transformations
de programmes

3° colloque international sur la programmation

DUNOD |

!’M

005.106
I6lpr . g phase recherche | informatig

transtformations
de programmes

___program
transformations

Actes du 3° colloque international sur la programmation
direction B. Robinet

Paris
28 - 30 mars 1978

Proceedings

of the 3" international symposium on Programming
: edited by B. Robinet

Paris -

March, 28 - 30 1978

DUNOD

phase recherche | informatique

17

INTRODUCTION

In order to do any work on a computer nowadays the user has to learn a se-
cond language: a control language of the operating system used. By means of re-
quests in this language, the user commands the execution of object programs wit-
hin a enviromment of data files determined by himself, and at the same time re-
quests resources (processor time, main store, file space, output limits) for his

programs,

As has been commented [Barron and Jackson, 19727 control languages are them~
selves programming languages since they possess control and data structures akin
to those of a programming language. However, whereas the state of the art of pro-
gramming languages has advanced steadily, the same cannot always be said of con-
trol languages. The most widely used such language, IBM's Job Control Language
(JCL) [IRM], which has remained virtually unaltered for over a decade, has been
described as a macro language [Barron and Jackson, 19723. A newer generation of
control languages includes B, Landy's Phoenix [Cambridge, 1975] at the University
of Cambridge (IBY 370/165 with modified OS/MVT), ICL's George languages, which
have been described as forms of autocode [Barron and Jackson, 19727, and the Al-
gol-like Wgrk Flow Language (WFL) for the larger Burroughs machines.

Now the level of sophistication of a control language has a great deal to do
with its ease of use by the average user, since he will generally construct his
control program out of procedure calls (to edit, to compile, etc) and what is im-
portant is the ability to comstruct powerful procedures. This is impossible in
JCL owing to the absence of looping, and the exceedingly primitive conditional
commands available, On the other hand the Phoenix language offers a rich structu=-
re, and correspondingly powerful procedures, This structure includes the use of
global and local variables of integer, Boolean and string types, conditional com-
mands, and general branching, subroutine call and error handling facilities, in

addition to the procedure call,

Unfortunately Phoenix is not a very systematic language particularly with
regard to the scope of variable names., In any given procedure the variables in
Scope are those local to the procedure and any globals without local homonyms -
there is no concept ‘of nested scopes. Another problem is that there there is no

checking of procedure parameters, which can lead to unexpected errors,

A CONTROL LANGUAGE FOR PROGRAMMERS

Michael Anthony Stanton (1)

ABSTRACT

Currently available control languages are briefly discussed, and a case is
made for a well structured and powerful new language. There follows a description
of the ARARA control language which seeks to include characteristics of a modern
procedure oriented programming language. The dynamic nature of use of a control
language has led to the introduction of a number of features, notably the inclu-
sion of program text from an arbitrary file and the dynamic alteration of the e-
xecution time context by dynamic variable declarations and by the entry to and

exit from "environments". Examples are given to illustrate the ideas.

(1) Departamento de Informatica, Pontificia Universidade Catolica do Rio de

Janeiro, Gavea, Rio de Janeiro, Brasil.

18

The ARARA language described in this paper attempts to solve these and other
problems which arise in the specification of a control language, A primary aim of
this language is to follow closely the syntax of modern programming languages and
thereby present the more advanced user with a familiar instrument. As the average
user will mainly execute procedure calls, these must have a simple syntax, The
description. follows closely the Common Language for Utilities (CLU) proposed by

P, Hazel [Hazel, 1976] but with certain important differences.

DESCRIPTION OF THE LANGUAGE

The overall view of the language is of a procedure oriented language in

which all variables and procedures used have to be declared before use. The scope

of a name is restricted to levels no higher than the level of nesting of its de-
claration, that is to say, Algol-like scope rules are used, except that declara-
tions need not precede all other statements, This feature, like the others we
shall describe, is necessary if the language 1is to be useful in an interactive
environment,

The language supports the following data types:

integer, Boolean, proc, string, function, environment.

The type of a variable is dynamic and is checked dynamically.

