o
€

GV

f”ﬁ
Ai\ JL)%

Aln

et 3%”")*
OOV U
] 2SO

i’
l)

EDITED BY
| BEN SHNEII

@ F jxi
b ét,

“\/@l The

lity

EIED
w1

TDE!

RMAN

DATABASES: IMPROVING
USABILITY
AND RESPONSIVENESS

h) ,/ o
h) L ¢ /LOIQ o

BEN SHNEIDERMAN

Department of Information Systems Management
University of Maryland

ACADEMIC PRESS New York San Francisco London 1978

A Subsidiary of Harcourt Brace Jovanovich, Publishers

DATABASES: IMPROVING USABILITY AND RESPONSIVENESS

DATABASE CONSISTENCY AND INTEGRITY
IN A MULTI-USER ENVIRONMENT

Michael F. Challisl

Departamento de Informatica
pontificia Universidade Ccatdlica do Ric de Janeiro
Rio de Janeiro

Brasil

1. INTRODUCTION

In this paper we propose a solution to the twin problems
of data pase consistency and integrity that is based on a part-
icular "storage" model: priefly, an extra block—to—block
mapping is inserted between the "logical" data base and the
physical data file that contains it, thus providing a simple
means of economically representing several similar "instances"
of one data base at the same time. The basic technique nas been
used by the author to provide integrity in a single-user env-
ironment for the JACKDAW data base package (£231, [31) and has
also recently been reported independently by Lorie ([91).

Section 2 introduces the problems of consistency and
integrity, and briefly discusses conventional solutions such as
"logging" and "roll-back" features. Section 3 describes the
model on which the technigque is based, and Section 4 explains
its use in a single-user environment.'We show how a user may
design his applications programs to ensure whatever degree of
consistency he requires, and how he may test new applications
programs safely on a n1ive" data base without compromising its
integrity.

gections 5 and 6 extend the technique for use in a multi-

user environment. In Section 5, the concept of "indivisibility"

lPartially supported by the Brazilian government agencies
FINEP and CNPJ.
Copyright © 1978 by Academic Press, Inc.

245 All rights of reproduction in any form reserved.
ISBN 0-12-642150-1

246 Data Quality, Integrity, and Security

is earefully examined, and a user primitive Aindivdis{%t) is
suggested which allows a process P to attempt to execute a
transaction £ without interference from other concurrent
processes, and in such a way that any effects of £ appear to
occur at a single moment from the point of view of those other
processes. In the case where conflict between processes is
unlikely, such an attempt will normally be successful, and we
believe it to be a useful alternative to, say, the use of
semaphores or record "locks". Other facilities for testing sets
of co-operating processes on live data bases, and for accessing
"snap-shots" of data bases from which consistent reports can be
taken are also suggested. Section 6 develops an implementation
of these features to show that the cost involved is not high
provided that the various instances concurrently represented

are not too divergent.

2. CONSISTENCY AND INTEGRITY

In this section, we define the properties of consistency
and integrity as applied to data base systems; for a more
detailed discussion of these concepts, references [10] (see
sections 2.5 and 2.6) and [5] (chapter 24) should be consulted.

A data base is said to be consistent at a particular
moment if all the semantic constraints governing allowable
relationships between records, values of fields, etc. are
satisfied. Some examples may help to illustrate this concept:
a) A new record with a particular key is to be added to a

data base. The data base is not consistent until both the

new entry has been added, and the index for the key field
has been updated.

b) A record is to be deleted. The data base is not consistent
until all references to that record have also been removed
(such references include entries in indexes as well as
pointers from other records).

c) A travel agent is booking a holiday. The data base is not
consistent until the outward flight, hotel and return

flight have all been reserved.

M. F. Challis 247

The “simplest way to ensure .consistency is to arrange that

" any sequence of interdependent updates is 4indivisdible: that is,
no other process (including a read-only process) may have
access to the data base until the sequence is completed.

In a single-user environment this is easy to achieve,
provided we have perfect hardware and software; for then each
run of an applications program is indivisible, and so we need
only make sure that each program leaves the data base consist-
ent before terminating.

But hardware and software are never perfect, and so there
is always the possibility that any program may be interrupted
at an arbitrary moment, thus leaving the data base in an
arbitrary and possibly inconsistent state. (For example, the
program may simply run out of time.) Considerations such as
these lead to the concept of integrity: a data base system is
said to have integnity if, after an arbitrary halt, the data
base may be recovered to some consistent version.

One common way to provide data base integrity is by means
of logging, check-point and roll-back facilities (see [16] for
example). Every change to the data base is recorded on a
separate logging file, and, at appropriate moments, each
application program writes a "check-point" record to the log
to note that the data base is consistent. When restarting after
a failure, the system uses the information recorded on the log
to "roll-back" the data base to a consistent state. This paper
describes a different solution to the problem which does not
require logging and roll-back facilities; further advantages
of this solution are the provision of extra facilities, such

as the ability to test new programs safely on a live data base.

3. THE BASIC DATA BASE MODEL

Before proceeding to details of the solution adopted, we
describe the "physical" (or "storage") model of the data base
upon which the solution depends.

