


Information Technology

Proceedings of the 3rd Jerusalem Conference
on Information Technology (JCIT3)
Jerusalem, August 6 -9, 1978

PREPRINTS

Edited by
JOSEF MONETA

H
Pt
1978

NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM - NEW YORK - OXFORD



tion Technology, J. Moneta (editor)
épjg;?g/North-Ho1land Publishing Company, 1978

SOME THOUGHTS ON THE CONSTRUCTION OF PROGRAMS
~ A DATA-DIRECTED APPROACH

D.D. Cowan
Computer Science Department
University of Waterloo
Waterloo Ontario Canada.

Carlos J.P. Lucena
Departmento de Informatica
Pontificia Universidade Catolica
Rio de Janeiro - Brazil

ABSTRACT

The present paper discusses a method of program construction based on the

specification of the data types.

The input and output data types and the mapping

between them are specified at a high level of abstraction and this non-procedural

specification is used to develop a program schema.

The data type and mapping speci-~

fications are modified to include a concrete representation of the data and these are

used to expand the program schema into a program.

developing a program for the bubblesort.

KEY WORDS: Program construction, program
derivation, program specification, prog-
ram schema, data types.

1. INTRODUCTION

There are large collections of
programs which have a long lifetime hut
which are frequently heing modified.
Since modifications are so important,
it is reasonable to develop a disciplined
approach to deriving a program from its
non-procedural specification such that
future modifications are as easy as pos-
sible. Various attempts at such methods
are exemplified by Dijkstra's Structured
Programming [1l] and predicate trans-
formers [6,7], Manna's automatic syn-
thesis techniques [8], Wirth's Systematic
Programming [2], Jackson's method [3]
and recent work reported in [9].

It has been observed that many
changes in typical data processing prog-
rams are caused by changes in the struc-
ture of the data to be processed. Hence,
if a grogram's structure can be made to
resemble the data structure it processes,
the§dmodifications to the data structures
cou easily be reflected in the program.
This paper describes a disciplined ap-
proach to program construction which leads
to programs that can be systematically
Maintained since their structure closely
;?iizg:.the structure of the data they

In developing this approach we take
two specific views of the programming
Process. First we adopt the approach
which has been described by Hoare [1,4]
namely that the structuring of data
;Zould'be handled by the following three

i:gigl§ms: direct or Cartesian product,
Secondmlnated union, and seguence.

that o we use the approagh of qackson [3]
forms tﬁrOgram 1s a mapping whlch trans-
data-pyn. ‘PPut data as described by a
daty agpe specification into the output
ficatioso described by a data-type speci-
M. Both Jackson [3] and Hoare [4]

531

The method is illustrated by

observed that the control structures
which are required to handle data
structures of types record, sequence,
and discriminated union are the simple
sequencing of statements, a looping con-
struct such as the while-do, and the
case or if-then-else statement, res-
pectively. This observation will also
be used in the development of our
programs.

In order to present our ideas in a
clear manner we shall treat an example.
This example, a sort program, is used to
illustrate the notation and also to
introduce the concept of data levels of
abstraction into the method.

2. A SORTING PROGRAM:
OF A PROGRAM SCHEMA

- CONSTRUCTION

This section discusses the deriva-
tion of a program for an internal sort.
We illustrate our techniques by deriving
a program schema which operates on an
abstract definition of the input and out-
put data types. In the next section one
concrete representation for the data
will be used to refine the sort to pro-
duce a bubblesort and to illustrate how
one might move through levels of abstrac-
tion and develop an operational program.

2.1 Data Type Specification

A sort can be described as a pro-
cedure which takes an unordered set and
gradually converts it into an ordered
set. 1In effect, such a procedure takes
a sequence of partially ordered sets and
transforms this sequence into a sequence
of partially ordered sets with the last
member of the sequence being completely
ordered. We call these partially ordered
sets of numbers, arrays. Here the word
array is not used in the sense implied
by most programming languages although
later in the paper we shall use it as a
representation for the set we wish to
sort.



532 D.D. COWAN and C.J.P. LUCENA

At a high level of abstraction
these arrays will be the lowest level
entities manipulated by our program,
and hence will be used as the terminal
types in our input data specification.
In a corresponding fashion the lowest
level entities produced by our abstract
program are partially-ordered-arrays.
These partially-ordered-arrays will be
used as terminal data-types in the out-
put data specification. The input
specification and output specifications
shown in Figures 1 and 2 are in a
form similar to Hoare's [1] specifica-
tion of data types.

type set = sequence of array
Figure 1.

type partially-ordered-set = sequence of
partially-ordered-array

Figure 2.

set + partially-ordered-set
array - partially-ordered-array

Figure 3.
2.2 Construction of a Program Schema

Many programs can be viewed direct-
ly as transformations of the input data-
tyres to the output data-types. 1In the
current example the abstract program
which sorts the set transforms the type
set into partially-ordered-set and the
type array into partially-ordered-array.
This transformation is described by the
set of mappings shown in Figure 3. The
mappings are mappings from the domain of
one type to the domain of the other type.
We now describe the steps of an informal
method for constructing a program schema
from the specifications of Figures 1, 2
and 3.