The names of variables and procedures are chosen from a certain name space,
from which certain elements are reserved for system words, Names (other than
system words) may not be used without having been declared previously. Names may
be declared in one of the following ways:

- variable declaration
~ procedure or function definiton

~ procedure call with arguments

~ procedure call with local variable creation

- entering an environment

The scope of a name ends on leaving the nesting level of the procedure or
environment in which it was declared. Scopes of homonyms are nested. Thus, only

the most recently declared instance of the name is accessible,

The procedure call is unconventional in that the arguments may be either po-
sitional or identified by keyword. In addition, default values may be specified

for omitted arguments in the procedure definition. Finally, the procedure call

may declare and initialize variables local to the procedure, This facility may be

used to override the value of a non-local variable for a given procedure call.

Consider the following example, in which a value is assigned to the variable

ACCOUNT, and three calls are made to the procedure SUBMIT:

ACCOUNT := "0003"

SUBMIT, JOB1

SUBMIT, JOB2, ACCOUNT = "0025"
SURMIT, JOB3

The second job would be submitted with account number 0025 and the others

with account number 0003.

The language also permits the definition and use of functions which are si-
milar to procedures, except in that they return a value. Thus they be used in va-

lue expressions.

There are occasions when a set of procedures may wish to comunicate amongst
themselves, If the procedures are to be called sequentially then the common data

area cannot be local to any of them. We thus introduce the concept of the envi-

ronment, which maintains in its local variables the data common to its local pro=
cedures, very like the workspace concept of APL [Gilman and Rose, 1974] and so-
mewhat akin to the monitor concept of Hoare [Hoare, 1974]. The use is different

however, and this is by means of the environment entry, a statement similiar to

the procedure call, in that it is nested within the containing procedure level.
The effect of the environment entry is to alter the local context to include tho-
se variables and procedures declared within the environment, The old context may

be restored by exiting from the environment.

20

Procedures, functions and environments have all to be declared before their
use, by means of the appropriate declarations. To facilitate the manipulation of
these and other sections of a control program text, there is provided a means to
include program text from a data file in the command text or current procedure. A
set of several enviromment declarations contained in a data file may be declared

jointly in a library declaration.

The most fundamental command in a control language is the program execution

command, which causes execution of an object program, previously compiled from
some source language. Most operating systems already define a precise interface
for calling such a program, which consists of the specification of data files u-
sed by the program and optional string data. In addition it is often necessary to
specify the resources of processor time, main store or file space necessary for
program execution, Finally the program may return a value, in the form of a re-
turn code under program control, or an abend code in the event of program failu-
re, The program execution command provides a means of specifying all these argu-
ments, and the value returned by the program is manipulated by the error handling

procedures.

We should note here that the format of names of data files 1is operating
system dependent. However there are some cases of special interest which can be
distinguished. These include:

ALK

- the "immediate document" or "instream dataset", which consists of subse-

quent lines of the current command or procedure text up to a given delimi-

ter , unprocessed in any way.

-~ as above, but with evaluation as text strings of integer or string varia-

bles whose names are enclosed in square brackets,
- the dummy file
- the standard output file
— the interactive terminal

For these we use the special filenames *IMMEDIATE(terminator), *SUB-
IMMEDIATE (terminator), *DUMMY, *OUTPUT and *TERM.

21

The nature of a control language requires that the user have adequate infor-—
mation about error conditions, to enable him to perform error handling under pro-
gram control. This is achieved by the specification of error procedures to be
called in the event of the occurrence of an error condition. Error conditions are
grouped into several types, each of which is associated with a unique name. Thus,

we may have

BADSYNT syntax error

ABEND command terminated abnormally
RC command returned non-zero return code
REAK command interrupted by "break" at terminal

An error procedure is an ordinary procedure which is called automatically on
occurences of the relevant type of error condition, and may be associated with a
command, a procedure or an environment. In the event of an error condition, con-
trol passes to the nearest specified error procedure, which may either return
control to the statement following the one causing the error, or else pass con-
trol up to the next level in which an appropiate error procedure is specified. In
the event of control being passed up to the standard environment, the standard
error function is cailed. In all cases the error procedure is entered as if it

had been called by the statement
proc-name , ERRTYPE=error-~type , ERRCODE=value , PROC=current-procedure

that is, local variables are declared and initialized with diagnostic infor-

mation,

Consider the following example of a procedure FORTC which compiles a FORTRAN
program and saves the object module if all goes well; the error procedure COMPERR

is used to trap compile errors.