We suppose that the data base is composed of a sequence of

data blocks, all of the same size, which are referenced by

248 Data Quality, Integrity, and Security

sequence number. Any physical pointers within the data base
(between records for example) are represented by "block number/
offset" pairs, and so the unit of access is the block which is
referenced by sequence number. This is, of course, a repres-
entation of the data base at a very low level. The interface

to the user will be in terms of records and fields, and is
unlikely to include any references to physical locations. It
should also be understood that the correspondence between
physical blocks and logical records is not necessarily one-to-
one.

In order to develop a solution to the integrity problem we
insert an extra mapping between this model of the data base
and the "data file" itself on disc. The data file, too, is
composed of a sequence of fixed size blocks, but each block of
the data base is not necessarily associated with the corre-
sponding block in the data file. For the remainder of this
paper we will use the word fLogical to refer to aspects of the
data base model and physical to refer to aspects of the data
file; thus the data base is modelled as a sequence of fLogdical
blocks which are mapped onto the physical bLocks of the data
file. The one-to-one mapping which defines this correspondence
is called the LP mapping.

e.g. A logical data base of four blocks might be represented
in a physical data file of six blocks as follows:

0 1 2 3 4 5
o] [nlnl |
The LP mapping is:
LP(0) = 0; LP(l) = 4; LP(2) = 1; LP(3) = 3
We say that physical blocks 2 and 5 are spare.
We see that a logical data base is defined by a physical data
file together with an LP mapping. In particular, one data file

may represent more than one data base, and it is this possib-
ility that provides the key to the integrity technique prese-
nted in this paper.

The technique may be extended in an obvious manner to the
case where a logical data base is represented on several data
files with different block sizes; this covers several well-
known commercial data base systems such as ADABAS ([141]) and
TOTAL ([151).

249

4. THE SINGLE-USER ENVIRONMENT

4.1 The Integrity Technique

This section briefly describes the technique used to ensure
integrity in a single-user environment. As mentioned in Section
1, this technique was in@ependently proposed by Lorie, and the
-reader is referred to [9] for a more complete presentation.

For the sake of argument, we suppose that the LP mapping
defining the logical data base is held in a physical block
specially reserved for this purpose, called the noot block.
Then the data file is self-defining in the sense that a part-
jcular instance of the logical data base is defined by the
contents of the root block; we call this the disc instance.

Each indivisible section of a program is executed in the
following steps:

i) Initialisation. The LP mapping describing the disc

instance is copied into core; we call the data base defined by
the core LP mapping the current {nstance.

ii) Updating. Whenever a logical block is updated for the
first time within this section, a new spare physical block is
allocated to it, and the LP mapping in core is appropriately
updated. A note of the number of the physical block previously
allocated is added to a list of "pending" blocks. (Such pend-
ing blocks belong to the disc instance but not to the current
instance.)

iii) Flushing. At the end of the section, the modified

LP mapping in core is written back to the root block, so that
the current instance becomes the new disc instance. Blocks in
the pending list are now no longer needed and are marked as
spare.

The cycle is repeated to execute the next indivisible
section, althbugh it is not, of course, necessary to repeat
step (1).

The effect is that the disc instance changes directly from
one consistent state to the next; any intermediate steps are
defined only by current instances in core, which are lost when

a program terminates. So integrity is assured: if a program

250 Data Quality, Integrity, and Security

terminates unexpectedly within an indivisible section, then the
instance made available when the data file is next opened will
be that corresponding to the consistent state in force just
prior to entering the interrupted indivisible section.

As an example, consider the following situation where the
indivisible section includes two updates to logical block 1
and one to logical block 3:

The initial state is as follows (block 0 is the root block):

0 1 2 3 4 5 6 7

13

DISC: §+l L2 Ll L3
+6

CORE : 1-+3 Pending blocks: None
2->1
3+6

To update block 1, we first read physical block 3 into core

and alter it; since this is the first change to this logical

block within the section, we assign a new physical block before
writing the altered logical block back to disc - in this exam-!
ple we choose physical block 2. We record the previously alloc-

ated block (number 3) in the pending list:

0 1 2 3 4 5 6 7

1-3

DISC: 2-1 L L! L L
e | 2] 1™ 3

CORE: *1+2 Pending blocks: 3
21
3+6

(* An asterisk against a mapping element indicates that the

logical block has been altered during the current section.)

Next, we update logical block 3 in the same way:

0 1 2 3 4 5 6 7

1-+3

DISC: 21| &, | n)| & | ut L
s | 2 1 1l 73 3

CORE: *1>2 Pending blocks: 3, 6
2~1
*3>4

We now make a further alteration to logical block 1. This

is not the first change, and so there is no need to assign a

new physical block:

M. F. Challis 251

0 1 2 3 4 5 6 7

1-3

. n 1
DISC: 21 L2 Ll Ll L3 L3
3+6

CORE: *1+2 Pending blocks: 3, 6
21
*3>4

The section is now complete and we rewrite the modified

mapping to the root block, and mark the pending blocks 3 and

6 as spare:

0 L 2 3 4 5 6 7

1-»2

- n 1]
DISC: 21 L2 Ll L3
34

CORE : 1-+2 Pending blocks: None
21
3+4

Note that this technique is efficient in the sense that we

do not need to make extra copies (or "before-images") of
logical blocks before altering them, since the original vers-
jions continue to exist until they are no longer needed. In a
similar way, the recovery process is non-existent, since there
is no inconsistent version of the data base to roll back.

