 106

Proceedings of International Corputer Symposium 1978 (Vol. 1)

V-NEED(T,K)} - requirement of a skill to do’
a task

V~QUAL(N,J,K) - qualifications of employees
\
V-PROJ(P,L) projects and their leaders

V-DISTR(N,T,P)- distribution of employees to
: ' projects and tasks

view V-NEED
displays
tuples (T,K)
operations require (t,k)
remove (t,k)
expressions
tuples from REQ
operations - require
conditions none

effects insert (t,k)
into REN

side effects if (n,t,p)

- for some n and p is

in ASN and (n,k) is
not in CAP then
delete'(n,t,p) from
ASN

- remove
conditions none

effects -delete (t,k)
from REQ

side effects none

end V-NEED
view V-QUAL
displays

tuples (N,J,K)
expressions

" tuples from EMP and CAP concatenat-
ing tuples with same n

end V-QUAL

107

view V-PROJ
displays

tuples (P,L)

operations initiate

expressions

(
replace (p
suspend (p
restart (p,
terminate (p)

ps)
1)
)

1)

tupies from MNG
operations - initiate

end V-PROJ

conditions: there is no
tuple in MNG with p

effects:.insert (p,s)
into NG

side: effects: none

replace _
conditions: none

effects: modify (p,-)
into (p,t) in MNG

side effects: none
suspend -
conditions: none

effects: modify (p,t)
into (p,*) in MNG

side effects: delete
(=5-,p) from ASN

restart

conditions: there is a
tupTe (p,*) in MNG ‘

effects: modify (p,*)
into (p,t) in MNG

side effects: none

- terminate

conditions: (p,*) is in
MNG

effects: delete (p,*x)
from MNG '

side effects: none

Proceedings of International Computer Symposium 1978 (Vol. 1)

view V-DISTR
displays
tuples (N,T,P)
operations associate (n,p)
disassociate (n,p)
expressions
tuples from ASN
operations - associate

conditions: there is a
tupTe with n in EMP
and a tuple (p,&) for
some % in MNG and
there is no tuple
(n,=,p) in ASN

effects: insert (n,*,p)
into ASN

side effects: none
- disassociate
conditions: none

effects: delete (n,-.p)
from ASN

side effects: none
end V-DISTR

D. Training Manager's Schema

V-HU.RES VFU§FL
]

Figure 4. The training manager's
schema

V-HU.RES(N,J,K) - human resources

V-USFL(K) - useful skills, i.e. skills re--
quired by at least one task.

108

view V-HU.RES
displays
tuples (N,J,K)
operations acquire (n,k)
E Tose (n,k)-
expressions

tuples from EMP and CAP concatenat-
~ing tuples with same n

operations - acquire

conditions: there must
be a tuple with n in

EMP
effects: insert (n,k)
into CAP
side effects: none
- lose

conditions: none

effects: delete (n,k)
from CAP

side effects: if (t,k)
for some t is in REQ
and (n,t,-) is in
ASN then delete'(n,
t,-) from ASN

end V-HU.RES

view V-USFL
displays
tuples (K)
expressions

' tuples from REQ taking only attribute K
end V-USFL

E. Project Leaderé' Schemas

V-TEAM-p V-ALLOC-p Y-TSK
II\\\\ R /// ||
1
\
\ ¥
N J K T

~ Figure 5. The external schema of the
leader of. each project p

Proceedings of International Computer Symposium 1978 (Vol. 1)

V-JEAM-p(N,J,K) - employees in project p

V-ALLOC-p(N,T) - allocation of employees to
tasks in project p

- ‘requirement of a skill to

V-TSK(T,K)
) do a task

view V-TEAM-p
displays
tuples (N,J,K)
© expressions

tuples from EMP and CAP concatenat-
ing tuples with same n and tak-
ing only the tuples such that
(n,=,p) is in ASN and (p,t) is in
MNG, ¢ being the user

end V-TEAM-p

view V-ALLOC-p
displays
tuples (N,T)
opefations assign (n,t)
' release (n,t)
expressions