(i) To construct a program we
note that there must exist a function
which converts an array into a partially-
ordered-array, since there is a direct
mapping between them. This operation we
call change (array) and it replaces the
mapping

array - partially-ordered-array.

The reader should note that the name
"array" has been used for three different
but related concepts in this paper;
"Array" has been used to designate a
data type, the domain of the data type
array in the mapping, and to represent a
variable of type array.

(ii) Both set and partially-
ordered-set are represented by seguences
and there is a direct correspondence
between them. Hoare [4] and Jackson [3]
observed that structures defined in this
way are controlled in a program by a
while-do construct. Hence if we use

" next step in our program.

sort (set) to represent the mapping
set » partially-ordered-set,

then we can attempt to construct the
This step
becomes

sort (array)
initialize
while not ordered (array)
do
change (array)
od
end

The predicate for the while state-
ment in this program should contain a
mechanism for transforming the set into
a sequence of arrays and then test when
there are no more arrays to be sorted.
However, we observed earlier that this
set of arrays is somewhat artificial,
and that really there is only one array
which is gradually transformed into a
sorted array. Hence the argument of
sort is "array" and the only predicate
we need is one that tests if the array
is sorted. We shall use the predicate
ordered (array) to test if the array is
sorted. The statement "initialize"
indicates that some variables may have
to have values before the predicate can
be tested.

3. INTRODUCTION OF A DATA
REPRESENTATION

In this séction we transform the
abstract program schema into a procedure
by introducing the usual representation
of an array; this transformation occurs
in two stages. First the array is
divided into two parts, an unsorted-part
and a sorted-part. Because the unsorted-
part is going to be ordered, it is des-
cribed in more detail as a sequence of
overlapping pairs (o-pair) and the over-
lapping pair is expanded as a discrimi-
nated union of good overlapping pair
(g-o-pair) or bad overlapping pair
(b-o-pair). The extended type specifica-
tions and mappings for the first stage
are presented in Figures 4, 5 and 6
where the type array is shown as a
record whose components are separated
by a semi-colon (;) and an o-pair is a
discriminated union whose parts are
separated by a comma (,). In the
second stage the type array will be
defined explicitly as an array of
integers. The next few steps illustrate
the method of constructing the program
for the first stage.



SOME THOUGHTS ON THE CONSTRUCTION OF PROGRAMS 533

type set = sequence of array
type array = (unsorted-part; sorted-part)

type unsorted-part = sequence of o-pair
type o-pair = (g~o-pair, b-o-pair)
Figure 4.

type partially-ordered-set = sequence of
partially-ordered-array

type partially-ordered-array = (unsorted-
part; sorted-part)
-

Figure 5.
set +~ partially-ordered-set
array - partially-ordered-array
unsorted-part - unsorted-part
sorted-part + sorted-part

Figure 6.

(i) There is a mapping between
each type in the output specification and
a corresponding input specification.
There is no correspondence at the level
of overlapping pairs since although
sorted-parts are mapped into sorted-
parts and unsorted-parts into unsorted-
parts, each pass of the process over the
set may make the unsorted-part smaller
and the sorted-part larger.

(ii) We now construct procedures
for mapping of the two parts of array.
These are decrease (unsorted—part) and
increase (sorted-part). With these new
procedures the program becomes

sort (array)
initialize
while not ordered
do
decrease (unsorted-part)
incredse (sorted-part)
od
end.

(array)

(1ii) The unsorted-part is com-
posed of a sequence of overlapping pairs
and must be a program under control of a
while-do construct. The predicate must
check whether the end of the unsorted-
part has been reached. Hence the code
for decrease (unsorted-part) is

decrease (unsorted-part)

initialize
while not end (unsorted-part)
do
process-o-pair
od.

(iv) The type o-pair consists of
a discriminated union of two types and
is processed using the if-then-else
control structure [3,4]. Process-o-pair
becomes

if bad
then
process-b-o-pair
else
process-g-o-pair
£i.
The program we have constructed now has
the following form:

(o-pair)

sort (array)
initialize
while not ordered (array)
do
initialize
while not end
do
if bad
then
process b-o-pair
else
process g-o-pair
f£i
od
increase
od
end.

(unsorted-part)

{o-pair)

(sorted-part)

At this point decisions must be
made about the actual form of the pro-
cedures and predicates thus forcing us
into a final choice of sorting method,
namely the bubblesort.

To make sure the next level of
program is equivalent to the higher level
presented previously we need to re-state
the concepts used in the higher level in
terms of the new notation. This has been
done in Figure 7 where type array is
effectively defined as being structured
as an array. Note that the name "array"
is used as the name of a type and also as
the structuring mechanism.

type set = sequence of array
type array = (unsorted-part;
type sorted-part = array 1..j-1 of integer

sorted part)

type unsorted-part = array j..n-1 of o-pair

type o-pair = (g-o-pair, b-o-pair)

type g-o-pair = (integer; integer)
type b-o-pair = (integer; integer)
Figure 7.