On the debit side, the physical data file must include
enough spare blocks to record new versions of all blocks
updated during a single section. In the worst case, this would
require the file to be twice the size of the logical data base,
but in practice only a small portion of a large data base is
likely to be altered indivisibly.

A different solution to the integrity problem is provided
by the "differential file" concept ([13]), where records
modified in a large data base are stored separately in a
changes file instead of overwriting their originals in the
mastern file. Our technique can be viewed as an extension of this

in which the master and changes files are merged together.
4.2 Practical Considerations
The implementation illustrated above has been deliberately

simplified for didactic purposes, and there are several

improvements which may be made in practice.

252 Data Quality, Integrity, and Security

a) " Core buffers. Normally, there will be several core
buffers available to hold copies of data blocks. Any core
buffer whose contents differ from the corresponding disc block
must be written back whenever a new disc instance is recorded.

b) Alternate root blocks. It is better to allocate two
physical blocks which are used alternately as root blocks. In

this way, the mapping defining the previous disc instance is

not overwritten when the new LP mapping is written to disc at
the end of a section; so if an I/0 error occurs during this
transfer, the previous disc instance can still be recovered.
c) Large data bases. 1In a data base of any size, it is
unlikely that the LP mapping will fit into a single block, but

it is a simple matter to extend the scheme, permanently

allocating two separate sets of physical blocks to be used in
turn for holding the disc instance mapping.

With large mappings it also becomes increasingly ineffic—
ient to hold the entire mapping in core and to write it back
when flushing at the end of each indivisible section. The
solution to this is to "page" the mapping itself, being careful
to allocate new physical blocks to altered logical blocks in
much the same way as new blocks are allocated to updated data

blocks in the simple scheme.

4.3 User Facilities

4.3.1 Flushing and Indivisibility. We have so far assumed
that fLushing (that is, defining a new disc instance) takes
place whenever (and only when) an indivisible section is comp-
leted. We believe that it is better in practice to separate

these concepts, providing the following facilities for the user:
flush() - this procedure call causes a new disc instance
to be recorded.
indivis(p) - this prevents any further flushing until
procedure p has been executed.
Unless a call of indivis is active, the package is free to
flush whenever it likes: for example, the system might choose
to construct a new disc instance every 30 seconds, or after

every 200 updates, or whenever the number of spare blocks

M. F. C}lallis 253

available is less than 50. In particular, the system would
probably choose to flush immediately before entering an indi-
visible section in order to make available as many spare blocks
as possible, and will certainly flush before closing the data
file upon the successful completion of an update run. We also
assume that each basic data base access procedure is indivis-
ible.

The user now has available a choice of techniques for
achieving the degree of consistency that he desires.

A simple program which applies a sequence of independent
updates may choose not to use either §{Lush or Lnddivis; it may
safely be re-run after an error, since a second application of
the same update can do no harm. A more sophisticated version
of the same program might make regular calls to §Lush, record-
ing on its own "log" data set the number of the last input
record processed prior to the flush, thus reducing wasted
processing time if it needs to be re-run. This log data set may,
of course, be the data base itself, and this suggests the
provision of extra procedures which make it easy for a program
to record messages about its own progress:

recondmessage (identifien, message)

- to associate message with {dentifier in the data base.
message = readmessage{Lidentifien)
- to read the message associated with Ldentifien; a
special value is returned if no such message exists.
message = neaddelmessage(identifien)
- to read and then delete any message associated with
Ldentifien.
By associating a common message identifier with a suite of
programs it is easy to ensure that all are executed in a
defined sequence: upon successful completion, each program
assigns a new value to the identifier, which will be checked
by the next program in the sequence.

The .indivis procedure would be used by a more complex
program which applies a sequence of "transaction" updates.

Each transaction is composed of a number of dependent updates,
but is independent of other transactions. Flushing may or may
not be explicitly requested as in the previous example.

Finally, a very time-consuming series of .dependent updates

254 Data Quality, Integrity, and Security

can be split into smaller sections, each of which is executed
indivisibly. At the end of each section, progress is noted
using recordmessage, and the data base is then flushed. If this
approach is adopted, other programs must be aware of the
corresponding message identifier and should check its value
before proceeding, in case the update program had failed to
complete successfully when it was last run.

4.3.2 Testing programs. If we treat the whole of a

program as an indivisible section, and do not flush the data
base before terminating, then the data base defined by the disc
instance will remain unaltered.vIn other words, we are able to
test update programs on "live" data without compromising its
integrity. A similar facility is suggested in [11] in the
context of differential files. This special case is so impor-
tant that a "test only" mode of opening a data base should be

provided.

5. THE MULTI-USER ENVIRONMENT

5.1 Indivisibility

In this section we examine the meaning of indivisibility
in a multi-user environment in some more detail, and suggest a
multi-user analogue of the (indivis procedure defined for the
single-user case.