. tuples from ASN taking only the
tuples (-,-,p) such that (p,t)
is in MNG, ¢ being the user,and
taking only the attributes N,T

operations -~ assign
- conditions: for every k
in tuples (t,k) in
REQ there must be
(nsk) in CAP, and
there must be some
tuple (n,-,p) in ASN
effects: if (n,*,p) is in
ASN then modify (n,*,
p) into (n,t,p)else
insert (n,t,p) into
ASN ‘
side effects: none
- release
. conditions: none

~ effects: delete’'(
" from ASN

side effects: none

n,t,p)

end V=ALLOC-p

view V-TSK

displays -
tuples (T,K)
expressions
tuples from REQ

end V-TSK
F. Remarks

As an example of how constraints are ex- -
bressed in terms of conditions and side-ef-
fects; consider the following constraint, .
stated in section 3 :

10. To perform a task an employee must
have all the skills required for the
task.

. This constraint involves base relations
CAP, REQ, and ASN. The procedure below gives
an idea of the work required for checking
this constraint directly :

a. group the tuples of CAP by N and in each
group consider the respectivé set of skills;
this gives the sets of skills possessed by
each employee; k

b. group. the tuples of REQ by T'and in each
group consider the respective set ofisk11ls;
this gives the sets of ski]]s'reduired for
each task;

c. form the pairs (n,t) such that the set-of
skills of employee n contains the set of
skills fequired for task t; this gives all
potential assignments of employees to tasks
that would be Tegal; V

d. verify if the set of pairs (n,t) taken from
ASN is contained 1in. the set of pairs (n,t)
obtained in the previous item; this shows
if the actual-assignments are legal.

109

Proceedings of international Computer Symposium 1978 (Vol. 1)

0f course it is much better to do a se-
lective checking tailor-made for each opera-
tion that might violate the constraint. In
our case this is done as follows:

- for the assign operation: condition:. check
if the set of skills required for the (in-
dicated) task is contained in the set of
skills possessed by the employee;

- for the require operation: side-effect:
delete all assignments to the task of em-
ployees not having the skill being required;

- for the lose operation: side-effect: delete
all assignments of the employee to tasks
that require the lost skill;

and then we note that although remove and
acquire affect the base relations involved
they cannot violate the constraint and thus
no conditions or side-effects are needed.
Also, the associate operation, which in a si-
milar way to assign causes an insertion into
ASN, cannot violate the constraint, since its
effect is to insert tupies of the form (n,*,
p), with an "undefined" task.

Another given constraint :

9. Only employees that are not current-
1y associated with any project can
be fired.

is enforced inlthé'operation fire without ex-
plicit reference to conditions or side ef=
fects. In this case thé‘expression for tuples
of the view V-FREE only produces tuples with
employees not associated with’projects, and
fire, being an operation of V-FREE; can only
delete tuples that belong to it (in general:
tuples in base relations but not in the deri
ved view cannot be modified or deleted by
operations defined in the view]).

In any case, our approach prevents the
execution of operations that violate con -
straints, rather than allowing any operation
to take place and checking afterwards and
then Undoihg the effect of any .illegal. ope-
ration if necessary.

The interdependence of the operations
poses certain problems: alterations in one
operation may call for a redesign of other

operations, even in views of other users.

However, in general, it is the expressions
section that will be thus affected rather than
the displays section; also the application
programs using the operations would not be
impacted. ,

An alteration may consist of an additio
nal constraint. For example, we may require
that employees be trained on useful skills
only; for this we wou]d add the condition
that any skill k in acquire should be presenct
in some tuple of REQ. Adding or dropping con- -
straints is largely a policy decision in the
enterprise: as an argument against this al-
teration someone might note that certain
skills would be useful even if not explicit-
1y required for some task, or that the train-
ing manager should have the flexibility of
anticipating the future need for certain
skills.

What if the operation suspend a project -
is eliminated, but the terminate project
operation is kept? This alteration implies
that the disassociation of employees from
the projects which was a side-effect of
suspend, can no !onger be assumed by (and in

" fact must now be executed in) terminate.