PROC COMPERR

IF ERRCODE>4 RETURN RC,ERRCODE

END

PROC COPY,TO=FILE,NOTOPTTIONAL,FROM=FILE,NOTOPTIONAL

CALL COPYPGM,TO=[TO],FROM=[FROM] ’

END

PROC FORTC,PROGRAM=F ILE,NOTOPTIONAL,PRINT=FILE,
DEFAULT (*OUTPUT) , OBJECT=F ILE ,DEFAULT (&LOADSET)

N oY W

22

8 COMPERR,RC : CALL FORTRAN,SYSIN=[PROGRAM],
SYSLIN=&TEMP, SYSPRINT=[PRINT]
9 COPY,TO=[OBJECT],FROM=&TEMP
10 END
11 FORTC,PROGRAM=MY, LINSYS OBJECT=MY.LI'B(LINSYS)

The procedures COMPERR, COPY and FORTC are declared in lines 1 to 10, and
then FORTC is called in line 11, with the specification of values for the local
variables PROGRAM and OBJECT. The first statement of the procedure FORTC is line
8: the execution of the program FORTRAN with various file definitions. If this
program returns a non-zero return code then COMPERR is called with ERRCODE ini-
tialized to the return code, If ERRCODE is greater than 4 then control returns to
FORTC with the return code indicator étill set; this error condition then caused
control to be passed back to the calling procedure (line 11) and so on until rea~
ching a level where the error condition is cancelled. If in COMPERR the value of
ERRCODE is not greater than 4, the error condition is cancelled, and control pas-
ses normally to the next command after line 8, On the occurrence of any other
kind of error condition, during the execution of FORTC, control is passed up to

the appropriate error routine, thus exiting from lower procedure levels.

SYNTAX OF THE LANGUAGE

A number of data types are recognized syntactically:

CHAR
WORD a sequence of letters
NAME a sequence of letters and digits starting with a letter

ALPHAMER a sequence of letters and/or digits
FILE a filename (operating system dependent)
STRING

INTEGER

BOOLEAN

PROC

ENV

FUN

23

Of these, the first six may be values of variables of type string.

EXPRESSIONS

Variables and constants may be combined to form expressions using the follo=-

wing operators (in order of precedence):

£] variable evaluation

function call

%/ multiplication division
+ - addition subtraction
(> K= d=="= relationals

- logical NOT

& logical AND

| logical OR

Brackets are used conventionally, and association is from the left. The only

permitted string operators are + (concatenation), = and =,

String constants are normally written enclosed between double quotes, Varia-
bles of integer or string type occurring within string constants will be evalua-

ted if enclosed within square brackets.

Examples: A, B, C, D are variables with values 1 (integer), XYZ (string),

false (Boolean) and 10 (integer), then we may evaluate expressions as follows:

(D-A%*2)/4 = A 2

"ABC" = ABRC
"ALBIC" = AXYZC
A<D |C = true
A+D = 11
nptLnpn = AD

l'[A]""""[D]" = 110

24

STATEMENTS

Individual statements may be separated by the character ";". Otherwise they
are terminated by "newline" unless the syntax indicates that the statement is in~
complete. Individual statements may be grouped into multiple statements by use of
command brackets $(and $), and may then be repeatedely or conditionally execu-
ted. A label may appear on an otherwise blank line and is preceded by "*", Blank

lines are ignored, Comments are introduced by // and terminated by "newline".

variable declaration LET variable-name = <?| value-expression)
assignment variable-name := value expression
transfer of control GOTO label

RETURN error-type,error-code

EXIT
RESULTIS value-expression
BREAK
LoOP
FINISH
conditional IF Boolean-expression THEN statement
UNLESS
repetitive WHILE Boolean—expression DO statement
UNTIL
program execution CALL program-name,program-environment
procedure call procedure~expression,arguments,variable~
declarations
environment entry ENTER environment-name
library declaration LIBRARY filename
library cancel CANCEL filename

command text inclusion GET filename

25

environment declaration ENV environment-name
<a (possibly null) set of declarations of
variables, procedures, functions and
environments)
END

procedure declaration PROC procedure-name,formal arguments
<a (possibly null) set of declarations of
statements, which may include RETURN)