Suppose that we have a set of concurrent processes access-—
ing a data base, and that one of them (say P) specifies a
transaction £ that is to be executed indivisibly. One way to
do this is to halt all other processes allowing only P to
continue, but this may be needlessly inefficient; for example,
if the purpose of £ is to reserve a seat on an aeroplane flight,
then only those processes accessing the same aeroplane seat
actually need to be halted.

As t is executed, references will be made to fields and
records in the data base and decisions will be taken based on
the values found; £ will then usually record these decisions

in the form of alterations to the data base.

M. F. Challis 255

- .

We can think of the information upon which £ bases its
decisions as its requirement, and the alterations that it makes
may be called its effect. We can represent a requirement as the
union of a sequence of conditions on the records, fields,
relationships etc. that are represented in the data base:

e.g. (record X exists) & (field Y of record X = 25) &

(record A points to record B) & ...
and an effect may be represented as a sequence of updates:
e.g. (create record Y) & (field Z of record Y := 24) & ...
We may now state more precisely those conditions under which
a process P' may be allowed to execute concurrently with P
whilst t is active:

i) P' must not alter the validity of £'s requirement, for
such alterations may invalidate %'s decisions.

ii) P' must not access records or fields that take part in
#'s effect; if it does, it may itself take erroneous
decisions based on an inconsistent view of the data
base.

Note that a transaction's requirement may require that a
particular record does not exist, and that in this case
condition (i) above means that P' must not create that record.
Such records‘are called phantom records, and the concept of
predicate Locking has been described to handle such cases
(see [7]1). A predicate lock for a transaction % essentially
defines a logical area of the data base to which other proc-
esses must be denied access (or given restricted access)
whilst £ is active. The notions of requirement and effect may
be viewed in the same way: the effect defines the logical area
which must be denied completely to other processes, and the
requirement defines a "read-only" area.

One way to ensure that conditions (i) and (ii) above are
‘complied with is to use the critical section concept (see [61]).
Those sections of each process that might violate either
condition are designated as mutually exclusive critical sect-
ions, and semaphores are used to guarantee that at mosﬁ one
process is executing within a critical section at any parti-
cular moment. The difficulty here lies in attributing suitable
semantics to each semaphore that is to be used, and in ensuring

that all processes (including those to be written in the

256 Data Quality, Integrity, and Security

future) obey the rules that have been chosen.

A simple allocation of semaphores will often result in
unnecessary sequencing: for example, if the seat reservation
transaction is guarded by a semaphore S, then two instances of
this transaction will never execute concurrently even if they
are for different flights. This suggests the provision of
certain "standard" semaphores by the data base system itself,
such as one or more "access" semaphores associated with each
record. Commonly two are provided: the system uses one to
sequence all accesses to the record, and the other to sequence
update accesses only. These semaphores may be accessed by a
user process through £Lock and unfock primitives, which allow
a process P to gain exclusive access to a record R (no other
processes may access R) or shatred access (other processes may
read R).

As with semaphores, the general use of locks introduces the
possibility of "deadlock", where two or more processes become
mutually blocked, each one attempting to lock some part of the
data base that has already been locked by one of the others
(see [4] for a general discussion). When this occurs, one or
more of the processes must be "backed-out" in order to allow
others to continue.

The problem of locking a phantom record may be solved
(albeit clumsily) by exclusively locking all records of the
appropriate type, and so a common generalisation of record
locking is to provide locking facilities of a coarser "gran-
ularity" controlling access to certain sets of records such as:

- all records referenced by record R

- all records of type T

- all records in the data base
In [8], a protocol based on such a hierarchy of lockable
objects is presented. Any process wishing, for example, to lock
a record within this protocol must first place an "intention"
lock on all higher level objects in the hierarchy. This makes
it easy for the system to determine whether a particular
request is compatible with other requests already granted, and
simplifies the detection and resolution of deadlocks.

Here we suggest a different technique which requires only

that transactions are marked as indivisible by use of the

M. F. Challis 257

indivis procedure:

b = indivdis (£)
At time TO when this call is made, a copy Zé is made of the
current instance 10 of the data base. The transaction £ is then
applied to the copy Ib to produce a new instance I; at time T7;
in the meantime, other processes operating on the current

instance 10 have produced a possibly modified instance I]:

TO 10 . Ié - just before t is entered

time:

TT 11 I; - just after £ has finished

During execution of £ we keep a note R{£} of those records
and fields (and their values) read by £ from the initial
instance I!: it is clear that R({%) will include %'s requirement.
We also keep a note of any alterations made by £ in El(t),
which thereby represents t's effect.

At time T1 we examine 17 to see if items mentioned in R({%}
and E(%£) have remained unaltered since time T0. If so, we may
safely apply the alterations E{Z] to 17, the effect being as if
£ had, indeed, been executed indivisibly at time T7; we say
that the call of indivis has been successful, and return a
result of true. If not, the call is unsuccessful, and a result
of false is returned. (A special case arises if E(%) is empty;
in this case, £ has no effect and so its execution is "invis-
ible" to the other processes. So we may suppose that it was
indivisibly executéd at time TO and return a result of ftrue.)