If the structure of base relations is
altered it is still possible in some cases
+p alter only the expressions (for tuples

Proceedings of International Computer Symposium 1978 (Vol. 1) E

and operations) in the views. If relation
EMP were decomposed into its projections EMPI
(N,S) ans EMP2 (N,J) easy adaptations in se-
veral expressions would be required.

. It is also possible to alter the displays
themselves. We saw that operations may be
created or dropped, but also the specified
arguments of existing operations may be
changed or the attributeé integrating the
tuples of a view may be changed; For example,
V-TEAM-p mignt be extended with attribute S
(salary), taken from base relation EMP, and
the operation raise sa1ary by i might be in-
cluded; the operation wouid add i dollars to
the salary of the indicated employee, with
the condition that i be positive (because of
the intended effect of the operation, noting
that this would also preserve the constraint
about the minimum wage). '

5. QUERIES ON UPDATES

The design of the views should of course
be thoraughly documented. If they are written
in a style simitar to the one we used in the
previous section, the first version (to be
refined later towards an 1mp1ementatioh)
should be kept_a§ part of the documentation.

Much descriptive information: can be ad-
ded to a view as comments, explaining the
"meaning" of the view and of each operation,
giving indications about what data should be
Jocked during each operation {(note that the
view construct conveniently mentions in one =
place the data involved directly and indirect
ly in an operatidn), etc.

It is appropriate to keep such descrip-
tive information in the data directory
In this section we shall concentrate on the
descriptive (textual) information.about up-
date operatiohsuwhich”appeaxs.jn_the views

111

and is transferred to the data directory.
From there it -is made available to the users
of the views who are both interested in and

" authorized to learn about the conditions and

side effects of their updates.

Accordingly, we extend the view frame-
work, giving for each condition its meaning
and Tisting other operations that can affect
the condition in a negative or positive way
together with the authorized user. Similarly,
for each side effect its meaning and the ope-
rations whose conditions are affected by its
execution are given. In both cases under the
heading "method" goes the executable part, '
already seen. Some examples follow:

view V-ALLOC-p

- assign
. meaning: 'employee must

have skills required
for task’

affected by: 'require-
engineering manager'
'remove-engineering
manager'
'acquire-training
.manager'
'lose-training manager'

method: for every k in
“tuples (t,k) in REQ
there must be (n,k)

in CAP

1

meaning: 'employee must
be associated with
the project'

affected by: 'associate-
engineering manager'
'disassociate-engi-
neering manager'

method: there must be
some (n,-,p) in-ASN

conditions

end V-ALLOC-p

Proceedings of International Computer Symposium 1978 (Vol. 1)

view V-PROJ
- suspend
conditions......
effects......
side effects . meaning: 'employees in
project are disasso-
ciated’
affects: 'restart-en-
gineering manager'
"terminate-engineer-
ing manager'
'fire-personnel
manager'
method: delete (-,-,p)
from ASN
end V-PROJ

It is up to the designer to include. or
exclude a given piece of information. Note
that, to be rigorous, the operation suspend
also affects the first condition for the as-
sign operation, because it disassociates an
employee from a project (and when this hap-
pens the employee can no longer be assigned
to tasks in the project); but suspend also
erases the project leader, who is the only
authorized user for the assign operation -
thus making all conditions vacuous because
nobody can open the particu1ar V-ALLOC-p
view.

, Our examples do not contain texts giving
"meaning" and"affects" for the "effects" part
of the operations, but it would certainly
make sense to include such texts. '

By storing textual information in the
data directory we create the possibility of
automating the retrieval of such information,
i.e. of pdsing queries on updates. This is in
fact: a, dififgpent kind of query than the in-

2112

terrogates, because it accesses the data di-
rectory instead of the data; it may be the
case that a user is authorized, for example,
to learn that suspend causes employees to be
disassociated from projects without 1éarn1ng
however which projects are involved (at each
execution of the operation).

Let us.consider some useful kinds of
queries. Although we again use natural lan-
guage here, the actual 1anguage to be used
for the queries could be a trivial, parame-
tric‘one. The reader will readily locate the
texts .in the extended views given above that

can directly be used for answering each query.