END

program ¢a set of statements)

PROCEDURES AND FUNCTIONS

For the declarations of procedures and functions, the formal arguments con=

sist of a list of items of the form

variable—name = tybe,option,option,...

separated by commas, where the variable names are those of local variables
initialized to the arguments supplied. These values are checked for type at call
time, Admissible types are:

char, word, name, alphamer, file, string, integer, bool, proc, fun, env, rest.

The type rest refers to the unanalysed part of the command text treated as a

string, Argument options are:

NEVERKEY argument is positional
ALWAYSKEY argument is not positional
NOTOPT IONAL argument must be supplied

DEFAULT (VALUE) default value for omitted optional argument

Non-positional arguments are keyed using the variable name in the formal ar-
gument declaration. An omitted optional argument with no declared default is mar-

ked with a special "unset" value, which may be tested by a standard function.

26

In the procedure call the arguments can be either positional or keyed, and
are separated by commas. The variable declarations consist of a list of terms of

the form
variable-name = value-expression

separated by commas. To simplify use of the procedure call, string constants
wich do not contain special characters do not have to appear encloused in double
quotes. To avoid ambiguity, the evaluation of expressions must now be forced by

the use of square brackets.

The syntax of a function call is similar to that of a procedure call. The

diferences are:

~ the list of arguments and variable declarations is enclosed in brackets,

even if it is empty.

- string constants must be enclosed in double quotes, and square brackets are

not necessary for forcing the evaluation of expressions,

ENVIRONMENTS

An enviromment body consists of a set of declarations of procedures, fun-
ctions and other environments, together with declarations of variables which are
common to more than one of the local procedures and functions, and which are not
assumed to be declared in an outer environment, An envirorment is best understood

as a set of procedures with similar ends, which use a common set of data.

An example is the job submission enviromnment where the procedures prepare
and submit jobs for background execution. The common data would include such i—
tems as default job description parameter values, to avoid having to specify the-
se explicitly in each procedure. One such procedure might be for submitting a

Fortran job, another for dumping a tape, and so on.

Another example might be the file editing and maintenance environment; yet
another might be the environment for compilation and execution of programs in one
or more programming languages. Enviromments may and normally will be nested to
facilitate combinations of calls to procedures declared in different environ—

ments.

27

It is to be understood that an implementation will include the provision of
several environments, one of which will be the standard enviromment in which ba-

sic functions will be declared.

THE STANDARD ENVIRONMENT

The standard environment will be entered at the beginning of execution of
any program in the control language, and it will only be left at the end of the
program. In this environment are declared the variables used by the system, which
are mainly user settable parameters., Examples are:

USER the identification of the user (string)
QUIET suppresses the listing of procedures during execution (Roolean)

DUMP requests the taking of a dump in case of abend (Boolean)

The functions and procedures declared within this environment include routi-
nes for environmental enquiries, type conversions, simple I/0 and the standard
error procedures, The environmental enquiries include Boolean functions to test
whether a mame has been declared, if it is "unset", and to test its type. Type
conversion functions are provided between integer and string expressions, toget-—

her with a function which tests if these are possible.

Standard input and output streams are implicitly defined by the system, and
will normally be connected to the terminal in the case of interactive use. Simple
I/0 procedures to output short texts or to input variable values are provided, as
is the display procedure which lists all variable and procedure names currently

in scope, together with their types and values,

AN EXAMPLE

0 0 LIBRARY SYS.LIB //activates the environment
// declarations contained in this file

1 0 ENTER FILEMANIPULATION //activates the

. //declarations of EDIT and COPY

2 1 LET DOC="MAS.FORT1" //declares and
//initializes the variable DOC

3 1 COPY, TO=[DOC],FROM=*IMMED TATE (%)