In the proposed realisation of {nd{vis (see section 6.2)
the data base is copied by copying the LP mapping, and the sets
R(#) and E(t) are represented as lists of those logical blocks
referenced and updated by Z. A new physical block is allocated
whenever a logical block is updated, and so it is easy to
determine whether R(t) and E(£) remain unaltered in 17, and,
if so, to apply E{t) to I,z we simply alter the LP mapping for
I
for, since the block in which a phantom might appear will be

to reflect the changes made. Note that phantoms are accounted

recorded in R(%) when t examines the data base to see if the
record exists. These considerations show that it is indeed

possible to implement {ind{vis in an efficient manner.

258 Data Quality, Integrity, and Security

Choosing the block as the unit of representation for requ-
irement and effect means that certain transactions which could
logically execute concurrently will be prevented from so doing.
(For example, two transactions which update separate records
which happen to lie in the same block.) The importance of this
will clearly depend on the size of the block and the distrib-
ution of transactions, but a recent paper ([12]) suggests that
a large "granule" size is often more efficient than a small one
when the locking overhead (as in this case) is less.

How does {indiv{is compare with a more conventional approach
using locks? We saw above that transactions competing for locks
may enter deadlocks which can only be resolved by backing out
one or more of the processes; such a situation may be further
complicated by the fact that another transaction may already
have taken a decision based on values recorded by the trans-
actions to be backed out, and so should itself also be backed
out. To avoid this "snowball” effect it is usual to insist
that a transaction exclusively locks those records that it
updates, only releasing them upon termination. Such precautions
are not necessary with indivis, since the essence of the
technique is the concurrent existence of separate instances of
the data base. If we suppose for the moment that all processing
is by means of indivisible transactions, then a "deadlock"
corresponds to the existence of "incompatible" instances; it is
"resolved" when the first transaction to complete incorporates
its corresponding instance into the current instance, and the
other processes are "backed out" when they complete unsucc-
essfully and their corresponding instances are abandoned.

Another advantage of {ndivis is that the programmer is no
longer responsible for specifying the area of the data base to
which a transaction is "sensitive"; this area is instead
determined dynamically by the system in the sets R(%]) and E(%).
So the programmer is protected from mistaken assumptions about
process interactions, and is less likely to corrupt the data
base; on the other hand, undisciplined use of A{nd{ivis may
result in much wasted processing time if many calls are made
before a transaction succeeds.

It is clear that {indivis is most appropriate in circum-
stances where conflict is unlikely. A suitable candidate might

M. F. Chjt]lis 259

be the seat reservation system where many copies of the reser-
vation process are executing concurrently. Each reservation is
recorded indivisibly, and will only fail if another concurrent
reservation for the same seat completes first.

In a system where conflicts are common, explicit sequencing
(using semaphores or locks) is indicated. For example, suppose
a data base contains details of tickets for a :show which are to
be allocated sequentially. If several processes are concurrently
processing ticket applications, it is clear that the critical
sections in which a ticket is allocated are always mutually
exclusive, and it is never sensible to attempt to execute two
such sections concurrently. In this case, the constraint is
simple and the system designer may use a single semaphore to
force sequential ticket allocation.

It is interesting to relate Andivis to the facilities
offered by System R ([1]), where a user may associate a part-

jcular "level of consistency" with each transaction 1 as

follows:
level 3 - £ is indivisible.
level 2 - changes made by a concurrent transaction '
are only made available to £ when t!
terminates.
level 1 - £ sees changes made by concurrent transactions

as they happen.

An additional constraint applied to all levels is that any data
altered by one transaction will not be altered by any other
until the first has completed. (This makes it possible to "back
out" one transaction when a deadlock occurs without undoing the
effects of any other.)

indivis corresponds to a level 3 transaction, except that
it might fail. (In System R, locks are applied to enforce the
various consistency levels, and all transactions will eventu-
ally complete: transactions backed-out from deadlocks are
repeated as necessary.) Processes accessing the current
instance are more like level 2 transactions in that they only
see changes made by successful {nd{vis transactions, but
(unlike System R transactions) they may (and will) freely
interact with each other. There is no equivalent to the level 1
transaction (which in System R may even see changes that are

later "undone").

260 Data Quality, Integrity, and Security

5.2 Integrity

As in the single-user environment, all basic calls to the
data base system are indivisible, and the procedures {Lush,
rnecondmessage, readmessage and readdelmessage are provided
with identical definitions. (Note that calls of neao&dmeéaage
and readdelfmessage may be used as V and P operations on a
binary semaphore because they are indivisible.)

The 4indivis procedure defined in the last section may also
be used simply as a consistency aid: if a process terminates
unexpectedly in the middle of an indivisible section, then we
can be sure that no part of the effect of that section has
been incorporated into the current instance of the data base,
and hence cannot possibly appear in the disc instance.

As before, individual processes may make calls of {Lush
to guarantee that the disc instance will at least reflect
progress up to a certain point, and/or may record progress
using hecordmessage.

5.3 Testing Programs

One possibility is to define a procedure test(p) which
applies p to a copy‘of the current instance; when p terminates,
the copy is thrown away. (fesf is similar to indivis except
that no attempt is made to incorporate the modified copy into
the current instance upon completion.) This however, allows us
to test only single processes, and so we suggest a more power-
ful facility which allows the user to create and access
Aeconda&y versions of the data base. Each such secondary
version starts life as a copy of the current instance of the
primary version, and is then modified independently by the set
of processes under test. Secondary versions differ from the
primary version in that there are no disc instances associated
with them: in other words, a secondary version is lost when

the last process accessing it terminates.