What are the conditions for the assign
operation?

What operations can affect the first con-
dition of assign?

(c) What are the side effects of the fire
operation?

What operations are affected by the first
(in this case only) side effect of suspend?

Another kind of query assumes that, upon
the failure to execute an operation, appropria
te flags are set indicating which condition(s)
failed, and allowing the guery to find the ap-
propriate entry in the data directory in or-
der to print it out as answer :

(e) Which condition(s)

for operation assign
failed? :

The "efficient" strategy is to discon-
tinue the execution as soon as the first con-
dition tried fails. An option causing the
other condifions to be also tested might be -
useful. '

~One can think of sequences of queries
posed by a user. A common situation would be

query (e) followed by (b): the project leaddr

Proceedings of International Computer Symposium 1978 (Vol. 1)

fails when attempting to assign an employee
to a tésk, finds out that the first condition
- (Tack of some skill) is the problem, discovers
or is reminded of the existence of remove and
acquire - which are alternative ways to re-
medy the situation - and communicates with
one or the other of the éuthorized users
asking for their action. Regular interrogates
on the data are issued (by whoever is autho-
rized) to find out which are the missing
skills.

Communications among the users are an
important feature, as we should expect from
the interdependence of views. Good communica-
tions can enhance the necessary user coopera-
tion.

Many other communications are brought
to mind in our simple example. The engineer-
ing manager through query (d) finds out that
by disassociating an employee from a project
he may be making ft possible to fire the em-
ployee (if it was the last project with which
the employee was associated). He may want to
ask the personnel manager not to perform the
fire operation, because perhaps he intends to

not guarantee that assign will be successful,
bacause in an environment where concurrent
updates occur it is still necessary to test

~for all conditions when it is time to execu-

~ te assign and maybe a condition that held '

use the employee shortly in some other project.

A11 such communications can of course be done
through the terminals of the users involved,
and bring up no new problems. '

A more ambitious strategy is for a user
to request that he be automatically notified
when another user performs a certain opera-
tion with indicated arguments. Or he may sche
dule his operation to be executed immediately.
after the other user's operation, as for
example:

assign(n,t) after acquire (n,k)

if k is the only miésing skill for n to be
assigned to t. We must note that this does

before no” Tonger ho1ds.

Alternatively we could schedule the ope
ration to be executed as soon as all condi-
tions hold, whatever they are:

assign (n,t) when possible:.

Such automatic actions do require spé-

cial features, whose cost should be compared

with the benefits of avoiding delays between
the actions and the personal exchange of com-
munications. Implementations may use tools
proposed for scheduled routines 16 and per-
sistent tasks 17. Human factors studies are
needed to assess how users would react to
this environment.

Finally, as the interactions among up-
date operations grow in complexity, it may
be useful to provide for the simulated execu-
tion of sequences of operations. The simula-
tion would take place on snapshosts, i.e.
views "computed" from their expressions and
stored as ordinary relations. One obvious
drawback is that once computed a.snapshot no
longer corresponds to the views, unless these
are not updated until the end of the simula-
tion run.

6. CONCLUSIONS

According to our approach, at any given
time, there exist in a data base a fixed

. number of views with specified operations de-

113

fined on them, and all the views have been
designed by and therefore are known to a group
of administrators. It is possible to create,
change, or drop views, but the proéeés in-

Proceedings of International Computer Symposium 1978 (Vol. 1)

volved is troublesome because the impact on
other views must be carefully considered and
may require additional adaptations; the same
group of administrators is in charge of this
revision process. ' o

In such an environment it is noééibTe
to determine what configurations can or can.
not arise in the data base, as a résu]t of
sequences of the existing update operations.
As the behavior of a data base becomes more
predictable, the data-base is no 1onger an
object of unmanageabTév 6mp1ex1ty , and

opportunities are created for implementation
decisions leading to improved efficiency, as
indicated with strategies for enforcing con-
straints. ’

The disadvantages of our approach are
generally related to a certain loss in fle-
x1bility. Also, the proof that conditions,
effects and side effects spkead over possi-
bly several views guarantee that a con-
straint is preserved may be difficult and
will often be long and tedious.