< Fortran program text >

28

4 7 -
//copies the input text to file MAS.FORT1
5 1 EDIT,FROM=[DOC], TO=8TEMP

< editing commands >

//interactive editing

6 1 COPY FROM=&TEMP,TO=[DOC]
// save the edited text
7 1 ENTER JOBSUBMISSION

// activates the background
//job submission procedures

8 2 FORTGCLG,FROM=[DOC], PARMF=

NOSOURCE , JOBNAME=TUESDAY

// submits a Fortran job to
//compile and execute the program
//in MAS,FORT1, changing some
//default values

9 2 DOC:="MAS,FORT2" // assign a
//new value
10 2 ENTER COMPILATION //activates the

//foreground compiler procedures

11 3 LET DOC="MAS.FORT3" //creates
// a new variable DOC local
// to this environment

12 3 _ FORTGCLG,FROM=[DOC] //compiles
//in foreground the text in
// MAS,FORT3

13 3 EXIT //cancels the most recent
//environment, including the
//1local variable DOC

14 2 FORTGCLG,FROM=[DOC] // the program
//is read from MAS.FORT2, by a
// Fortran job submitted
//by this command

15 2 FINISH //terminate the program

The environment FILEMANIPULATION entered at (1) declares the procedures EDIT
and COPY, The variable DOC is declared (2) and assigned a string wvalue. In its
use as an argument (3) DOC is enclosed in square brackets to force evaluation.
The COPY procedure (3) copies the FROM datafile to the TO datafile., In this case,

FROM refers to an instream datafile, or immediate document, terminated. by "Z"

29

(4). The JOBSUBMISSION enviromment is entered (7) and includes FORTGCLG, a proce~
dure to submit a FORTRAN job, amongst its local procedures. In calling the proce-
dure (8), PARMF is an argument and JOBNAME a new local variable, since it is the
name of a variable declared in the JOBSUMISSION environment, rather than the pro-
cedure FORTGCLG. A new value is assigned (9) to the variable DOC declared in (2).
The COMPILATION environment is entered (10) and a new variable DOC is declared
and initialized within it (11). The procedure FORTGCLG (12) is local to
COMPILATION and represents the compilation and execution of the program in the
file MAS.FORT3 . On exiting from this enviromment (13) we return to the scope of
the variable DOC declared in (2) and the FORTGCLG procedure declared in the
JOBSUBMISSION environment. The control language program is terminated by the com—
mand FINISH (15).

CONCLUSION

The above description has highlighted those control language features not
normally found in a programming language. Apart from the program execution state-
ment and the use of file names, which are peculiar to a control language, the re-
maining novel features are a consequence of the desire to serve the interactive

user in a well-structured language environment.

The description presented here is necessarily partial, and the author in-
tends to remedy this in the near future with a complete description of the lan-

guage ARARA/370 designed for use with IBM's OS/MVT or its successors.

No discussion of this kind would be complete without some mention of how the
language is to be implemented. For interactive use the translation has to be per-
formed by direct interpretation of the source text. This by no means excludes the
possibility of the pre-compilation of.- procedures and environments into an inter~
mediate code which can be interpreted at execution time. In fact the type chec-
king of arguments would facilitate such a choice. Thus a complete program could
consist .of a mixture of source text and intermediate code. Such a system is under

development by the author at PUC/RJ.

30

The author wishes to acknowledge the contributions made by Dr M. F. Challis
to the development of the ideas expressed here, The work described is partially
supported financially by the Conselho Nacional de Desenvolvimento Cientifico e

Tecnologico (CNPq).

REFERENCES

~ Barron D. W. and Jackson I, R., The evolution of Job Control Languages,

Software - Practice and Experience, 2 (2),143 (1972).

- Cambridge University Computing Service, Cambridge 370/165 Users' Reference
Manual (1975).

-~ Gilman L. and Rose A. J., APL, An Interactive Approach, Wiley, 2nd edition
(1974).

- Hazel P,, A Common Language for Utilities, internal memorandum, Cambridge

University Computing Service (1976).

- Hoare C. A. R.,, Monitors: An Operating System Structuring Concept, CACM 17
(10),549 (1974).

~ IBM System /360 Operating System: Job Control Language Reference, Form no.
GC28-6704,