M. F. Challis 261

5.4 Read-only Access

A common problem in a multi-user environment is that of
obtaining consistent reports. For example, consider the case
of a program which generates a summary of items in stock foll-
owed by a detail report shoWing the location of these items by
warehouse. If stock figures are updated whilst this program is
being executed, the totals in the two reports will not tally.

This problem may be solved by specifying the entire program
as an indivisible transaction; in this way, the program will
operate on an (unchanging) copy of the current instance. Since
the transaction has no effect (in the sense of section 5.1)
the call of indivis will always be successful. This is such a
common requirement that we suggest a special mode of "read-

only" access in the next section.

5.5 User Facilities

This section gives a formal description of the facilities
suggested above.

When a process first requests access to the data base, it
must specify both the version and the access mode desired:

open{version, mode)

vension = 0 means that the process is a production program
which is to access the primary (i.e. "live") version of
the data base. This is the only version represented by
the disc instance.

version = n.(>0) means that the process 1is to be tested on
a secondary version of the data base. If version n does
not yet exist, it is created by taking a copy of the
current instance of the primary version.

mode = 0 means that the process wishes to access the
current instance of the specified version at all times.
It is allowed to alter this instance.

mode # 0 means that the process is read—only, and is to be
applied to a copy of the current instance of the speci-

fied version.

262 Data Quality, Integrity, and Security

The procedures for manipulating instances are:

52@1h(} - this has no effect unless it is applied to the
current instance of the primary version. In this case, a
new disc instance is recorded.

b := indivis{p) - if this is applied to the current instance
of a version, the procedure p is applied to a copy of this
instance and an attempt is then made to ihcorporate the
result into the current instance once again. The result is
true if and only if the attempt is successful. If it is
applied to any other (read-only) instance, the effect is
simply to execute p and return thrue.

We can represent the relationships between the various inst-
ances of a data base that exist at a particular moment as

follows:
Ry 4 Roz Sy
o > 20 e YO 3O Primary version (uo)
Ri1 Ao
¢
Secondary
version

(vy)
In this example there is one secondary version with two active
instances and five active instances of the primary version.
ROT' ROZ and RI] ,
current instances of the two versions. D represents the most

are read-only versions, and CO and Cl are the

recent disc instance (created by a call of §Lush) and AO
represents a currently active altesnative instance created by
a call of {ndiv.is that has not yet completed.

6. IMPLEMENTATION

This section outlines a possible implementation stage by
stage. We first permit access to the primary version only,
showing how read-only instances and flushing can be implemented

M. F. Challis 263

next we _show how to manage alternative instances, thus realis-
ing indivis. Finally we indicate how to manage secondary
versions.

6.1 Read-only access and Flushing

6.1.1 Introduction. At any moment, the various active

instances of the data base can be represented in order of

creation as:

O POe—eed 4 4+ e PO——DO >

O —> ... —>0
R R R D R C

where each R is a read—only instance, D corresponds to the disc
instance, and C is the current instance.

New read-only instances are created by calls of open, and
an existing read-only instance is released when its associated
process terminates. The current instance is created when the
first process opens the data base, and is released when the
last process terminates. The disc instance is always present:
when the data base is flushed, a new disc instance is created
and the previous one is released.

Associated with the data base is a positive integer known
as the current epoch which is increased by one whenever a new
instance is created. The value of this integer at the time of
creation of an instance is known as the epoch of that instance,
and may be used to identify it. Note that the epochs of the
active instances of a data base are not necessarily consecutive
since instances are not necessarily released in the same order
as they were created; but epoch(I) is always less than epoch(J)
for an instance I older than J.

Each instance Ik of epoch k is defined by its LP mapping
LPh. A new current instance In+1 is created by creating a new
mapping LPM7 equal to LP”. As soon as logical block £ of In+7
is altered for the first time, a new physical block p' is
assigned to it in LPn+1 so that the alteration appears only in

instance I and not in any preceding instances. The physical

n+l
block p previously assigned to £ cannot be marked as spare,
since it is still a part of In’ and, possibly, of other

preceding instances; indeed, it can only be reused when all

264 Data Quality, Integrity, and Security

instances of which it is a part have been released.

In genefal, a physical block p is in one of the following
states:

a) in cuanrent use, if LPH(K} = p for some £, where n is the
epoch of the current instance.

b) pending, if it is not in current use, but there exists an
active instance with epoch k such that LPk(l) = p for
some £.

¢c) spare, if it is neither current nor pending.

When a logical block of the current instance is updated for
the first time, the newly assigned physical block changes state
from spare to current, and the original block from current to
pending. Each pending block belongs to a sequence of one or
more active instances, and becomes spare when all the instances
of that sequence have been released.

We keep track of pending blocks by recording their epoch of
allocation afloc and epoch of release #el: a pending block p
becomes spare as soon as there is no active instance I such
that:

alloc(p) < epoch(I) < rellp)
alloc(p) is recorded in the physical block itself at the time
of allocation. At the time of release, this value is used to
determine the first instance I to which p belongs; this
instance is given by:
epoch({H) < alloc(p) < epochl(I)

where H is the active instance immediately prior to I.
The pair (p, #el(p)) is then added to a list associated with I.