We now decide that if a is of type
array then we have a bad overlapping pair
(b-~o-pair) if

a., > a.

and the values of a, and a,
1 1+

interchanged. Process-b-o-pair will be
implemented by a procedure swap (x,y).
If an o-pair is of type g-o-pair then no
processing needs to occur.

1 will be



534 D.D, COWAN and C.J.P. LUCENA

Hence process-o-pair becomes

if a; > ai.q

then
swap (ai,ai+l)
£i

Since the representation of the
array has been specified, it is now
possible to construct the predicate
end (unsorted-part) and its initializa-
tion. The bubblesort starts with an index
i = n-1 (the index of the last over-
lapping pair in the unsorted-part) and
terminates when i < j since the end of
the unsorted-part would have been
reached.

Hence while not end (unsorted-part) can
now be replaced with

i:=n
while (i:=i-1)zj

which 1is equivalent to a for-loop
for i:=n-1 downto j.

The final step in the construction
of our bubblesort program is the construc-
tion of the predicate ordered (array).

This predicate will be false only
when j > n-1 because the sorted-part of
the array will be the full array. The
statement

while not ordered (array)
can be replaced by

ji= 1

while j<n-1

This is not guite enough since
there must be a method of incrementing j,
for the procedure to terminate. This is
the function played by the procedure
increase (sorted-part). It is simply
replaced by j:=j+l. Since j is incre-
mented each time through the while loop
the while can be replaced by

for j:= 1 to n-1.

The entire program (without declarations
and with variable name "a" substituted
for array) can now be written as:

sort (a)

for j:= 1 to n-1

do
for i:= n-1 downto jJ
do

if a; > a;.q

then
swap (ai,ai+l)
fi
od
do
end.

4. CONCLUSIONS

We have discussed the construction
of an Algol-like program by considering
it to be a mapping between input and
output data types. Specifically we have
followed a procedure consisting of a
number of well-defined steps.

First we specified abstract input
and output data-types and the mapping
between them. We then used this combina-
tion to derive a program schema. As a
second step the abstract data types are
expanded by choosing concrete representa-
tions which can be implemented in most
Algol-like languages. Of course the
mapping between the data types is expand-
ed to include the concrete representations
Finally we expand the program by using
the concrete representations and the
mapping between them.

It should be observed that the
program and the data structures it
processes are closely related and in
fact there is a correspondence between
parts of the program and the data struc-
tures. Such a relationship implies that
changes in data structures, a common
occurrence in program maintenance, can
be easily reflected in corresponding
changes in the program.

The close correspondence between
the data structures and the program
structure as in the relationship between
sequences and loops, and discriminated
unions and selection means that a basic
program framework can be systematically
derived from the syntax of the data
structure. This systematic derivation
allows the programmer to concentrate on
other aspects of the program such as the
construction of the correct predicates
and the development of the statements
within each of the structures.

This formal model of the types
and mapping can also be represented
graphically. This graphical representa-
tion has been found to be quite convenient
for expressing ideas about programs, and
as a tool to aid in program development,
and has been discussed in [9].

The technique described in this
paper has been applied to a large number
of programs both large and small and has
in our limited experience been quite
successful. The readen is referred to
[9] for a more complete discussion of the
ideas which have been by necessity
presented rather briefly here.



SOME THOUGHTS ON THE CONSTRUCTION OF PROGRAMS

ACKNOWLEDGEMENTS

The authors wish to acknowledge
their indebtedness to J.W. Graham and
J.W. Welch of the University of Waterloo
and W. Turski of the University of Warsaw;
the point of view expressed in this paper
resulted from many fruitful discussions
with these three individuals.

BIBLIOGRAPHY

[1] 0-J. Dahl, E.W. Dijkstra and
C.A.R. Hoare (1972) structured
Programming pp 1-174 Academic
Press.

[21] N. Wirth (1973) Systematic
Programming: An Introduction
Prentice-Hall.

[31] M.A. Jackson (1975) Principles of
Program Design Academic Press.

41 C.A.R. Hoare (1975) Data
Reliability pp 528-533 Proceedings
International Conference on
Reliable Software April 1975.

[5] D. Gries (1976) An Illustration
of Current Ideas on the
Derivation of Correctness Proofs
and Correct Programs. IEEE
Transactionsg on Software
Engineering Vol SE-2 No.4.

[€] Dijkstra E.W. (1975) Guarded
Commands, Non-determinacy and a
Calculus for the Derivation of
Programs. Proceedings of the
International Conference on
Reliable Software April 1975.

[71] Dijkstra E.W. (1976)A Discipline
of Programming Prentice-Hall.

[81] Manna Z. and Waldinger R. (1975)
Knowledge and Reasoning in
Program Synthesis. Artificial
Intelligence Journal Vol. 6.

(91 Cowan D.D. and Lucena C.J.P. (1978)
A Data-Directed Approach to
Program Construction University
of Waterloo Computer Science
Department CS 78-02

535