However the-approach appears-to be a
realistic one for data bases with not too
numerous or too complex constraints and with
relatively few kinds of update operations,
and where, in addition, the required update
operations do not have to be altered very
frequently. Our experience indicates that a
data base can be quite large in terms of
bytes of storage without being complex in
terms of these criteria. It is also realistic
to expect that more transaction-like opera-
tions 1,14 would seem more appealing to
“business-oriented users.

The main lines of this research have
been initially sketched in 19
d&velopeﬁz@me?’8

and further
. More work is needed, for

e

example, for coping with deeper semantic pro-
blems arising in data bases not as simple as
the one described here, and where the notion
of a hierarchy of abstractions 20 is of help;

+for accommodating this notion we would extend
our approach to allow views defined in terms

of other views (rather than base relations),
which paraliels the provision of external
schemas defined in terms of other external
schemas made in 4 -

REFERENCES
1. Date, C.J., "An introdution to database
systems", second ed. - Addison-Wesley
(1977). ‘

. Brodie, M.L., "A formal approach to the
specification and verification of semantic
integrity in data bases", Ph.D. Thesis,
University of Toronto, in preparation.

. Furtado, A.L. anq Sevcik, K.C.,
ting updates through views of data bases",
T.R. 2/78 - PUC/RJ (1978).

"Permit-

. Tsichritzis, D.-and Klug, A., "The ANSI/
X3/SPARC DBMS framework", T
~sity of Toronto/CSRG (1977).

R. 12, Univer-

.. Chamberlin, D. et al.,
fied approach to data definition, manipu-
T.R. 1978 ## 26096,

"Sequel 2: a uni-

lation and control",
IBM Research (1976).

. Hoare, C.A.R. and Wirth, N.,
definition of the programming language
Pascal", Acta Informatica, vol. 2,4 (1973)
335-355.

“An axiomatic

. Paolini, P. and Pelagatti, G., "Formal dg-
finitions of mappings in a data base",
Proc. SIGMOD Conference (1977).

Sevcik,. L., "Complete and.

K. Furtado, A.l

11.

12.

15.

16.

18.

19.

. Liskov, B.

Proceedings of International Computer Symposium 1978 (Vol. 1)

compatible sets of update operations”,
T.R. 26/77, PUC/RJ (1977).

et al., "Abstraction mechani-
sms in CLU", CACM 20, 8 (1977) 564-576.

. Shaw; M. et al., “"Abstraction and verifi-

cation in Alphard: defining and specify-
ing iteration and generators", CACM 20,8
(1977) 553-564.

Geschke, C.M. et al., "Early experience
with Mesa", CACM %9,8 (1977) 540-553.
, :

Popek, G.J. et aT., “Notes on the'design
of Euclid", Proc. of ACM Conference on
Language Design for Reliable Software"
(1977).

. Parnas, D.L., "A technique for software

module specification with examples";
CACM 15,5 (1972) 330-336.

. Schmidt, J.W., “Some high-level constructs

for data of type relation", PFoc. of

SIGMOD Conference (1977).

Jones, A.K. and Liskov, B.H., "A language
extension for controlling access to

shared déta“, IEEE Transactions on Soft-
ware Engineering, SE-2, 4 (1976) 277-285.

Pratt, T.W., "Programming]anguages: de-
sign and implementation”, Prentice-Hall
(1975).

. Sutherland, W.R., "Distributed Computa-

tion Research at BBN", vol. III BBN T.R.
2976 (1974). '

Hoare, C.A.R., "Data reliability", Proc.
of International Conference on Reliable

Software", (1975).

Furtado, A.L. and Lucena, C.J., "An in-
cremental approach to the construction
of data base software", Prof. .of AICA .

115

20.

Conference, Pisa (1977).

Smith, J.M. and Smith, D.C.P., "Database
Abstractions": Aggregation and Generali-
zation", TODS 2,2 (1977) 105-133.