In this way, a iist is kept for each instance I of those
pending blocks which belong to I but not to any older instance.
When I is released, this list is scanned to see if any pending
blocks mentioned can now be made spare; this will be possible
if:

rel(pl < epoch(J}

where J is the active instance immediately following I.
Pairs (p, nel(p)) which do not satisfy this condition are
simply added to the list associated with J.

Using this technique, it is easy to keep an up-to-date list
of spare blocks available for allocation - that is, of blocks

which do not form part of any active instance. But when the

M. F. Challis 265

data base is flushed, we must include on disc a list of those
blocks which would be spare if no other instances were active:
for only the disc instance survives if processing terminates
unexpectedly, and we will need to know which blocks are spare
when we re-open the data base. This list consists of the union
of the set of spare blocks and the set of pending blocks at the

time when the new disc. instance is made.

6.1.2 Practical Considerations. The mappings LPh and

LPh_7 are likely to share many elements in common, and so a
single compact representation for all LPi can be chosen which
allows us to take advantage of this. For example, when the
size of the logical data base is large, it becomes necessary
to page the LP mapping itself, using a further "LP to physical"
mapping (LPP) as an index; in this way each LPh is defined by
LPPk. This suggests that we keep track of LP instances using
the same techniques as those described above for data base
instances. For example, copying an LP mapping is reduéed to
making a copy of the (much smaller) LPP mapping, provided that
we allocate a new physical block and alter the LPP mapping
describing the current LP mapping whenever one of its blocks
is updated for the first time.

Another point concerns the list of spare blocks from which
physical blocks are allocated during processing. There is no
need to either read this in its entirety when the data base is
opened, or to write it all back each time the data base is
flushed. It is sufficient to maintain two "windows" on the
nfront” and "back" of the list: new blocks are allocated from
the front window and blocks made spare when an instance is
released are added to the back window. The front window is
replenished from disc whenever more blocks are needed and the
back window is emptied to disc when it becomes full, or when-

ever the data base is flushed.

6.1.3 Dumping. Even the disc instance will not allow us

to recover the data base if it is physically damaged, and so

it is prudent to take periodic "back-up" copies on tape. Our
technique favours an incremental approach, whereby only those
blocks altered since the last dump are copied to tape. These
may be determined by comparing alloc{p) with the epoch of the
last dump for each block p in the data base: only those created

266 Data Quality, Integrity, and Security

after the previous dump need to be copied. But such a complete
scan of the data base is likely to be unacceptable, particul-
arly if dumping is relatively frequent, and a much better
technique is suggested in [9], where an extra bit is associated
with each element of the LP mapping to say whether that logical
block has been altered since the previous dump. This bit is
called the "cumulative shadow bit" in [9]; here we shall call
it the dump bit, and it is set whenever a logical block is
updated.

Whenever the incremental dump process is scheduled, a new

read-only "tape instance" T is created:

o > o 30 20
T ¢
The new current instance C is represented by the mapping LPC
which is a copy of LPT in which all the dump bits have been
cleared.

The incremental dumper may now copy at leisure those
physical blocks of T indicated by the dump bits in LPT; when
it has finished, the instance T is released, and any pending
blocks required only by the dumping process are automatically
made spare. (Thus there is no need for the "long term shadow
bit" of [91, whose purpose is to indicate that the corresp-
onding block has not yet been dumped and so cannot be freed.)

6.2 Alternative Instances and {indivis

We denote the alternative instance that is created from

instance I by a call of indivis by I1':

Associated with .I' we keep:
LP'" - its LP mapping.
R - the set of logical blocks which includes the informa-
tion involved in the requirement of I1'.

E - the set of logical blocks which includes its effect.

M. F. Challis 267

As“ I' is processed, each logical block that is referenced
is added to R, and each logical block that is updated is added
to E. New physical blocks are assigned to updated logical
blocks in the usual way, so that LP'(E) defines the set of
physical blocks that are fLocal to I': they belong only to I'
and are not shared with any other instance. When the transac-
tion is complete, we must determine whether we can safely
incorporate the effect of I' into the current instance C. This
will be possible provided that other processes operating on
the "main-line" instances have not altered any of the blocks
involved in the transaction's requirement or effect: in other
words, if the contents of the logical blocks described by
R u E are the same in instance C as in instance I. This can be
easily checked by comparing the appropriate elements of the LP
mappings defining the two instances.

If incorporation is possible, the LP mapping for C is
updated by reference to E to include the local blocks of I';
if not, the local blocks are returned directly to the spare
block list.

6.3 Secondary Versions

The treatment of secondary versions is very similar to that
of the primary version; the main difference lies in the treat-
ment of spare blocks.

Each secondary version is essentially treated as a separate
entity, with its own epochs unrelated to those of the primary
version. As logical blocks of a secondary version are updated,
new physical blocks are assigned which are focal to that
version: they can never be shared with any other secondary
version or with the primary version. Thus a secondary instance
will be composed partly of local blocks and partly of blocks
acquired from (and probably shared with) the primary version.

The actions taken when a physical block is released depend
on its state. If it is local, it is recorded as a pending block
in a list associated with some secondary instance in the usual
way. If it is not, no action is taken since we presume that it

is still required by the primary version.

268 Data Quality, Integrity, and Security

7. CONCLUSIONS

This paper has described a solution to the problems of
consistency and integrity in large data bases, and a possible
implementation has been presented. By giving some details of
this implementation we hope we have shown that the technique
is efficient provided that the various data base instances
that co-exist do not differ drastically one from the other.

The technique is based on the provision of an extra
block-to-block mapping between a logical data base and the
physical data file upon which it resides. In this way, many
similar instances of one data base may be economically
represented in the same data file by different mappings. But
only one mapping (and hence only one data base) is defined in
the data file itself: this is the so-called disc instance,
which is the only instance preserved when data base processing
terminates (whether normally or abnormally). By ensuring that
new disc instances are only created when certain consistency
constraints are satiéfied, we can ensure the integrity of a
data base across unexpected system and application program
failures.

An extension of the technique is particularly useful in a
multi-user environment, and in this paper we have suggested
three facilities:

i) The provision of a "frozen" copy of an ever-changing data
base (for the use of a report generator, for example) .

ii) The provision of a copy of a live data base on which a
new program or set of co-operating programs can be
safely tested.

iii) The ability to "split" a data base into separate inst-
ances: a "main-line" instance and one or more "alter-
native" instances. The main-line instance continues to
be accessed by (possibly several) current processes
whereas access to each alternative instance is restr-
icted to the single process P that created it.

P is free to make consistent changes to the alternative
instance based on decisions about its contents which
cannot be affected by the actions of other concurrent

M. F. Challis 269

processes. When P completes its "critical" task, an
attempt is made to combine the two instances: if this
is possible without compromising the integrity of P's
decisions and alterations, then it is done; otherwise
the alternative instance is abandoned, and P must try
again.

The technique was originally developed solely as a means
of ensuring data base integrity in a single-user environment,
and is used for this purpoée in the JACKDAW data base package.
This system has been in use at the University of Cambridge
since 1973, supporting an administrative data base containing
details of Computing Service users and their resource alloc-
ations. During this period, the data base survived unscathed
all operating system and application program failures, thus
demonstrating the value of the integrity feature. Further
development of JACKDAW is now in progress at Pontificia

Universidade Catdlica in Rio de Janeiro.

ACKNOWLEDGMENTS

The JACKDAW package was designed and implemented whilst the
author was employed by the Computing Service at the University
of Cambridge, England. Further work has been financially
supported by the Brazilian government agencies Financiadora de
Estudos e Projetos (FINEP) and Conselho Nacional do Desenvol-

vimento Cientifico e Tecnoldgico (CNPQ) .

REFERENCES
[1] Astrahan, M.M, et al. "System R: Relational approach to
data base management”" ACM Trans. Database Syst. 1, 2
(June 1976).
[2] challis, M.F. "The JACKDAW database package" Proc. SEAS

Spring Technical Meeting, St. Andrews, Scotland, April
1974.

270

[4]

[51

[6]

[81

[101]

111

[121]

[131]

[14]

[151]
[1e6]

Data Quality, Integrity, and Security

Challis, M.F. "Integrity techniques in the JACKDAW
database package" Monografia em Ciéncia da Computacio
9/77, Dept? de Informdtica, Pontificia Universidade
Catdlica, Rio de Janeiro, Brasil (1977).

Coffman, E.G., Elphick, M.J. and Shoshani, A. "System
Deadlocks" ACM Comp. Surveys 3, 2 (June 1971).

Date, C.J. "An Introduction to Database Systems"
Addison-Wesley, Reading, Mass. (Second Edition, 1977).

Dijkstra, E.W. "Co-operating Sequential Processes"
Programming languages: NATO advanced study institute.
Editor: F. Genuys, Academic Press, London, 1968.

Eswaran, K.P., Gray, J.N., Lorie, R.A. and Traiger, I.L.
"The notions of consistency and predicate locks in a
data base system" Comm. ACM 19, 11 (November 1976).

Gray, J.N., Lorie, R.A. and Putzolu, G.R. "Granularity
of locks in a shared data base" Proc. VLDB conference,
Framlingham, Mass., 1975.

Lorie, R.A. "Physical integrity in a large segmented
database" ACM Trans. Database Syst. 2, 1 (March 1977).

Palmer, I. "Database systems: A practical reference"
CACI Inc. International, London, 1975.

Rappaport, R.L.’ "Pile structure design to facilitate
on-line instantaneous updating" Proc. ACM SIGMOD
conference, 1975.

Ries, D.R. and Stonebraker, M. "A study of the effects
of locking granularity in a data base management
system” ACM SIGMOD conference on management of data,
Toronto, August 1977.

Severance, D.G. and Lohman, G.M. "Differential files:
their application to the maintenance of large data-
bases" ACM Trans. Database Syst. 1, 3 (September
1976).

"ADABAS Introductory manual" Software AG, Hilber-
strasse 20, 61 Darmstadt, W. Germany.

- "TOTAL Users manual" Cincom Systems Inc.

- "IMS/360 Utilities reference manual" IBM SH20-0915.

